1
|
Tickerhoof M, Cham H, Ger A, Burrja S, Auluck P, Schmidt PJ, Marenco S, Kundakovic M. Postmortem tissue biomarkers of menopausal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599941. [PMID: 38979150 PMCID: PMC11230159 DOI: 10.1101/2024.06.20.599941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The menopausal transition (MT) is associated with an increased risk for many disorders including neurological and mental disorders. Brain imaging studies in living humans show changes in brain metabolism and structure that may contribute to the MT-associated brain disease risk. Although deficits in ovarian hormones have been implicated, cellular and molecular studies of the brain undergoing MT are currently lacking, mostly due to a difficulty in studying MT in postmortem human brain. To enable this research, we explored 39 candidate biomarkers for menopausal status in 42 pre-, peri-, and post-menopausal subjects across three postmortem tissues: blood, the hypothalamus, and pituitary gland. We identified thirteen significant and seven strongest menopausal biomarkers across the three tissues. Using these biomarkers, we generated multi-tissue and tissue-specific composite measures that allow the postmortem identification of the menopausal status across different age ranges, including the "perimenopausal", 45-55-year-old group. Our findings enable the study of cellular and molecular mechanisms underlying increased neuropsychiatric risk during the MT, opening the path for hormone status-informed, precision medicine approach in women's mental health.
Collapse
Affiliation(s)
- Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Heining Cham
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - Anaya Ger
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Sonola Burrja
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Pavan Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
2
|
Huang J, Demmler R, Mohamed Abdou M, Thoma OM, Weigmann B, Waldner MJ, Stürzl M, Naschberger E. Rapid qPCR-based quantitative immune cell phenotyping in mouse tissues. J Investig Med 2024; 72:47-56. [PMID: 37858974 DOI: 10.1177/10815589231210497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The immune microenvironment plays an important role in the regulation of diseases. The characterization of the cellular composition of immune cell infiltrates in diseases and respective models is a major task in pathogenesis research and diagnostics. For the assessment of immune cell populations in tissues, fluorescence-activated cell sorting (FACS) or immunohistochemistry (IHC) are the two most common techniques presently applied, but they are cost intensive, laborious, and sometimes limited by the availability of suitable antibodies. Complementary rapid qPCR-based approaches exist for the human situation but are lacking for experimental mouse models. Accordingly, we developed a robust, rapid RT-qPCR-based approach to determine and quantify the abundance of prominent immune cell populations such as T cells, helper T (Th) cells, cytotoxic T cells, Th1 cells, B cells, and macrophages in mouse tissues. The results were independently validated by the gold standards IHC and FACS in corresponding tissues and showed high concordance.
Collapse
Affiliation(s)
- Jinghao Huang
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Richard Demmler
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mariam Mohamed Abdou
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Zhao L, Yang H, Li X, Zhou Y, Liu T, Zhao Y. Transcriptome-based selection and validation of optimal reference genes in perirenal adipose developing of goat ( Capra hircus). Front Vet Sci 2022; 9:1055866. [PMID: 36467654 PMCID: PMC9712442 DOI: 10.3389/fvets.2022.1055866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 06/15/2024] Open
Abstract
Brown adipose tissue (BAT) is mainly present in young mammals and is important for maintaining body temperature in neonatal mammals because of its ability to produce non-shivering thermogenesis. There is usually a large amount of BAT around the kidneys of newborn kids, but the BAT gradually "whiting" after birth. Screening and validating appropriate reference genes is a prerequisite for further studying the mechanism of goat brown adipose tissue "whiting" during the early stages. In this study, the expression stability of 17 candidate reference genes: 12 COPS8, SAP18, IGF2R, PARL, SNRNP200, ACTG1, CLTA, GANAB, GABARAP, PCBP2, CTSB, and CD151) selected based on previous transcriptome data as new candidate reference genes, 3 (PFDN5, CTNNB1, and EIF3M) recommended in previous studies, and 2 traditional reference genes (ACTB and GAPDH) was evaluated. Real-time quantitative PCR (RT-qPCR) technology was used to detect the expression level of candidate reference genes during goat BAT "whiting". Four algorithms: Normfinder, geNorm, ΔCt method, and BestKeeper, and two comprehensive algorithms: ComprFinder and RefFinder, were used to analyze the stability of each candidate reference genes. GABARAP, CLTA, GAPDH, and ACTB were identified as the most stable reference genes, while CTNNB1, CTSB, and EIF3M were the least stable. Moreover, two randomly selected target genes IDH2 and RBP4, were effectively normalized using the selected most stable reference genes. These findings collectively suggest that GABARAP, CLTA, GAPDH, and ACTB are relatively stable reference genes that can potentially be used for the development of perirenal fat in goats.
