1
|
Li MD, Liu Q, Shi X, Wang Y, Zhu Z, Guan Y, He J, Han H, Mao Y, Ma Y, Yuan W, Yao J, Yang Z. Integrative analysis of genetics, epigenetics and RNA expression data reveal three susceptibility loci for smoking behavior in Chinese Han population. Mol Psychiatry 2024; 29:3516-3526. [PMID: 38789676 DOI: 10.1038/s41380-024-02599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Despite numerous studies demonstrate that genetics and epigenetics factors play important roles on smoking behavior, our understanding of their functional relevance and coordinated regulation remains largely unknown. Here we present a multiomics study on smoking behavior for Chinese smoker population with the goal of not only identifying smoking-associated functional variants but also deciphering the pathogenesis and mechanism underlying smoking behavior in this under-studied ethnic population. After whole-genome sequencing analysis of 1329 Chinese Han male samples in discovery phase and OpenArray analysis of 3744 samples in replication phase, we discovered that three novel variants located near FOXP1 (rs7635815), and between DGCR6 and PRODH (rs796774020), and in ARVCF (rs148582811) were significantly associated with smoking behavior. Subsequently cis-mQTL and cis-eQTL analysis indicated that these variants correlated significantly with the differential methylation regions (DMRs) or differential expressed genes (DEGs) located in the regions where these variants present. Finally, our in silico multiomics analysis revealed several hub genes, like DRD2, PTPRD, FOXP1, COMT, CTNNAP2, to be synergistic regulated each other in the etiology of smoking.
Collapse
Affiliation(s)
- Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Jingmin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biological Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Lo JO, Hedges JC, Chou WH, Tager KR, Bachli ID, Hagen OL, Murphy SK, Hanna CB, Easley CA. Influence of substance use on male reproductive health and offspring outcomes. Nat Rev Urol 2024; 21:534-564. [PMID: 38664544 DOI: 10.1038/s41585-024-00868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/30/2024]
Abstract
The prevalence of substance use globally is rising and is highest among men of reproductive age. In Africa, and South and Central America, cannabis use disorder is most prevalent and in Eastern and South-Eastern Europe, Central America, Canada and the USA, opioid use disorder predominates. Substance use might be contributing to the ongoing global decline in male fertility, and emerging evidence has linked paternal substance use with short-term and long-term adverse effects on offspring development and outcomes. This trend is concerning given that substance use is increasing, including during the COVID-19 pandemic. Preclinical studies have shown that male preconception substance use can influence offspring brain development and neurobehaviour through epigenetic mechanisms. Additionally, human studies investigating paternal health behaviours during the prenatal period suggest that paternal tobacco, opioid, cannabis and alcohol use is associated with reduced offspring mental health, in particular hyperactivity and attention-deficit hyperactivity disorder. The potential effects of paternal substance use are areas in which to focus public health efforts and health-care provider counselling of couples or individuals interested in conceiving.
Collapse
Affiliation(s)
- Jamie O Lo
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA.
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.
