1
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
2
|
Gao C, Yang B, Li Y, Pei W. Monocarboxylate transporter-dependent mechanism is involved in the adaptability of the body to exercise-induced fatigue under high-altitude hypoxia environment. Brain Res Bull 2023; 195:78-85. [PMID: 36804772 DOI: 10.1016/j.brainresbull.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Under high-altitude hypoxia environment, the body is more prone to fatigue, which occurs in both peripheral muscles and the central nervous system (CNS). The key factor determining the latter is the imbalance of brain energy metabolism, which makes it difficult to maintain the central nervous system to send peripheral nerve impulse continuously. During strenuous exercise, lactate released from astrocytes is taken up by neurons stored for energy to maintain synaptic transmission, a process mediated by monocarboxylate transporters (MCTs) in CNS. The present study investigated the correlation among the adaptability to exercise-induced fatigue, brain lactate metabolism and neuronal hypoxia injury under high-altitude hypoxia environment. Rats were subjected to exhaustive incremental load treadmill exercise under either normal pressure and normoxic conditions or simulated high-altitude low pressure and hypoxic conditions, with subsequent evaluation of the average exhaustive time as well as the expression of monocarboxylate transporters 2 (MCT2), MCT4, the average neuronal density in the cerebral motor cortex, and the lactate content in rat brain. At the early stage of simulated high-altitude environment, the average exhaustive time and neuronal density of rats decreased rapidly, then gradually recovered to some extent with the extension of altitude acclimatization time. The expression of MCT2, MCT4 and the lactate content in rat brain also increased gradually with the extension of altitude acclimatization time. After the application of lactate transport inhibitor, the recovery of exercise capacity of rats after altitude acclimatization was quickly blocked, and the neuronal injury in the cerebral motor cortex of rats was also significantly aggravated. These findings demonstrate that MCT-dependent mechanism is involved in the adaptability of the body to central fatigue, and provide a potential basis for medical intervention for exercise-induced fatigue under high-altitude hypoxia environment.
Collapse
Affiliation(s)
- Chen Gao
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China.
| | - Binni Yang
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Yurong Li
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Wenjuan Pei
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| |
Collapse
|
3
|
Gao C, Yang B, Li Y, Pei W. A monocarboxylate transporter-dependent mechanism confers resistance to exercise-induced fatigue in a high-altitude hypoxic environment. Sci Rep 2023; 13:2949. [PMID: 36807596 PMCID: PMC9941081 DOI: 10.1038/s41598-023-30093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The body is more prone to fatigue in a high-altitude hypoxic environment, in which fatigue occurs in both peripheral muscles and the central nervous system (CNS). The key factor determining the latter is the imbalance in brain energy metabolism. During strenuous exercise, lactate released from astrocytes is taken up by neurons via monocarboxylate transporters (MCTs) as a substrate for energy metabolism. The present study investigated the correlations among the adaptability to exercise-induced fatigue, brain lactate metabolism and neuronal hypoxia injury in a high-altitude hypoxic environment. Rats were subjected to exhaustive incremental load treadmill exercise under either normal pressure and normoxic conditions or simulated high-altitude, low-pressure and hypoxic conditions, with subsequent evaluation of the average exhaustive time as well as the expression of MCT2 and MCT4 in the cerebral motor cortex, the average neuronal density in the hippocampus, and the brain lactate content. The results illustrate that the average exhaustive time, neuronal density, MCT expression and brain lactate content were positively correlated with the altitude acclimatization time. These findings demonstrate that an MCT-dependent mechanism is involved in the adaptability of the body to central fatigue and provide a potential basis for medical intervention for exercise-induced fatigue in a high-altitude hypoxic environment.