Collapse
|
4
|
Berruien NNA, Murray JF, Smith CL. Pregnancy influences the selection of appropriate reference genes in mouse tissue: Determination of appropriate reference genes for quantitative reverse transcription PCR studies in tissues from the female mouse reproductive axis. Gene 2021; 801:145855. [PMID: 34293448 DOI: 10.1016/j.gene.2021.145855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Selecting stably expressed reference genes which are not affected by physiological or pathophysiological conditions is crucial for reliable quantification in gene expression studies. This study examined the expression stability of a panel of twelve reference genes in tissues from the female mouse reproductive axis and the uterus. Gene expression studies were carried out using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). cDNA was synthesised from RNA extracted from hypothalami, pituitaries, ovaries and uteri of female mice at ages representing weaning, puberty and adulthood as well as pregnancy (13 ± 1 days post-coitus) (n = a minimum of 3 at each age and at pregnancy). The reference genes examined included 18 s, Actb, Atp5b, B2m, Canx, Cyc1, Eif4a2, Gapdh, Rpl13a, Sdha, Ubc and Ywhaz. The RT-qPCR raw data were imported into the qBASE+ software to analyse the expression stability using GeNorm. These data were also subsequently analysed using other software packages (Delta CT, Normfinder, BestKeeper). A comprehensive ranking was conducted considering all stability rankings generated from the different software analyses. B2m and Eif4a2 deviated from the acceptable range for amplification efficiency and therefore were excluded from the further analyses. The stability of the reference genes is influenced by the software used for the analysis with BestKeeper providing markedly different results than the other analyses. GeNorm analysis of tissues taken at different ages but not including pregnant animals, indicated that the expression of the reference genes is tissue specific with the most stable genes being: in the hypothalamus, Canx and Actb; in the pituitary, Sdha and Cyc1; in the ovary, 18s, Sdha and Ubc; and in the uterus, Ywhaz, Cyc1, Atp5b, 18s and Rpl13a. The optimal number of reference genes to be used was determined to be 2 in the first three tissues while in the uterus, the V-score generated by the GeNorm analysis was higher than 0.15 suggesting that 3 or more genes should be used for normalisation. Inclusion of tissues from pregnant mice changed the reference genes identified as being the most stable: Ubc and Sdha were the most stable genes in the hypothalamus, pituitary and the ovary. The addition of pregnant tissue had no effect on the stability of the genes in uterus (Ywhaz, Cyc1, Atp5b, 18s and Rpl13a). Identification of these stable reference genes will be of use to those interested in studying female fertility and researchers should be alert to the effects of pregnancy on reference gene stability. This study also signifies the importance of re-examining reference gene stability if the experimental conditions are changed, as shown with the introduction of pregnancy as a new factor in this research.
Collapse
Affiliation(s)
- Nasrin N A Berruien
- University of Westminster, School of Life Sciences, 115 New Cavendish Street, London W1W 6UW, United Kingdom
| | - Joanne F Murray
- University of Edinburgh, Centre for Discovery Brain Science, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, United Kingdom
| | - Caroline L Smith
- University of Westminster, School of Life Sciences, 115 New Cavendish Street, London W1W 6UW, United Kingdom.
| |
Collapse
|
5
|
Yin H, Zheng X, Tang X, Zang Z, Li B, He S, Shen R, Yang H, Li S. Potential biomarkers and lncRNA-mRNA regulatory networks in invasive growth hormone-secreting pituitary adenomas. J Endocrinol Invest 2021; 44:1947-1959. [PMID: 33559847 DOI: 10.1007/s40618-021-01510-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Growth hormone-secreting pituitary adenomas (GH-PAs) are common subtypes of functional PAs. Invasive GH-PAs play a key role in restricting poor outcomes. The transcriptional changes in GH-PAs were evaluated. METHODS In this study, the transcriptome analysis of six different GH-PA samples was performed. The functional roles, co-regulatory network, and chromosome location of differentially expressed (DE) genes in invasive GH-PAs were explored. RESULTS Bioinformatic analysis revealed 101 DE mRNAs and 70 DE long non-coding RNAs (lncRNAs) between invasive and non-invasive GH-PAs. Functional enrichment analysis showed that epithelial cell differentiation and development pathways were suppressed in invasive GH-PAs, whereas the pathways of olfactory transduction, retinol metabolism, drug metabolism-cytochrome P450, and metabolism of xenobiotics by cytochrome P450 had an active trend. In the protein-protein interaction network, 11 main communities were characterized by cell- adhesion, -motility, and -cycle; transport process; phosphorus and hormone metabolic processes. The SGK1 gene was suggested to play a role in the invasiveness of GH-PAs. Furthermore, the up-regulated genes OR51B6, OR52E4, OR52E8, OR52E6, OR52N2, MAGEA6, MAGEC1, ST8SIA6-AS1, and the down-regulated genes GAD1-AS1 and SPINT1-AS1 were identified in the competing endogenous RNA network. The RT-qPCR results further supported the aberrant expression of those genes. Finally, the enrichment of DE genes in chromosome 11p15 and 12p13 regions were detected. CONCLUSION Our findings provide a new perspective for studies evaluating the underlying mechanism of invasive GH-PAs.