| | - Jason C Hedges
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wesley H Chou
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
| | - Kylie R Tager
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Ian D Bachli
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Olivia L Hagen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| |
Collapse
|
3
|
Liu Q, Xu Y, Mao Y, Ma Y, Wang M, Han H, Cui W, Yuan W, Payne TJ, Xu Y, Li MD, Yang Z. Genetic and Epigenetic Analysis Revealing Variants in the NCAM1-TTC12-ANKK1-DRD2 Cluster Associated Significantly With Nicotine Dependence in Chinese Han Smokers. Nicotine Tob Res 2020; 22:1301-1309. [PMID: 31867628 DOI: 10.1093/ntr/ntz240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUNDS Although studies have demonstrated that the NCAM1-TTC12-ANKK1-DRD2 gene cluster plays essential roles in addictions in subjects of European and African origin, study of Chinese Han subjects is limited. Further, the underlying biological mechanisms of detected associations are largely unknown. METHODS Sixty-four single-nucleotide polymorphisms (SNPs) in this cluster were analyzed for association with Fagerstrőm Test for Nicotine Dependence score (FTND) and cigarettes per day (CPD) in male Chinese Han smokers (N = 2616). Next-generation bisulfite sequencing was used to discover smoking-associated differentially methylated regions (DMRs). Both cis-eQTL and cis-mQTL analyses were applied to assess the cis-regulatory effects of these risk SNPs. RESULTS Association analysis revealed that rs4648317 was significantly associated with FTND and CPD (p = .00018; p = .00072). Moreover, 14 additional SNPs were marginally significantly associated with FTND or CPD (p = .05-.01). Haplotype-based association analysis showed that one haplotype in DRD2, C-T-A-G, formed by rs4245148, rs4581480, rs4648317, and rs11214613, was significantly associated with CPD (p = .0005) and marginally associated with FTND (p = .003). Further, we identified four significant smoking-associated DMRs, three of which are located in the DRD2/ANKK1 region (p = .0012-.00005). Finally, we found five significant CpG-SNP pairs (p = 7.9 × 10-9-6.6 × 10-6) formed by risk SNPs rs4648317, rs11604671, and rs2734849 and three methylation loci. CONCLUSIONS We found two missense variants (rs11604671; rs2734849) and an intronic variant (rs4648317) with significant effects on ND and further explored their mechanisms of action through expression and methylation analysis. We found the majority of smoking-related DMRs are located in the ANKK1/DRD2 region, indicating a likely causative relation between non-synonymous SNPs and DMRs. IMPLICATIONS This study shows that there exist significant association of variants and haplotypes in ANKK1/DRD2 region with ND in Chinese male smokers. Further, this study also shows that DNA methylation plays an important role in mediating such associations.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS
| | - Yizhou Xu
- The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Lim ZM, Chie QT, Teh LK. Influence of dopamine receptor gene on eating behaviour and obesity in Malaysia. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
Determining population stratification and subgroup effects in association studies of rare genetic variants for nicotine dependence. Psychiatr Genet 2020; 29:111-119. [PMID: 31033776 PMCID: PMC6636808 DOI: 10.1097/ypg.0000000000000227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Background Rare variants (minor allele frequency < 1% or 5 %) can help researchers to deal with the confounding issue of ‘missing heritability’ and have a proven role in dissecting the etiology for human diseases and complex traits. Methods We extended the combined multivariate and collapsing (CMC) and weighted sum statistic (WSS) methods and accounted for the effects of population stratification and subgroup effects using stratified analyses by the principal component analysis, named here as ‘str-CMC’ and ‘str-WSS’. To evaluate the validity of the extended methods, we analyzed the Genetic Architecture of Smoking and Smoking Cessation database, which includes African Americans and European Americans genotyped on Illumina Human Omni2.5, and we compared the results with those obtained with the sequence kernel association test (SKAT) and its modification, SKAT-O that included population stratification and subgroup effect as covariates. We utilized the Cochran–Mantel–Haenszel test to check for possible differences in single nucleotide polymorphism allele frequency between subgroups within a gene. We aimed to detect rare variants and considered population stratification and subgroup effects in the genomic region containing 39 acetylcholine receptor-related genes. Results The Cochran–Mantel–Haenszel test as applied to GABRG2 (P = 0.001) was significant. However, GABRG2 was detected both by str-CMC (P= 8.04E-06) and str-WSS (P= 0.046) in African Americans but not by SKAT or SKAT-O. Conclusions Our results imply that if associated rare variants are only specific to a subgroup, a stratified analysis might be a better approach than a combined analysis.