Collapse
Affiliation(s)
- Chen Gao
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, BinHe South Road, No.333, Lanzhou, 730050, Gansu, China.
| | - Binni Yang
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, BinHe South Road, No.333, Lanzhou, 730050 Gansu China
| | - Yurong Li
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, BinHe South Road, No.333, Lanzhou, 730050 Gansu China
| | - Wenjuan Pei
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, BinHe South Road, No.333, Lanzhou, 730050 Gansu China
| |
Collapse
|
4
|
Ramon-Duaso C, Conde-Moro AR, Busquets-Garcia A. Astroglial cannabinoid signaling and behavior. Glia 2022; 71:60-70. [PMID: 35293647 DOI: 10.1002/glia.24171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
In neuroscience, the explosion of innovative and advanced technical accomplishments is fundamental to understanding brain functioning. For example, the possibility to distinguish glial and neuronal activities at the synaptic level and/or the appearance of new genetic tools to specifically monitor and manipulate astroglial functions revealed that astrocytes are involved in several facets of behavioral control. In this sense, the discovery of functional presence of type-1 cannabinoid receptors in astrocytes has led to identify important behavioral responses mediated by this specific pool of cannabinoid receptors. Thus, astroglial type-1 cannabinoid receptors are in the perfect place to play a role in a complex scenario in which astrocytes sense neuronal activity, release gliotransmitters and modulate the activity of other neurons, ultimately controlling behavioral responses. In this review, we will describe the known behavioral implications of astroglial cannabinoid signaling and highlight exciting unexplored research avenues on how astroglial cannabinoid signaling could affect behavior.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ana Rocio Conde-Moro
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Arnau Busquets-Garcia
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
5
|
Song LJ, Zhang H, Qu XP, Jin JG, Wang C, Jiang X, Gao L, Li G, Wang DL, Shen LL, Liu B. Increased expression of Rho-associated protein kinase 2 confers astroglial Stat3 pathway activation during epileptogenesis. Neurosci Res 2021; 177:25-37. [PMID: 34740726 DOI: 10.1016/j.neures.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Patients with TLE are prone to tolerance to antiepileptic drugs. Based on the perspective of molecular targets for drug resistance, it is necessary to explore effective drug resistant genes and signaling pathways for the treatment of TLE. We performed gene expression profiles in hippocampus of patients with drug-resistant TLE and identified ROCK2 as one of the 20 most significantly increased genes in hippocampus. In vitro and in vivo experiments were performed to identify the potential role of ROCK2 in epileptogenesis. In addition, the activity of Stat3 pathway was tested in rat hippocampal tissues and primary cultured astrocytes. The expression levels of ROCK2 in the hippocampus of TLE patients were significantly increased compared with the control group, which was due to the hypomethylation of ROCK2 promoter. Fasudil, a specific Rho-kinase inhibitor, alleviated epileptic seizures in the pilocarpine rat model of TLE. Furthermore, ROCK2 activated the Stat3 pathway in pilocarpine-treated epilepsy rats, and the spearman correlation method confirmed that ROCK2 is associated with Stat3 activation in TLE patients. In addition, ROCK2 was predominantly expressed in astrocytes during epileptogenesis, and induced epileptogenesis by activating astrocyte cell cycle progression via Stat3 pathway. The overexpressed ROCK2 plays an important role in the pathogenesis of drug-resistant epilepsy. ROCK2 accelerates astrocytes cell cycle progression via the activation of Stat3 pathway likely provides the key to explaining the process of epileptogenesis.
Collapse
Affiliation(s)
- Li-Jia Song
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Peng Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun-Gong Jin
- Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue Jiang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Li Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang-Liang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Tang J, Bair M, Descalzi G. Reactive Astrocytes: Critical Players in the Development of Chronic Pain. Front Psychiatry 2021; 12:682056. [PMID: 34122194 PMCID: PMC8192827 DOI: 10.3389/fpsyt.2021.682056] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is associated with long term plasticity of nociceptive pathways in the central nervous system. Astrocytes can profoundly affect synaptic function and increasing evidence has highlighted how altered astrocyte activity may contribute to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a shift in form and function known as reactive astrogliosis, which affects their release of cytokines and gliotransmitters. These neuromodulatory substances have been implicated in driving the persistent changes in central nociceptive activity. Astrocytes also release lactate which neurons can use to produce energy during synaptic plasticity. Furthermore, recent research has provided insight into lactate's emerging role as a signaling molecule in the central nervous system, which may be involved in directly modulating neuronal and astrocytic activity. In this review, we present evidence for the involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity, in addition to research suggesting the potential involvement of gliotransmitters D-serine and adenosine-5'-triphosphate. We also discuss work implicating astrocyte-neuron metabolic coupling, and the possible role of lactate, which has been sparsely studied in the context of chronic pain, in supporting pathological changes in central nociceptive activity.