Collapse
Affiliation(s)
- H Yin
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - X Zheng
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - X Tang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Z Zang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - B Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - S He
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - R Shen
- Department of Endocrinology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - H Yang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China.
| | - S Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Fan X, Yao H, Liu X, Shi Q, Lv L, Li P, Wang R, Tang T, Qi K. High-Fat Diet Alters the Expression of Reference Genes in Male Mice. Front Nutr 2020; 7:589771. [PMID: 33330591 PMCID: PMC7732482 DOI: 10.3389/fnut.2020.589771] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Quantitative PCR (qPCR), the most accurate and sensitive technique for quantifying mRNA expression, and choice of appropriate reference genes for internal error controlling in qPCR are essential to understanding the molecular mechanisms that drive the obesity epidemic and its comorbidities. In this study, using the high-fat diet (HFD)-induced obese mouse model, we assessed the expression of 10 commonly used reference genes to validate gene-expression stability in adipose tissue, liver, and muscle across different time points (4, 8, 12, and 16 weeks after HFD feeding) during the process of obesity. The data were analyzed by the GeNorm, NormFinder, BestKeeper, and Delta-Ct method, and the results showed that the most stable reference genes were different for a specific organ or tissue in a specific time point; however, PPIA, RPLP0, and YWHAZ were the top three most stable reference genes in qPCR experiments on adipose, hepatic tissues, and muscles of mice in diet-induced obesity. In addition, the mostly used genes ACTB and GAPDH were more unstable in the fat and liver, the ACTB mRNA levels were increased in four adipose tissues, and the GAPDH mRNA levels were decreased in four adipose tissues and liver after HFD feeding. These results suggest that PPIA, RPLP0, or YWHAZ may be more appropriate to be used as reference gene than ACTB and GAPDH in the adipose tissue and liver of mice during the process of high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Xiuqin Fan
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hongyang Yao
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xuanyi Liu
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiaoyu Shi
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | | | - Ping Li
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
7
|
Lenoir M, Martín R, Torres-Maravilla E, Chadi S, González-Dávila P, Sokol H, Langella P, Chain F, Bermúdez-Humarán LG. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 2020; 12:1-16. [PMID: 33054518 PMCID: PMC7567499 DOI: 10.1080/19490976.2020.1826748] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The commensal bacterium Faecalibacterium prausnitzii plays a key role in inflammatory bowel disease (IBD) pathogenesis and serves as a general health biomarker in humans. However, the host molecular mechanisms that underlie its anti-inflammatory effects remain unknown. In this study we performed a transcriptomic approach on human intestinal epithelial cells (HT-29) stimulated with TNF-α and exposed to F. prausnitzii culture supernatant (SN) in order to determine the impact of this commensal bacterium on intestinal epithelial cells. Moreover, modulation of the most upregulated gene after F. prausnitzii SN contact was validated both in vitro and in vivo. Our results showed that F. prausnitzii SN upregulates the expression of Dact3, a gene linked to the Wnt/JNK pathway. Interestingly, when we silenced Dact3 expression, the effect of F. prausnitzii SN was lost. Butyrate was identified as the F. prausnitzii effector responsible for Dact3 modulation. Dact3 upregulation was also validated in vivo in both healthy and inflamed mice treated with either F. prausnitzii SN or the live bacteria, respectively. Finally, we demonstrated by colon transcriptomics that gut microbiota directly influences Dact3 expression. This study provides new clues about the host molecular mechanisms involved in the anti-inflammatory effects of the beneficial commensal bacterium F. prausnitzii.
Collapse
Affiliation(s)
- Marion Lenoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Rebeca Martín
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Sead Chadi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,Sorbonne Universités, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, F-75012Paris, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Florian Chain
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luis G. Bermúdez-Humarán
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350Jouy-en-Josas, France
| |
Collapse
|
8
|
Janjic MM, Prévide RM, Fletcher PA, Sherman A, Smiljanic K, Abebe D, Bjelobaba I, Stojilkovic SS. Divergent expression patterns of pituitary gonadotropin subunit and GnRH receptor genes to continuous GnRH in vitro and in vivo. Sci Rep 2019; 9:20098. [PMID: 31882740 PMCID: PMC6934515 DOI: 10.1038/s41598-019-56480-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Continuous, as opposed to pulsatile, delivery of hypothalamic gonadotropin-releasing hormone (GnRH) leads to a marked decrease in secretion of pituitary gonadotropins LH and FSH and impairment of reproductive function. Here we studied the expression profile of gonadotropin subunit and GnRH receptor genes in rat pituitary in vitro and in vivo to clarify their expression profiles in the absence and continuous presence of GnRH. Culturing of pituitary cells in GnRH-free conditions downregulated Fshb, Cga, and Gnrhr expression, whereas continuous treatment with GnRH agonists upregulated Cga expression progressively and Gnrhr and Fshb expression transiently, accompanied by a prolonged blockade of Fshb but not Gnrhr expression. In contrast, Lhb expression was relatively insensitive to loss of endogenous GnRH and continuous treatment with GnRH, probably reflecting the status of Egr1 and Nr5a1 expression. Similar patterns of responses were observed in vivo after administration of a GnRH agonist. However, continuous treatment with GnRH stimulated LH secretion in vitro and in vivo, leading to decrease in LH cell content despite high basal Lhb expression. These data suggest that blockade of Fshb expression and depletion of the LH secretory pool are two major factors accounting for weakening of the gonadotroph secretory function during continuous GnRH treatment.