Collapse
|
6
|
Ma Y, Li J, Xu Y, Wang Y, Yao Y, Liu Q, Wang M, Zhao X, Fan R, Chen J, Zhang B, Cai Z, Han H, Yang Z, Yuan W, Zhong Y, Chen X, Ma JZ, Payne TJ, Xu Y, Ning Y, Cui W, Li MD. Identification of 34 genes conferring genetic and pharmacological risk for the comorbidity of schizophrenia and smoking behaviors. Aging (Albany NY) 2020; 12:2169-2225. [PMID: 32012119 PMCID: PMC7041787 DOI: 10.18632/aging.102735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of smoking is significantly higher in persons with schizophrenia (SCZ) than in the general population. However, the biological mechanisms of the comorbidity of smoking and SCZ are largely unknown. This study aimed to reveal shared biological pathways for the two diseases by analyzing data from two genome-wide association studies with a total sample size of 153,898. With pathway-based analysis, we first discovered 18 significantly enriched pathways shared by SCZ and smoking, which were classified into five groups: postsynaptic density, cadherin binding, dendritic spine, long-term depression, and axon guidance. Then, by using an integrative analysis of genetic, epigenetic, and expression data, we found not only 34 critical genes (e.g., PRKCZ, ARHGEF3, and CDKN1A) but also various risk-associated SNPs in these genes, which convey susceptibility to the comorbidity of the two disorders. Finally, using both in vivo and in vitro data, we demonstrated that the expression profiles of the 34 genes were significantly altered by multiple psychotropic drugs. Together, this multi-omics study not only reveals target genes for new drugs to treat SCZ but also reveals new insights into the shared genetic vulnerabilities of SCZ and smoking behaviors.
Collapse
Affiliation(s)
- Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangning Chen
- Institute of Personalized Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA
| | - Jennie Z Ma
- , Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Meta-analytic method reveal a significant association of theBDNF Val66Met variant with smoking persistence based on a large samples. THE PHARMACOGENOMICS JOURNAL 2019; 20:398-407. [PMID: 31787753 PMCID: PMC7253357 DOI: 10.1038/s41397-019-0124-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 09/10/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022]
Abstract
Although numerous genetic studies have reported the link between
Val66Met in BDNF gene with smoking, the findings
remain controversial, mainly due to small-to-moderate sample sizes. The main aim of
current investigation is to explore whether the variant of Val66Met has any genetic
functions in the progress of smoking persistence. The Val-based dominant genetic
model considering Val/* (namely, Val/Val + Val/Met) and Met/Met as two genotypes
with comparison of the frequency of each genotype in current smokers and never
smokers. There were seven genetic association articles including eight independent
datasets with 10,160 participants were chosen in current meta-analytic
investigation. In light of the potent effects of ethnicity on homogeneity across
studies, we carried out separated meta-analyses according to the ancestry origin by
using the wide-used tool of Comprehensive Meta-analysis software (V 2.0). Our
meta-analyses results indicated that the Val66Met polymorphism was significantly
linked with smoking persistence based on either all the chosen samples (N = 10,160; Random and fixed models: pooled OR = 1.23;
95% CI = 1.03–1.46; P value = 0.012) or Asian
samples (N = 2,095; Fixed model: pooled
OR = 1.25; 95% CI = 1.01–1.54; P value = 0.044;
Random model: pooled OR = 1.25; 95% CI = 1.001–1.56; P value = 0.049). No significant clue of bias in publications or
heterogeneity across studies was detected. Thus, we conclude that the Val66Met
(rs6265) variant conveys genetic susceptibility to maintaining smoking, and smokers
who carry Val/* genotypes have a higher possibility of maintaining smoking than
those having Met/Met genotype.
Collapse
|
8
|
Zhang J, Yan P, Li Y, Cai X, Yang Z, Miao X, Chen B, Li S, Dang W, Jia W, Zhu Y. A 35.8 kilobases haplotype spanning ANKK1 and DRD2 is associated with heroin dependence in Han Chinese males. Brain Res 2018; 1688:54-64. [DOI: 10.1016/j.brainres.2018.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
|
9
|
Xiao HW, Ge C, Feng GX, Li Y, Luo D, Dong JL, Li H, Wang H, Cui M, Fan SJ. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol Lett 2018; 287:23-30. [PMID: 29391279 DOI: 10.1016/j.toxlet.2018.01.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023]
Abstract
Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction.
Collapse
Affiliation(s)
- Hui-Wen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Chang Ge
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Guo-Xing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Dan Luo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jia-Li Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Laboratory of Emergency Medicine, the Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China.