Collapse
Affiliation(s)
| | | | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:90. [PMID: 32390802 PMCID: PMC7194075 DOI: 10.3389/fncel.2020.00090] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is a phenomenon that describes the toxic actions of excitatory neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the loss of neuronal function and cell death. In this process, the shift between normal physiological function and excitotoxicity is largely controlled by astrocytes since they can control the levels of glutamate on the synaptic cleft. This control is achieved through glutamate clearance from the synaptic cleft and its underlying recycling through the glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors (NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage, and oxidative stress. Regardless, it is known that the excessive activation of NMDAR results in the sustained influx of calcium into neurons and leads to several deleterious consequences, including mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, impairment of calcium buffering, the release of pro-apoptotic factors, among others, that inevitably contribute to neuronal loss. A large body of evidence implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and epilepsy. In this review article, we explore different causes and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated excitotoxicity and its downstream effects on several neurodegenerative disorders, and identify possible strategies to study new aspects of these diseases that may lead to the discovery of new therapeutic approaches. With the understanding that excitotoxicity is a common denominator in neurodegenerative diseases and other disorders, a new perspective on therapy can be considered, where the targets are not specific symptoms, but the underlying cellular phenomena of the disease.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Joana I. Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K. Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P. Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sandra H. Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Involvement of monocarboxylate transporters in the cross-tolerance between epilepsy and cerebral infarction: A promising choice towards new treatments. Neurosci Lett 2019; 707:134305. [PMID: 31152852 DOI: 10.1016/j.neulet.2019.134305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Noxious stimuli applied at doses close to but below the threshold of cell injury induce adaptative responses that provide a defense against additional stress from the same (tolerance) or other (cross-tolerance) stimuli. Such endogenous modulators mediate the tolerance induced by numerous sublethal physical and chemical stress factors, of which epileptic preconditioning (EPC) and mild global ischemia are two most important mutually protective actions. However, the evidence for the complicated underlying mechanisms involved in this neuroprotective effects are lacking. During hypoxia/ischemia (H/I) and intense neural activity, lactate released from astrocytes is taken up by neurons and is stored for energy, a process mediated by monocarboxylate transporters (MCTs) in central nervous system (CNS). The present study investigated whether ischemic preconditioning (IPC) or EPC can provide protection to CNS against epilepsy or cerebral infarction respectively through regulation of MCTs expression in vivo. Rats were subjected to transitory middle cerebral artery occlusion (MCAO) or kainic acid (KA) preconditioning protocol respectively, followed by KA induced epilepsy or lethal MCAO as well as lactate transportation inhibitor injection, with a subsequent evaluation of behavior and infarct volume as well as MCTs expression in rats brain. IPC reduced the severity of status epilepticus induced by KA injection and EPC reduce infarct volume resulted from lethal MCAO. However, lactate transport blocking attenuated this neuroprotective effect and MCTs expression followed the same variation trends. These findings demonstrate that MCTs dependent mechanism is involved in the cross-tolerance between epilepsy and cerebral infarction, provide a potential basis for the clinical treatment of patients with brain diseases characterized by epilepsy and H/I.