Collapse
Affiliation(s)
- Marija M Janjic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biological Research Sinisa Stankovic - National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Rafael M Prévide
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kosara Smiljanic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivana Bjelobaba
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biological Research Sinisa Stankovic - National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Bars-Cortina D, Riera-Escamilla A, Gou G, Piñol-Felis C, Motilva MJ. Design, optimization and validation of genes commonly used in expression studies on DMH/AOM rat colon carcinogenesis model. PeerJ 2019; 7:e6372. [PMID: 30713822 PMCID: PMC6357868 DOI: 10.7717/peerj.6372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC), also known as colon cancer, is the third most common form of cancer worldwide in men and the second in women and is characterized by several genetic alterations, among them the expression of several genes. 1,2-dimethylhydrazine (DMH) and its metabolite azoxymethane (AOM) are procarcinogens commonly used to induce colon cancer in rats (DMH/AOM rat model). This rat model has been used to study changes in mRNA expression in genes involved in this pathological condition. However, a lack of proper detailed PCR primer design in the literature limits the reproducibility of the published data. The present study aims to design, optimize and validate the qPCR, in accordance with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines, for seventeen genes commonly used in the DMH/AOM rat model of CRC (Apc, Aurka, Bax, Bcl2, β-catenin, Ccnd1, Cdkn1a, Cox2, Gsk3beta, IL-33, iNOs, Nrf2, p53, RelA, Smad4, Tnfα and Vegfa) and two reference genes (Actb or β-actin and B2m). The specificity of all primer pairs was empirically validated on agarose gel, and furthermore, the melting curve inspection was checked as was their efficiency (%) ranging from 90 to 110 with a correlation coefficient of r2 > 0.980. Finally, a pilot study was performed to compare the robustness of two candidate reference genes.
Collapse
Affiliation(s)
- David Bars-Cortina
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia.,Department of Medicine, Universitat de Lleida, Lleida, Catalonia
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia, Spain
| | - Gemma Gou
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Carme Piñol-Felis
- Department of Medicine, Universitat de Lleida, Lleida, Catalonia.,Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré-IRBLLeida, Lleida, Spain
| | - María-José Motilva
- Instituto de Ciencias de la Vid y del Vino (ICVV) (CSIC Universidad de la Rioja-Gobierno de La Rioja), Logroño, Spain
| |
Collapse
|
10
|
Sanders K, de Wit WL, Mol JA, Kurlbaum M, Kendl S, Kroiss M, Kooistra HS, Galac S. Abiraterone Acetate for Cushing Syndrome: Study in a Canine Primary Adrenocortical Cell Culture Model. Endocrinology 2018; 159:3689-3698. [PMID: 30219917 DOI: 10.1210/en.2018-00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
Abstract
Abiraterone acetate (AA) is a potent inhibitor of steroidogenic enzyme 17α-hydroxylase/17,20-lyase (CYP17A1). AA is approved for the treatment of prostate cancer but could also be used to treat patients with Cushing syndrome (CS). Similar to humans, canine glucocorticoid synthesis requires CYP17A1, providing a useful animal model. The objective of this study was to preclinically investigate the effect of AA on adrenocortical hormone production, cell viability, and mRNA expression of steroidogenic enzymes in canine primary adrenocortical cell cultures (n = 9) from the adrenal glands of nine healthy dogs. The cells were incubated with AA (0.125 nM to 10 μM) for 72 hours under basal conditions and with 100 nM ACTH(1-24). Adrenocortical hormone concentrations were measured in culture medium using liquid chromatography-mass spectrometry, RNA was isolated from cells for subsequent real-time quantitative PCR analysis, and cell viability was assessed with an alamarBlue™ assay. AA reduced cortisol (IC50, 21.4 ± 4.6 nM) without affecting aldosterone under basal and ACTH-stimulated conditions. AA increased progesterone under basal and ACTH-stimulated conditions but reduced corticosterone under basal conditions, suggesting concurrent inhibition of 21-hydroxylation. AA did not affect the mRNA expression of steroidogenic enzymes and did not inhibit cell viability. In summary, primary canine adrenocortical cell culture is a useful model system for drug testing. For the treatment of CS, AA may to be superior to other steroidogenesis inhibitors due to its low toxicity. For future in vivo studies, dogs with endogenous CS may provide a useful animal model.