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China.
| |
Collapse
|
10
|
Fischer R, Lee A, Verzijden MN. Dopamine genes are linked to Extraversion and Neuroticism personality traits, but only in demanding climates. Sci Rep 2018; 8:1733. [PMID: 29379052 PMCID: PMC5789008 DOI: 10.1038/s41598-017-18784-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023] Open
Abstract
Cross-national differences in personality have long been recognized in the behavioural sciences. However, the origins of such differences are debated. Building on reinforcement sensitivity theories and gene-by-environment interactions, we predict that personality trait phenotypes linked to dopaminergic brain functions (centrally involved in reward processing) diverge most strongly in climatically stressful environments, due to shifts in perceived rewards vs risks. Individuals from populations with a highly efficient dopamine system are biased towards behavioural approach traits (Extraversion and Emotional Stability) due to higher perceived reward values, whereas individuals from populations with a less efficient dopaminergic system are biased towards risk avoidance. In temperate climates, we predict smaller phenotypic differences due to overall weakened reward and risk ratios. We calculated a population-level index of dopamine functioning using 9 commonly investigated genetic polymorphisms encoding dopamine transporters and receptors, derived from a meta-analysis with data from 805 independent samples involving 127,685 participants across 73 societies or territories. We found strong support for the dopamine gene by climatic stress interaction: Population genetic differences in dopamine predicted personality traits at the population level in demanding climates, but not in temperate, less demanding climates, even when controlling for known correlates of personality including wealth and parasite stress.
Collapse
Affiliation(s)
- Ronald Fischer
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | - Anna Lee
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Machteld N Verzijden
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Gerra MC, Jayanthi S, Manfredini M, Walther D, Schroeder J, Phillips KA, Cadet JL, Donnini C. Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Transl Psychiatry 2018; 8:23. [PMID: 29353877 PMCID: PMC5802451 DOI: 10.1038/s41398-017-0087-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/25/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023] Open
Abstract
Genetic and sociodemographic risk factors potentially associated with cannabis use (CU) were investigated in 40 cannabis users and 96 control subjects. DNA methylation analyses were also performed to explore the possibility of epigenetic changes related to CU. We conducted a candidate gene association study that included variants involved in the dopaminergic (ANKK1, NCAM1 genes) and endocannabinoid (CNR1, CNR2 gene) pathways. Sociodemographic data included gender, marital status, level of education, and body mass index. We used MeDIP-qPCR to test whether variations in DNA methylation might be associated with CU. We found a significant association between SNP rs1049353 of CNR1 gene (p = 0.01) and CU. Differences were also observed related to rs2501431 of CNR2 gene (p = 0.058). A higher education level appears to decrease the risk of CU. Interestingly, females were less likely to use cannabis than males. There was a significantly higher level of DNA methylation in cannabis users compared to controls in two of the genes tested: hypermethylation at exon 8 of DRD2 gene (p = 0.034) and at the CpG-rich region in the NCAM1 gene (p = 0.0004). Both genetic variants and educational attainment were also related to CU. The higher rate of DNA methylation, evidenced among cannabis users, may be either a marker of CU or a consequence of long-term exposure to cannabis. The identified genetic variants and the differentially methylated regions may represent biomarkers and/or potential targets for designs of pharmacological therapeutic agents. Our observations also suggest that educational programs may be useful strategies for CU prevention.
Collapse
Affiliation(s)
- Maria Carla Gerra
- 0000 0004 1758 0937grid.10383.39Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Subramaniam Jayanthi
- 0000 0004 0533 7147grid.420090.fMolecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD USA
| | - Matteo Manfredini
- 0000 0004 1758 0937grid.10383.39Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donna Walther
- 0000 0004 0533 7147grid.420090.fMolecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD USA
| | - Jennifer Schroeder
- 0000 0004 0533 7147grid.420090.fOffice of the Clinical Director, NIDA Intramural Research Program, Baltimore, MD USA
| | - Karran A. Phillips
- 0000 0004 0533 7147grid.420090.fOffice of the Clinical Director, NIDA Intramural Research Program, Baltimore, MD USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA.