Collapse
|
9
|
Al-Khawaga S, AlRayahi J, Khan F, Saraswathi S, Hasnah R, Haris B, Mohammed I, Abdelalim EM, Hussain K. A SLC16A1 Mutation in an Infant With Ketoacidosis and Neuroimaging Assessment: Expanding the Clinical Spectrum of MCT1 Deficiency. Front Pediatr 2019; 7:299. [PMID: 31380330 PMCID: PMC6657212 DOI: 10.3389/fped.2019.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
The solute carrier family 16 member 1 (SLC16A1) gene encodes for monocarboxylate transporter 1 (MCT1) that mediates the movement of monocarboxylates, such as lactate and pyruvate across cell membranes. Inactivating recessive homozygous or heterozygous mutations in the SLC16A1 gene were described in patients with recurrent ketoacidosis and hypoglycemia, a potentially lethal condition. In the brain where MCT1 is highly localized around axons and oligodendrocytes, glucose is the most crucial energy substrate while lactate is an alternative substrate. MCT1 mutation or reduced expression leads to neuronal loss due to axonal degeneration in an animal model. Herein, we describe a 28 months old female patient who presented with the first hypoglycemic attack associated with ketoacidosis starting at the age of 3 days old. Whole exome sequencing (WES) performed at 6 months of age revealed a c.218delG mutation in exon 3 in the SLC16A1 gene. The variant is expected to result in loss of normal MCT1 function. Our patient is amongst the youngest presenting with MCT1 deficiency. A detailed neuroimaging assessment performed at 18 months of age revealed a complex white and gray matter disease, with heterotopia. The threshold of blood glucose to circumvent neurological sequelae cannot be set because it is patient-specific, nevertheless, neurodevelopmental follow up is recommended in this patient. Further functional studies will be required to understand the role of the MCT1 in key tissues such as the central nervous system (CNS), liver, muscle and ketone body metabolism. Our case suggests possible neurological sequelae that could be associated with MCT1 deficiency, an observation that could facilitate the initiation of appropriate neurodevelopmental follow up in such patients.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jehan AlRayahi
- Division of Neuroradiology, Diagnostic Imaging, Sidra Medicine, Doha, Qatar
| | - Faiyaz Khan
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Saras Saraswathi
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Reem Hasnah
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Idris Mohammed
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
10
|
Ostaszewski M, Kieffer E, Danoy G, Schneider R, Bouvry P. Clustering approaches for visual knowledge exploration in molecular interaction networks. BMC Bioinformatics 2018; 19:308. [PMID: 30157777 PMCID: PMC6116538 DOI: 10.1186/s12859-018-2314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/14/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Biomedical knowledge grows in complexity, and becomes encoded in network-based repositories, which include focused, expert-drawn diagrams, networks of evidence-based associations and established ontologies. Combining these structured information sources is an important computational challenge, as large graphs are difficult to analyze visually. RESULTS We investigate knowledge discovery in manually curated and annotated molecular interaction diagrams. To evaluate similarity of content we use: i) Euclidean distance in expert-drawn diagrams, ii) shortest path distance using the underlying network and iii) ontology-based distance. We employ clustering with these metrics used separately and in pairwise combinations. We propose a novel bi-level optimization approach together with an evolutionary algorithm for informative combination of distance metrics. We compare the enrichment of the obtained clusters between the solutions and with expert knowledge. We calculate the number of Gene and Disease Ontology terms discovered by different solutions as a measure of cluster quality. Our results show that combining distance metrics can improve clustering accuracy, based on the comparison with expert-provided clusters. Also, the performance of specific combinations of distance functions depends on the clustering depth (number of clusters). By employing bi-level optimization approach we evaluated relative importance of distance functions and we found that indeed the order by which they are combined affects clustering performance. Next, with the enrichment analysis of clustering results we found that both hierarchical and bi-level clustering schemes discovered more Gene and Disease Ontology terms than expert-provided clusters for the same knowledge repository. Moreover, bi-level clustering found more enriched terms than the best hierarchical clustering solution for three distinct distance metric combinations in three different instances of disease maps. CONCLUSIONS In this work we examined the impact of different distance functions on clustering of a visual biomedical knowledge repository. We found that combining distance functions may be beneficial for clustering, and improve exploration of such repositories. We proposed bi-level optimization to evaluate the importance of order by which the distance functions are combined. Both combination and order of these functions affected clustering quality and knowledge recognition in the considered benchmarks. We propose that multiple dimensions can be utilized simultaneously for visual knowledge exploration.