Collapse
Affiliation(s)
- Karin Sanders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wesley L de Wit
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Max Kurlbaum
- University Hospital Würzburg, Core Unit Clinical Mass Spectrometry, Würzburg, Germany
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
| | - Sabine Kendl
- University Hospital Würzburg, Core Unit Clinical Mass Spectrometry, Würzburg, Germany
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Core Unit Clinical Mass Spectrometry, Würzburg, Germany
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Hans S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Vastenhout N, van Rijn SJ, Riemers FM, Tryfonidou MA, Meij BP, Penning LC. The mRNA expression of PTTG1 is a strong prognostic indicator for recurrence after hypophysectomy in dogs with corticotroph pituitary adenomas. Vet J 2018; 240:19-21. [PMID: 30268327 DOI: 10.1016/j.tvjl.2018.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Pituitary-dependent hypercortisolism (PDH) is a common endocrinopathy in dogs, but the promotors and initiators of the tumourigenesis of corticotroph pituitary adenomas remain unknown. Based on human data, we investigated mRNA expression of pituitary tumour transforming gene 1 (PTTG1) with quantitative RT-PCR in canine corticotroph pituitary adenomas. PTTG1 was overexpressed in adenomas approximately 3-fold. A strong association was observed between PTTG1 expression and disease-free interval; dogs with high PTTG1 expression had a significantly (4 times; P=0.02) shorter disease-free interval than dogs with low PTTG1 expression. This paper shows that PTTG1 expression is a negative prognosticator in relation to disease-free interval and recurrence in dogs undergoing transsphenoidal hypophysectomy as treatment for PDH.
Collapse
Affiliation(s)
- N Vastenhout
- Utrecht University, Faculty of Veterinary Medicine, Department Clinical Sciences of Companion Animals, P.O. Box 80.154, NL-3508 TD Utrecht, The Netherlands
| | - S J van Rijn
- Utrecht University, Faculty of Veterinary Medicine, Department Clinical Sciences of Companion Animals, P.O. Box 80.154, NL-3508 TD Utrecht, The Netherlands.
| | - F M Riemers
- Utrecht University, Faculty of Veterinary Medicine, Department Clinical Sciences of Companion Animals, P.O. Box 80.154, NL-3508 TD Utrecht, The Netherlands
| | - M A Tryfonidou
- Utrecht University, Faculty of Veterinary Medicine, Department Clinical Sciences of Companion Animals, P.O. Box 80.154, NL-3508 TD Utrecht, The Netherlands
| | - B P Meij
- Utrecht University, Faculty of Veterinary Medicine, Department Clinical Sciences of Companion Animals, P.O. Box 80.154, NL-3508 TD Utrecht, The Netherlands
| | - L C Penning
- Utrecht University, Faculty of Veterinary Medicine, Department Clinical Sciences of Companion Animals, P.O. Box 80.154, NL-3508 TD Utrecht, The Netherlands
| |
Collapse
|
12
|
Modarelli JJ, Ferro PJ, Esteve-Gasent MD. Development and application of a canine endogenous internal positive control for use in real-time PCR assays. J Vet Diagn Invest 2018; 30:789-792. [PMID: 30132404 DOI: 10.1177/1040638718795206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Real-time PCR (rtPCR) tests have become a method of choice in many diagnostic settings, both animal and human. A concern remains, however, regarding rtPCR assay inhibition during nucleic acid extraction and/or rtPCR reaction process that may result in false-negative results. The use of an internal positive control, either endogenous or exogenous, to mitigate this issue has become more commonplace. We identified and standardized an endogenous internal positive control that can be utilized in rtPCR assays targeting canine-specific pathogens in either a singleplex or multiplex format. The target chosen for the endogenous internal positive control (EIPC-K9) was a highly conserved region in canine mitochondrial DNA. Samples from 240 dogs and 11 other species were screened with EIPC-K9; all canine samples were detected, and no cross-amplification with other species tested was observed. Additionally, no inhibition was noted when comparing singleplex to multiplex rtPCR formats.