| | - Claudia Donnini
- 0000 0004 1758 0937grid.10383.39Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Weafer J, Gray JC, Hernandez K, Palmer AA, MacKillop J, de Wit H. Hierarchical investigation of genetic influences on response inhibition in healthy young adults. Exp Clin Psychopharmacol 2017; 25:512-520. [PMID: 29251981 PMCID: PMC5737791 DOI: 10.1037/pha0000156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poor inhibitory control is a known risk factor for substance use disorders, making it a priority to identify the determinants of these deficits. The aim of the current study was to identify genetic associations with inhibitory control using the stop signal task in a large sample (n = 934) of healthy young adults of European ancestry. We genotyped the subjects genome-wide and then used a hierarchical approach in which we tested seven a priori single nucleotide polymorphisms (SNPs) previously associated with stop signal task performance, approximately 9,000 SNPs designated as high-value addiction (HVA) markers by the SmokeScreen array, and approximately five million genotyped and imputed SNPs, followed by a gene-based association analysis using the resultant p values. A priori SNP analyses revealed nominally significant associations between response inhibition and one locus in HTR2A (rs6313; p = .04, dominance model, uncorrected) in the same direction as prior findings. A nominally significant association was also found in one locus in ANKK1 (rs1800497; p = .03, uncorrected), although in the opposite direction of previous reports. After accounting for multiple comparisons, the HVA, genome-wide, and gene-based analyses yielded no significant findings. This study implicates variation in serotonergic and dopaminergic genes while underscoring the difficulty of detecting the influence of individual SNPs, even when biological information is used to prioritize testing. Although such small effect sizes suggest limited utility of individual SNPs in predicting risk for addiction or other impulse control disorders, they may nonetheless shed light on complex biological processes underlying poor inhibitory control. (PsycINFO Database Record
Collapse
Affiliation(s)
- Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Joshua C. Gray
- Department of Psychology, University of Georgia,Department of Psychiatry and Human Behavior, Brown University
| | | | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego,Institute for Genomic Medicine, University of California, San Diego
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University,Homewood Research Institute, Homewood Health Centre
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago,Corresponding author: Harriet de Wit, Department of Psychiatry and Behavioral Neuroscience, MC 3077, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, Phone: 773-702-1537, Fax: 773-834-7698,
| |
Collapse
|
13
|
Ma Y, Wen L, Cui W, Yuan W, Yang Z, Jiang K, Jiang X, Huo M, Sun Z, Han H, Su K, Yang S, Payne TJ, Wang J, Li MD. Prevalence of Cigarette Smoking and Nicotine Dependence in Men and Women Residing in Two Provinces in China. Front Psychiatry 2017; 8:254. [PMID: 29249991 PMCID: PMC5716983 DOI: 10.3389/fpsyt.2017.00254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS Although it is known that there is a high smoking prevalence among Chinese, key issues such as social and environmental factors impacting smoking initiation and persistence, the percentage of smokers considered nicotine dependence (ND), and the availability and use of ND treatments have rarely been investigated. METHODS To address these issues, from 2012 to 2014, we conducted a large-scale study in the Zhejiang and Shanxi provinces of China using the Fagerström Test for Nicotine Dependence and other validated questionnaires. RESULTS Of the 17,057 subjects, consisting of 13,476 males and 3,581 females aged 15 years or older, the prevalence of male smoking was 66.1% [95% confidence interval (CI) 65.5%, 66.9%] and that of female smoking was 3.2% (95% CI 3.0%, 3.8%). Among males, 25.8% (95% CI 25.0%, 26.5%) were low-to-moderate ND, and 11.8% (95% CI 11.2%, 12.3%) were high ND (H-ND), persons who have significant difficulty quitting without treatment. The degrees of ND were related to age, extent of education, and annual family income. The social-environmental factors examined conveyed a higher risk for smoking initiation, which is particularly true for the influence of smoking by friends. Furthermore, current smokers had a significantly higher risk of suffering respiratory and digestive symptoms. CONCLUSION These data not only show a high smoking prevalence in Chinese men but also reveal that a relatively large number of smokers are H-ND. Considering that few Chinese smokers seek ND treatment, a comprehensive smoking prevention and treatment program designed specifically for Chinese is greatly needed.