Collapse
Affiliation(s)
- Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-Belval, Luxembourg
| | - Emmanuel Kieffer
- Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 6, Avenue de la Fonte, Esch-Belval, Luxembourg
| | - Grégoire Danoy
- Computer Science and Communications Research Unit, University of Luxembourg, 6, Avenue de la Fonte, Esch-Belval, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-Belval, Luxembourg
| | - Pascal Bouvry
- Computer Science and Communications Research Unit, University of Luxembourg, 6, Avenue de la Fonte, Esch-Belval, Luxembourg
| |
Collapse
|
11
|
Evaluation of Monocarboxylate Transporter 4 in Inflammatory Bowel Disease and Its Potential Use as a Diagnostic Marker. DISEASE MARKERS 2018; 2018:2649491. [PMID: 29854024 PMCID: PMC5964618 DOI: 10.1155/2018/2649491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023]
Abstract
Background Monocarboxylate transporter 4 (MCT4), encoded by SLC16A3 gene, is responsible for exporting lactic acid into the extracellular microenvironment, and an acidic microenvironment promotes cytokine production and remodels chronic inflammation, providing a link from glycolysis to inflammatory bowel disease (IBD). Objective The aim of this study is to explore the value of MCT4 as a potential biomarker in IBD. Methods The study group consisted of 39 cases with UC and 15 cases with CD. The centration of lactate level in serum was assessed by blood gas analysis, and MCT4 expression was analyzed by IHC. Results Lactate level was increased in the forty-three of 54 patients (79.6%) with IBD by blood gas analysis compared with normal level (P < 0.001), in line with the result that showed increased MCT4 expression in inflamed colonic mucosa analyzed by immunohistochemistry. Most importantly, abundance of MCT4 expression was significantly associated with mucosal inflammation, which could be a clinical prognosis marker. Conclusion The data suggested that increased lactate level in blood was possibly due to highly expressed MCT4 expression caused by inflammation in intestinal mucosal epithelial tissue, which could be a prognosis indicator of IBD in children.
Collapse
|
12
|
Fisel P, Schaeffeler E, Schwab M. Clinical and Functional Relevance of the Monocarboxylate Transporter Family in Disease Pathophysiology and Drug Therapy. Clin Transl Sci 2018; 11:352-364. [PMID: 29660777 PMCID: PMC6039204 DOI: 10.1111/cts.12551] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
The solute carrier (SLC) SLC16 gene family comprises 14 members and encodes for monocarboxylate transporters (MCTs), which mediate the absorption and distribution of monocarboxylic compounds across plasma membranes. As the knowledge about their physiological function, activity, and regulation increases, their involvement and contribution to cancer and other diseases become increasingly evident. Moreover, promising opportunities for therapeutic interventions by directly targeting their endogenous functions or by exploiting their ability to deliver drugs to specific organ sites emerge.
Collapse
Affiliation(s)
- Pascale Fisel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex. Int J Mol Sci 2017; 18:ijms18091835. [PMID: 28832554 PMCID: PMC5618484 DOI: 10.3390/ijms18091835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺]O) were recorded in parallel with tissue pO₂ and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO₂ following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.
Collapse
|
14
|
Hoff MLM, Fabrizius A, Czech-Damal NU, Folkow LP, Burmester T. Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata) Brain in Response to Hypoxia and Reoxygenation. PLoS One 2017; 12:e0169366. [PMID: 28046118 PMCID: PMC5207758 DOI: 10.1371/journal.pone.0169366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/15/2016] [Indexed: 11/21/2022] Open
Abstract
The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism.