Collapse
Affiliation(s)
- Joseph J Modarelli
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences (Modarelli, Esteve-Gasent), Texas A&M University, College Station, TX.,Texas A&M Veterinary Medical Diagnostic Laboratory (Modarelli, Ferro), Texas A&M University, College Station, TX
| | - Pamela J Ferro
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences (Modarelli, Esteve-Gasent), Texas A&M University, College Station, TX.,Texas A&M Veterinary Medical Diagnostic Laboratory (Modarelli, Ferro), Texas A&M University, College Station, TX
| | - Maria D Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences (Modarelli, Esteve-Gasent), Texas A&M University, College Station, TX.,Texas A&M Veterinary Medical Diagnostic Laboratory (Modarelli, Ferro), Texas A&M University, College Station, TX
| |
Collapse
|
13
|
|
14
|
Normann KR, Øystese KAB, Berg JP, Lekva T, Berg-Johnsen J, Bollerslev J, Olarescu NC. Selection and validation of reliable reference genes for RT-qPCR analysis in a large cohort of pituitary adenomas. Mol Cell Endocrinol 2016; 437:183-189. [PMID: 27561203 DOI: 10.1016/j.mce.2016.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/11/2016] [Accepted: 08/20/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Real-time reverse transcription quantitative PCR (RT-qPCR) has become the method of choice for quantification of gene expression changes. The most important limitations of RT-qPCR are inappropriate data normalization and inconsistent data analyses. Pituitary adenomas are common tumours, and the appropriate interpretation of increasingly published data within this field is prevented by the lack of a proper selection and validation of stably expressed reference genes. AIM To find and validate the optimal reference gene or gene combination for reliable RT-qPCR gene expression in both non-functioning (NFPA) and hormone secreting (GH and ACTH) pituitary adenomas. MATERIAL AND METHODS Thirty commonly used reference genes (PCR array reference gene panel, BioRad, Hercules, CA) were quantified by RT-qPCR in 24 pituitary adenomas (12 NFPA, 8 GH and 4 ACTH). The data was analysed using three programs: geNorm (Qbase+), Normfinder and BestKeeper having different algorithms to identify the most stable reference gene or combination of reference genes. Three reference genes ALAS1, PSMC4 and GAPDH, were selected for further validation in a larger cohort of 223 adenomas (141 NFPA, 63 GH and 19 ACTH). RESULTS In all adenomas, ALAS1 and PSMC4 were the most stable reference genes as estimated by geNorm and Normfinder, whereas Bestkeeper ranked RPLP0 and ACTB as the two most stable out of 10 carefully selected genes. The best gene combination was PSMC4 and ALAS1 (geNorm) or PSMC4 and GAPDH (Normfinder). The validation experiment (geNorm) showed that the most stable gene combinations were ALAS1 and GAPDH in NFPA, and PSMC4 and GAPDH in hormone secreting adenomas. CONCLUSIONS Several of the reference genes expressed good stability yielding several candidate genes. PSMC4 and ALAS1 were overall the most stably expressed genes in pituitary adenoma merely differing in ranking order. PSMC4 and ALAS1 have so far not been reported as reference genes in pituitary adenomas. The various reference gene algorithms showed a mixed selection of top ranked genes, thus suggesting a need for an individualised and rational choice of reference genes.
Collapse
Affiliation(s)
- Kjersti Ringvoll Normann
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Kristin Astrid Berland Øystese
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Petter Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Jon Berg-Johnsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nicoleta Cristina Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway; Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Duan J, Huang W, Shi H. Positive expression of KIF20A indicates poor prognosis of glioma patients. Onco Targets Ther 2016; 9:6741-6749. [PMID: 27843327 PMCID: PMC5098585 DOI: 10.2147/ott.s115974] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioma patients have a poor overall survival; however, patients can show distinct clinical outcomes due to the high heterogeneity of the tumor, which may be indicated by certain clinicobiological parameters. Kinesin family member 20A (KIF20A), which participates in cytokinesis and intracellular transportation, has been recently reported to be upregulated in pancreatic cancer, breast cancer, and bladder cancer. In the current study, we investigated the expression of KIF20A in gliomas and its significance in predicting the prognosis after surgery. We found that KIF20A positive expression in glioma tissues correlated significantly with Ki67 protein expression and advanced World Health Organization grade. Univariate and multivariate analysis revealed that KIF20A can act as an independent prognostic factor for predicting the overall survival of glioma patients. Moreover, we demonstrated that KIF20A can positively regulate the expression of Ki67 in glioma cell lines. Correspondingly, overexpression of KIF20A can promote cell proliferation and invasion, whereas knockdown of KIF20A can inhibit cell viability and invasion capacity. In vitro study also showed that under the treatment of plumbagin, an anticancer drug, KIF20A expression decreased in a dose-dependent manner. In addition, the overexpression of KIF20A can also increase the drug resistance toward plumbagin, which provided the possibility that KIF20A may contribute to the chemotherapy resistance of gliomas.