Collapse
Affiliation(s)
- Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Keran Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijun Huo
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Zilong Sun
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United Sates
| |
Collapse
|
14
|
Converging findings from linkage and association analyses on susceptibility genes for smoking and other addictions. Mol Psychiatry 2016; 21:992-1008. [PMID: 27166759 PMCID: PMC4956568 DOI: 10.1038/mp.2016.67] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Abstract
Experimental approaches to genetic studies of complex traits evolve with technological advances. How do discoveries using different approaches advance our knowledge of the genetic architecture underlying complex diseases/traits? Do most of the findings of newer techniques, such as genome-wide association study (GWAS), provide more information than older ones, for example, genome-wide linkage study? In this review, we address these issues by developing a nicotine dependence (ND) genetic susceptibility map based on the results obtained by the approaches commonly used in recent years, namely, genome-wide linkage, candidate gene association, GWAS and targeted sequencing. Converging and diverging results from these empirical approaches have elucidated a preliminary genetic architecture of this intractable psychiatric disorder and yielded new hypotheses on ND etiology. The insights we obtained by putting together results from diverse approaches can be applied to other complex diseases/traits. In sum, developing a genetic susceptibility map and keeping it updated are effective ways to keep track of what we know about a disease/trait and what the next steps may be with new approaches.
Collapse
|
15
|
Ma Y, Fan R, Li MD. Meta-Analysis Reveals Significant Association of the 3'-UTR VNTR in SLC6A3 with Alcohol Dependence. Alcohol Clin Exp Res 2016; 40:1443-53. [PMID: 27219321 DOI: 10.1111/acer.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although many studies have analyzed the association of 3'-untranslated region variable-number tandem repeat (VNTR) polymorphism in SLC6A3 with alcohol dependence (AD), the results remain controversial. This study aimed to determine whether this variant indeed has any genetic effect on AD by integrating 17 reported studies with 5,929 participants included. METHODS The A9-dominant genetic model that considers A9-repeat and non-A9 repeat as 2 genotypes and compared their frequencies in alcoholics with that in controls was adopted. Considering the potential influence of ethnicity, differences in diagnostic criteria of AD, and alcoholic subgroups, stratified meta-analyses were conducted. There existed no evidence for the presence of heterogeneity among the studied samples, indicating the results under the fixed-effects model are acceptable. RESULTS We found a significant association of VNTR A9 genotypes with AD in all ethnic populations (pooled odds ratio [OR] 1.12; 95% confidence interval [CI] 1.00, 1.25; p = 0.045) and the Caucasian population (pooled OR 1.15; 95% CI 1.01, 1.31; p = 0.036). We also found VNTR A9 genotypes to be significantly associated with alcoholism as defined by the DSM-IV criteria (pooled OR 1.18; 95% CI 1.03, 1.36; p = 0.02). Further, we found a significant association between VNTR A9 genotypes and alcoholism associated with alcohol withdrawal seizure or delirium tremens (pooled OR 1.55; 95% CI 1.24, 1.92; p = 1.0 × 10(-4) ). In all these meta-analyses, no evidence of publication bias was detected. CONCLUSIONS We concluded that the VNTR polymorphism has an important role in the etiology of AD, and individuals with at least 1 A9 allele are more likely to be dependent on alcohol than persons carrying the non-A9 allele.
Collapse
Affiliation(s)
- Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute for NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey
| |
Collapse
|
16
|
Ma Y, Wang M, Yuan W, Su K, Li MD. The significant association of Taq1A genotypes in DRD2/ANKK1 with smoking cessation in a large-scale meta-analysis of Caucasian populations. Transl Psychiatry 2015; 5:e686. [PMID: 26624925 PMCID: PMC5068580 DOI: 10.1038/tp.2015.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/11/2015] [Accepted: 09/29/2015] [Indexed: 11/23/2022] Open
Abstract
Although a number of studies have analyzed the relation between the DRD2/ANKK1 gene Taq1A polymorphism and smoking cessation, the results remain controversial. The primary objective of the present study was to determine whether this variant indeed has any effect on smoking cessation. The A1-dominant model that considers A1/* (*=A1 or A2) and A2/A2 as two genotypes and compares their frequencies in current and former smokers was applied. A total of 22 studies with 11,075 subjects were included in the meta-analyses. Considering the potential influence of between-study heterogeneity, we conducted stratified meta-analyses with the Comprehensive Meta-Analysis statistical software (version 2.0). Results based on either cross-sectional or longitudinal studies consistently showed a statistically significant association between Taq1A A1/* genotypes and smoking cessation. Further, a more significant association of the variant with smoking cessation was detected when both types of studies were combined. However, there was marginal evidence of heterogeneity among studies (I(2)=33.9%; P=0.06). By excluding other ethnicities and subjects with cancer, the meta-analysis on the basis of 9487 Caucasians demonstrated that Taq1A A1/* genotypes indeed were significantly associated with smoking cessation under both the fixed- and random-effects models (pooled OR 1.22; 95% CI 1.11-1.34; P=3.9 × 10(-5) for both models). No evidence of between-study heterogeneity or publication bias was observed. Thus, we conclude that the polymorphism of Taq1A has an important role in the process of abstaining from smoking, and smokers carrying A2/A2 genotype have a higher likelihood of smoking cessation than those who carry A1/A1 or A1/A2.