Collapse
Affiliation(s)
| | - Andrej Fabrizius
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | | | - Lars P. Folkow
- Department of Arctic and Marine Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P. Monocarboxylate transporters in the brain and in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2481-97. [PMID: 26993058 PMCID: PMC4990061 DOI: 10.1016/j.bbamcr.2016.03.013] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/12/2016] [Indexed: 12/20/2022]
Abstract
Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Jhudit Pérez-Escuredo
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Vincent F Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Martina Sboarina
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Jorge Falces
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Luc Pellerin
- Laboratory of Neuroenergetics, Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium.
| |
Collapse
|
16
|
Le Foll C, Levin BE. Fatty acid-induced astrocyte ketone production and the control of food intake. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1186-92. [PMID: 27122369 PMCID: PMC4935491 DOI: 10.1152/ajpregu.00113.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022]
Abstract
Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and
| | - Barry E Levin
- Department of Neurology, Rutgers, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
17
|
Shen M, Wang L, Guo X, Xue Q, Huo C, Li X, Fan L, Wang X. A novel endoplasmic reticulum stress‑induced apoptosis model using tunicamycin in primary cultured neonatal rat cardiomyocytes. Mol Med Rep 2015; 12:5149-54. [PMID: 26151415 DOI: 10.3892/mmr.2015.4040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is key in the development of cardiovascular diseases. However, there is a lack of a systemic ER stress‑induced cardiomyocyte apoptosis model. In the present study, primary cultured neonatal rat cardiomyocytes were exposed to tunicamycin. Cell viability was determined by an MTT assay, and cell damage was detected by a lactose dehydrogenase assay. Flow cytometry was used and the activity of caspase‑3 was analyzed in order to measure apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to examine the expression of glucose‑regulated protein 78‑kDa (GRP78) and C/EBP homologous protein (CHOP). As a result, tunicamycin significantly increased cardiomyocyte injury, which occurred in a time- and concentration‑dependent manner. In addition, tunicamycin treatment resulted in apoptosis of cardiomyocytes. Molecularly, tunicamycin (100 ng/ml) increased the levels of GRP78 and CHOP 6 h after administration. In addition, GRP78 and CHOP reached maximum mRNA and protein levels 24 h after administration. In conclusion, the results implicate that the tunicamycin‑induced ER stress‑induced apoptotic model was successfully constructed in cultured neonatal rat cardiomyocytes. A 100 ng/ml concentration of tunicamycin was selected, and MTT, LDH release and flow cytometry assay was at 72 h. In addition, GRP78 and GRP94 were detected 24 h following administration. The results of the present study indicate a novel experimental basis for the investigation of ERS-induced cardiac apoptosis.
Collapse
Affiliation(s)
- Mingzhi Shen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaowang Guo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiao Xue
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Fan
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
18
|
Karus C, Ziemens D, Rose CR. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism. Channels (Austin) 2015; 9:200-8. [PMID: 26039160 PMCID: PMC4594511 DOI: 10.1080/19336950.2015.1050163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.
Collapse
Affiliation(s)
- Claudia Karus
- a Institute of Neurobiology; Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf ; Düsseldorf , Germany
| | | | | |
Collapse
|
19
|
Wu H, Wang C, Liu B, Li H, Zhang Y, Dong S, Gao G, Zhang H. Altered Expression Pattern of Acid-Sensing Ion Channel Isoforms in Piriform Cortex After Seizures. Mol Neurobiol 2015; 53:1782-1793. [PMID: 25744567 DOI: 10.1007/s12035-015-9130-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/22/2015] [Indexed: 12/24/2022]
Abstract