Collapse
Affiliation(s)
- Jia Duan
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Haiping Shi
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| |
Collapse
|
16
|
Meira-Strejevitch CS, Pereira-Chioccola VL, Maia MM, Carnietto de Hipólito DD, Wang HTL, Motoie G, de Souza Gomes AH, Kanamura CT, Martines RB, de Mattos CCB, Frederico FB, de Mattos LC, de Mattos CCB, Frederico FB, Siqueira RC, Previato M, Barbosa AP, Murata FHA. WITHDRAWN: Selection of reference genes in five types of human tissues for normalization of gene expression studies in infectious diseases. Gene 2016:S0378-1119(16)30816-2. [PMID: 27743995 DOI: 10.1016/j.gene.2016.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/09/2016] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
| | | | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo Brazil
| | | | - Hui-Tzu Lin Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto Dante Pazzanese de Cardiologia, Sao Paulo Brazil
| | - Gabriela Motoie
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo Brazil
| | | | | | | | - Cinara Cássia Brandão de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Fábio Batista Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - Luiz Carlos de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Fábio Batista Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - Rubens Camargo Siqueira
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Mariana Previato
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Amanda Pires Barbosa
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - Fernando Henrique Antunes Murata
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| |
Collapse
|
17
|
Sanders K, Mol JA, Kooistra HS, Slob A, Galac S. New Insights in the Functional Zonation of the Canine Adrenal Cortex. J Vet Intern Med 2016; 30:741-50. [PMID: 27108660 PMCID: PMC4913559 DOI: 10.1111/jvim.13946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Current understanding of adrenal steroidogenesis is that the production of aldosterone or cortisol depends on the expression of aldosterone synthase (CYP11B2) and 11β-hydroxylase cytochrome P450 (CYP11B1), respectively. However, this has never been studied in dogs, and in some species, a single CYP11B catalyzes both cortisol and aldosterone formation. Analysis of the canine genome provides data of a single CYP11B gene which is called CYP11B2, and a large sequence gap exists near the so-called CYP11B2 gene. OBJECTIVES To investigate the zonal expression of steroidogenic enzymes in the canine adrenal cortex and to determine whether dogs have 1 or multiple CYP11B genes. ANIMALS Normal adrenal glands from 10 healthy dogs. METHODS Zona fasciculata (zF) and zona glomerulosa (zG) tissue was isolated by laser microdissection. The mRNA expression of steroidogenic enzymes and their major regulators was studied with RT-qPCR. Southern blot was performed to determine whether the sequence gap contains a CYP11B gene copy. Immunohistochemistry (IHC) was performed for 17α-hydroxylase/17,20-lyase (CYP17). RESULTS Equal expression (P = .62) of the so-called CYP11B2 gene was found in the zG and zF. Southern blot revealed a single gene. CYP17 expression (P = .05) was significantly higher in the zF compared with the zG, which was confirmed with IHC. CONCLUSIONS AND CLINICAL IMPORTANCE We conclude that there is only 1 CYP11B gene in canine adrenals. The zone-specific production of aldosterone and cortisol is probably due to zone-specific CYP17 expression, which makes it an attractive target for selective inhibition of cortisol synthesis without affecting mineralocorticoid production in the zG.
Collapse
Affiliation(s)
- K Sanders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - H S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A Slob
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - S Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Bujko M, Rusetska N, Mikula M. Validating candidate reference genes for qRT-PCR-based gene expression analysis in nonfunctioning pituitary adenomas. Pituitary 2016; 19:110-2. [PMID: 25893614 DOI: 10.1007/s11102-015-0656-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland.
| | - Natalia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland
| |
Collapse
|
19
|
Yang J, Wang G, Ng TB, Lin J, Ye X. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients. Front Microbiol 2016; 6:1558. [PMID: 26793186 PMCID: PMC4710055 DOI: 10.3389/fmicb.2015.01558] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu2+ ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Guozeng Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| |
Collapse
|
20
|
Stassen QEM, Riemers FM, Reijmerink H, Leegwater PAJ, Penning LC. Reference genes for reverse transcription quantitative PCR in canine brain tissue. BMC Res Notes 2015; 8:761. [PMID: 26654363 PMCID: PMC4673830 DOI: 10.1186/s13104-015-1628-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background In the last decade canine models have been used extensively to study genetic causes of neurological disorders such as epilepsy and Alzheimer’s disease and unravel their pathophysiological pathways. Reverse transcription quantitative polymerase chain reaction is a sensitive and inexpensive method to study expression levels of genes involved in disease processes. Accurate normalisation with stably expressed so-called reference genes is crucial for reliable expression analysis. Results Following the minimum information for publication of quantitative real-time PCR experiments precise guidelines, the expression of ten frequently used reference genes, namely YWHAZ, HMBS, B2M, SDHA, GAPDH, HPRT, RPL13A, RPS5, RPS19 and GUSB was evaluated in seven brain regions (frontal lobe, parietal lobe, occipital lobe, temporal lobe, thalamus, hippocampus and cerebellum) and whole brain of healthy dogs. The stability of expression varied between different brain areas. Using the GeNorm and Normfinder software HMBS, GAPDH and HPRT were the most reliable reference genes for whole brain. Furthermore based on GeNorm calculations it was concluded that as little as two to three reference genes are sufficient to obtain reliable normalisation, irrespective the brain area. Conclusions Our results amend/extend the limited previously published data on canine brain reference genes. Despite the excellent expression stability of HMBS, GAPDH and HRPT, the evaluation of expression stability of reference genes must be a standard and integral part of experimental design and subsequent data analysis. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1628-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quirine E M Stassen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Hannah Reijmerink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
21
|
van Rijn SJ, Pouwer MG, Tryfonidou MA, Grinwis GCM, van der Bend JEE, Beukers PEPF, Vastenhout N, Drouin J, Penning LC, Meij BP. Expression and clinical relevance of paired box protein 7 and sex determining region Y-box 2 in canine corticotroph pituitary adenomas. Vet J 2015; 204:315-21. [PMID: 25956343 DOI: 10.1016/j.tvjl.2015.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/05/2015] [Accepted: 04/11/2015] [Indexed: 01/09/2023]
Abstract
Pituitary-dependent hypercortisolism is a common endocrinopathy in dogs, caused by an adrenocorticotrophic hormone secreting pituitary tumour of the anterior or intermediate lobe. The prognosis of intermediate lobe adenomas is worse than that of anterior lobe adenomas, indicating the possible usefulness of melanotropic markers as prognosticators. Another possible origin of pituitary adenomas is found in cancer stem cells. The aim of the present study was to investigate the expression of melanotroph specific transcription factor paired box protein 7 (Pax7) and stem cell marker and reprogramming factor sex determining region Y-box 2 (Sox2) and to relate their expression to clinical parameters. The mean ± SD of labelling index (LI) for Pax7 was 8.6% ± 21.7% in the adenomas; 1/6 controls had positive staining (LI, 15.2%). For Sox2, the LI in the adenomas was 16.9% ± 15.2% and 19.5% ± 11.6% in the controls. Pax7 expression was significantly higher in enlarged pituitaries, compared to non-enlarged pituitaries (P = 0.05), but Pax7 or Sox2 immunopositivity did not correlate to other clinical parameters such as histological diagnosis, survival time or disease-free interval. Gene expression of Pax7 target genes, such as proconvertase 2 (PC2), pro-opiomelanocortin (POMC), and dopamine D2 receptor (DRD2), was significantly lower in the adenoma samples compared to normal tissue, indicating that Pax7 signalling was not activated in adenomas. It was suggested that Pax7 and Sox2 remain interesting targets for molecular investigations into their role in pituitary tumorigenesis, but were unsuitable as clinical prognosticators in dogs.
Collapse
Affiliation(s)
- Sarah J van Rijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands.
| | - Marianne G Pouwer
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.514, 3508 TD Utrecht, The Netherlands
| | - Joanne E E van der Bend
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands
| | - Pauline E P F Beukers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands
| | - Nadie Vastenhout
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands
| | - Jacques Drouin
- Molecular Genetics Research Unit, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Quebec H2W 1R7, Canada
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
22
|
Zhan C, Zhang Y, Ma J, Wang L, Jiang W, Shi Y, Wang Q. Identification of reference genes for qRT-PCR in human lung squamous-cell carcinoma by RNA-Seq. Acta Biochim Biophys Sin (Shanghai) 2014; 46:330-7. [PMID: 24457517 DOI: 10.1093/abbs/gmt153] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the accuracy of quantitative real-time polymerase chain reaction (qRT-PCR) is highly dependent on the reliable reference genes, many commonly used reference genes are not stably expressed and as such are not suitable for quantification and normalization of qRT-PCR data. The aim of this study was to identify novel reliable reference genes in lung squamous-cell carcinoma. We used RNA sequencing (RNA-Seq) to survey the whole genome expression in 5 lung normal samples and 44 lung squamous-cell carcinoma samples. We evaluated the expression profiles of 15 commonly used reference genes and identified five additional candidate reference genes. To validate the RNA-Seq dataset, we used qRT-PCR to verify the expression levels of these 20 genes in a separate set of 100 pairs of normal lung tissue and lung squamous-cell carcinoma samples, and then analyzed these results using geNorm and NormFinder. With respect to 14 of the 15 common reference genes (B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, and YWHAZ), the expression levels were either too low to be easily detected, or exhibited a high degree of variability either between lung normal and squamous-cell carcinoma samples, or even among samples of the same tissue type. In contrast, 1 of the 15 common reference genes (ACTB) and the 5 additional candidate reference genes (EEF1A1, FAU, RPS9, RPS11, and RPS14) were stably and constitutively expressed at high levels in all the samples tested. ACTB, EEF1A1, FAU, RPS9, RPS11, and RPS14 are ideal reference genes for qRT-PCR analysis of lung squamous-cell carcinoma, while 14 commonly used qRT-PCR reference genes are less appropriate in this context.
Collapse
Affiliation(s)
- Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|