Collapse
Affiliation(s)
- Y Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - M Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - W Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - K Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - M D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
- Air Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
17
|
Abstract
This narrative review provides an overview of the epidemiology of binge eating disorder (BED), highlighting the medical history of this disorder and its entry as an independent condition in the Feeding and Eating Disorders section of the recently published Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Estimates of prevalence are provided, as well as recognition that the female to male ratio is lower in BED than in other eating disorders. Evidence is also provided of the most common comorbidities of BED, including mood and anxiety disorders and a range of addiction disorders. In addition, discussion of the viewpoint that BED itself may be an addiction - at least in severe cases - is presented. Although the genetic study of BED is still in its infancy, current research is reviewed with a focus on certain neurotransmitter genes that regulate brain reward mechanisms. To date, a focal point of this research has been on the dopamine and the μ-opioid receptor genes. Preliminary evidence suggests that a predisposing risk factor for BED may be a heightened sensitivity to reward, which could manifest as a strong dopamine signal in the brain's striatal region. Caution is encouraged, however, in the interpretation of current findings, since samples are relatively small in much of the research. To date, no genome-wide association studies have focused exclusively on BED.
Collapse
|
18
|
MacKillop J, Gray JC, Bidwell LC, Bickel WK, Sheffer CE, McGeary JE. Genetic influences on delay discounting in smokers: examination of a priori candidates and exploration of dopamine-related haplotypes. Psychopharmacology (Berl) 2015; 232. [PMID: 26220612 PMCID: PMC4845660 DOI: 10.1007/s00213-015-4029-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Delay discounting is a behavioral economic index of impulsivity that reflects a person's relative preference for small immediate rewards versus larger delayed rewards. Elevated delay discounting is robustly linked to addictive disorders and has been increasingly investigated as a viable endophenotype for genetic influences on addiction. OBJECTIVE The aim of this study is to examine associations between delay discounting and two a priori loci, rs4680 in COMT and rs1800497 in ANKK1, and three exploratory haplotypes proximal to rs1800497 in a sample of daily smokers. METHODS Participants were 713 (60.2 % male) daily smokers of European ancestry who completed a delay discounting assessment and provided a DNA sample. RESULTS Significant associations were detected between greater discounting of medium magnitude rewards (~$55) and the G allele of rs4680, as well as the T allele of rs1800497. Exploratory haplotype analyses identified two haplotypes (rs1160467/rs1800497; rs6277/rs1079597) significantly associated with delay discounting rates. However, the rs1160467/rs1800497 haplotype associations appeared to be entirely attributable to variation in rs1800497, suggesting that the association of rs1800497 with discounting is best understood at the individual SNP level. Similarly, the rs6277/rs1079597 haplotype findings suggested that the association was specific to rs1079597. CONCLUSIONS This study provides further evidence that rs4680 and rs1800497 genotypes are significantly associated with delay discounting preferences and does so among smokers for the first time. The study also provides evidence of specificity for the rs1800497 association and identifies a novel locus, rs1079597, as a genetic contributor to higher delay discounting rates.