The piriform cortex (PC) is highly susceptible to chemical and electrical seizure induction. Epileptiform activity is associated with an acid shift in extracellular pH, suggesting that acid-sensing ion channels (ASICs) expressed by PC neurons may contribute to this enhanced epileptogenic potential. In epileptic rats and surgical samples from patients with medial temporal lobe epilepsy (TLE), PC layer II ASIC1a-immunopositive neurons appeared swollen with dendritic elongation, and there was loss of ASIC1a-positive neurons in layer III, consistent with enhanced vulnerability to TLE-induced plasticity and cell death. In rats, pilocarpine-induced seizures led to transient downregulation of ASIC1a and concomitant upregulation of ASIC2a in the first few days post-seizure. These changes in expression may be due to seizure-induced oxidative stress as a similar reciprocal change in ASIC1a, and ASIC2a expression was observed in PC12 cells following H2O2 application. The proportion of ASIC1a/ASIC2a heteromers was reduced in the acute phase following status epilepticus (SE) but increased during the latent phase when rats developed spontaneous seizures. Knockdown of ASIC2a by RNAi reduced dendritic length and spine density in primary neurons, suggesting that seizure-induced upregulation of ASIC2a contributes to dendritic lengthening in PC layer II in rats. Administration of the ASIC inhibitor amiloride before pilocarpine reduced the proportion of rats reaching Racine level IV seizures, protected layer II and III neurons, and prolonged survival in the acute phase following SE. Our findings suggest that ASICs may enhance susceptibility to epileptogenesis in the PC. Inhibition of ASICs, particularly ASIC2a, may suppress seizures originating in the PC.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Huanfa Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shan Dong
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| |
Collapse
|
20
|
Gao C, Zhu W, Tian L, Zhang J, Li Z. MCT4-mediated expression of EAAT1 is involved in the resistance to hypoxia injury in astrocyte-neuron co-cultures. Neurochem Res 2015; 40:818-28. [PMID: 25645447 DOI: 10.1007/s11064-015-1532-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
Hypoxic stressors contribute to neuronal death in many brain diseases. Astrocyte processes surround most neurons and are therefore anatomically well-positioned to shield them from hypoxic injury. Excitatory amino acid transporters (EAATs), represent the sole mechanism of active reuptake of glutamate into the astrocytes and neurons and are essential to dampen neuronal excitation following glutamate release at synapses. Glutamate clearance impairment from any factors is bound to result in an increase in hypoxic neuronal injury. The brain energy metabolism under hypoxic conditions depends on monocarboxylate transporters (MCTs) that are expressed by neurons and glia. Previous co-immunoprecipitation experiments revealed that MCT4 directly modulate EAAT1 in astrocytes. The reduction in both surface proteins may act synergistically to induce neuronal hyperexcitability and excitotoxicity. Therefore we hypothesized that astrocytes would respond to hypoxic conditions by enhancing their expression of MCT4 and EAAT1, which, in turn, would enable them to better support neurons to survive lethal hypoxia injury. An oxygen deprivation (OD) protocol was used in primary cultures of neurons, astrocytes, and astrocytes-neurons derived from rat hippocampus, with or without MCT4-targeted short hairpin RNA (shRNA) transfection. Cell survival, expression of MCT4, EAAT1, glial fibrillary acidic protein and neuronal nuclear antigen were evaluated. OD resulted in significant cell death in neuronal cultures and up-regulation of MCT4, EAAT1 expression respectively in primary cell cultures, but no injury in neuron-astrocyte co-cultures and astrocyte cultures. However, neuronal cell death in co-cultures was increased exposure to shRNA-MCT4 prior to OD. These findings demonstrate that the MCT4-mediated expression of EAAT1 is involved in the resistance to hypoxia injury in astrocyte-neuron co-cultures.
Collapse
Affiliation(s)
- Chen Gao
- Department of Neurosurgery, AnNing Branch Hospital, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730070, Gansu Province, China
| | | | | | | | | |
Collapse
|
21
|
Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab 2015; 35:176-85. [PMID: 25425080 PMCID: PMC4426752 DOI: 10.1038/jcbfm.2014.206] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022]
Abstract
Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.
Collapse
Affiliation(s)
- Linda Hildegard Bergersen
- 1] The Brain and Muscle Energy Group, SN-Lab, Department of Anatomy, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway [2] Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark [3] Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [4] The Brain and Muscle Energy Group, Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Chen XS, Huang N, Michael N, Xiao L. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells. Front Cell Neurosci 2015; 9:451. [PMID: 26696822 PMCID: PMC4667081 DOI: 10.3389/fncel.2015.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.
Collapse
Affiliation(s)
- Xing-Shu Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Namaka Michael
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
- *Correspondence: Lan Xiao
| |
Collapse
|