Collapse
Affiliation(s)
- James MacKillop
- Peter Boris Centre for Addictions Research, Department of Psychiatry and Behavioural Neurosciences, McMaster University/St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada,
| | | | | | | | | | | |
Collapse
|
19
|
Gray JC, MacKillop J. Impulsive delayed reward discounting as a genetically-influenced target for drug abuse prevention: a critical evaluation. Front Psychol 2015; 6:1104. [PMID: 26388788 PMCID: PMC4554956 DOI: 10.3389/fpsyg.2015.01104] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022] Open
Abstract
This review evaluates the viability of delayed reward discounting (DRD), an index of how much an individual devalues a future reward based on its delay in time, for genetically-informed drug abuse prevention. A review of the literature suggests that impulsive DRD is robustly associated with drug addiction and meets most of the criteria for being an endophenotype, albeit with mixed findings for specific molecular genetic influences. Several modes of experimental manipulation have been demonstrated to reduce DRD acutely. These include behavioral strategies, such as mindfulness, reward bundling, and episodic future thinking; pharmacological interventions, including noradrenergic agonists, adrenergic agonists, and multiple monoamine agonists; and neuromodulatory interventions, such as transcranial magnetic stimulation and transcranial direct current stimulation. However, the generalization of these interventions to positive clinical outcomes remains unclear and no studies to date have examined interventions on DRD in the context of prevention. Collectively, these findings suggest it would be premature to target DRD for genetically-informed prevention. Indeed, given the evidence of environmental contributions to impulsive DRD, whether genetically-informed secondary prevention would ever be warranted is debatable. Progress in identifying polymorphisms associated with DRD profiles could further clarify the underlying biological systems for pharmacological and neuromodulatory interventions, and, as a qualitatively different risk factor from existing prevention programs, impulsive DRD is worthy of investigation at a more general level as a novel and promising drug abuse prevention target.
Collapse
Affiliation(s)
- Joshua C Gray
- Department of Psychology, University of Georgia , Athens, GA, USA
| | - James MacKillop
- Department of Psychology, University of Georgia , Athens, GA, USA ; Peter Boris Centre for Addictions Research, McMaster University/St. Joseph's Healthcare Hamilton , Hamilton, ON, Canada
| |
Collapse
|
20
|
Meta-analysis reveals significant association of 3'-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations. THE PHARMACOGENOMICS JOURNAL 2015; 16:10-7. [PMID: 26149737 PMCID: PMC4705003 DOI: 10.1038/tpj.2015.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/29/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022]
Abstract
Many studies have examined the association between SLC6A3 3′-UTR VNTR polymorphism and smoking cessation; however, the results are inconclusive, primarily because of the small to moderate-size samples. The primary goal of this study was to determine whether this polymorphism has any effect on smoking cessation by a meta-analysis of all reported studies. We adopted a 9-repeat dominant model that considers 9-repeat and non 9-repeat as two genotypes and compared their frequencies in former vs. current smokers. Eleven studies with 5,480 participants were included. Considering the presence of study heterogeneity and differences in the availability of information from each study, three separate meta-analyses were performed with the Comprehensive Meta-Analysis statistical software (v. 2.0). The first meta-analysis provided evidence of association between the 9-repeat genotype and smoking cessation under the fixed-effects model (pooled odds ratio [OR] 1.13; 95% confidence interval [CI] 1.01, 1.27; P = 0.037) but not in the random-effects model (pooled OR 1.11; 95% CI 0.96, 1.29; P = 0.159). Given the marginal evidence of heterogeneity among studies (P = 0.10; I2 = 35.9%), which likely was caused by inclusion of an Asian-population treatment study with an opposite effect of the polymorphism on smoking cessation, we excluded these data, revealing a significant association between the 9-repeat genotype and smoking cessation under both the fixed- and random-effects models (pooled OR 1.15; 95% CI 1.02, 1.29; P = 0.02 for both models). By analyzing adjusted and unadjusted results, we performed the third meta-analysis, which showed consistently that the 9-repeat genotype was significantly associated with smoking cessation under both the fixed- and random-effects models (pooled OR 1.17; 95% CI 1.04, 1.31; P = 0.009 for both models). We conclude that the 3′-UTR VNTR polymorphism is significantly associated with smoking cessation, and smokers with one or more 9-repeat alleles have a 17% higher probability of smoking cessation than smokers carrying no such allele.
Collapse
|