1
|
Zhuang H, Ma X. Advances in Aggrephagy: Mechanisms, Disease Implications, and Therapeutic Strategies. J Cell Physiol 2025; 240:e31512. [PMID: 39749851 DOI: 10.1002/jcp.31512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy. In this pathway, autophagosome biogenesis and lysosomal digestion provide necessary conditions for the clearance of protein aggregates, while autophagy receptors such as P62, NBR1, TAX1BP1, TOLLIP, and CCT2 facilitate the recognition of protein aggregates by the autophagy machinery, playing a pivotal role in their degradation. This review will introduce the mechanisms of aggregate formation, progression, and degradation, with particular emphasis on advances in aggrephagy, providing insights for aggregates-related diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyu Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Santucci L, Bernardi S, Vivarelli R, Santorelli FM, Marchese M. Glucose metabolism impairment as a hallmark of progressive myoclonus epilepsies: a focus on neuronal ceroid lipofuscinoses. Front Cell Neurosci 2024; 18:1445003. [PMID: 39364042 PMCID: PMC11447523 DOI: 10.3389/fncel.2024.1445003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Glucose is the brain's main fuel source, used in both energy and molecular production. Impaired glucose metabolism is associated with adult and pediatric neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), GLUT1 deficiency syndrome, and progressive myoclonus epilepsies (PMEs). PMEs, a group of neurological disorders typical of childhood and adolescence, account for 1% of all epileptic diseases in this population worldwide. Diffuse glucose hypometabolism is observed in the brains of patients affected by PMEs such as Lafora disease (LD), dentatorubral-pallidoluysian (DRPLA) atrophy, Unverricht-Lundborg disease (ULD), and myoclonus epilepsy with ragged red fibers (MERRFs). PMEs also include neuronal ceroid lipofuscinoses (NCLs), a subgroup in which lysosomal and autophagy dysfunction leads to progressive loss of vision, brain atrophy, and cognitive decline. We examine the role of impaired glucose metabolism in neurodegenerative diseases, particularly in the NCLs. Our literature review, which includes findings from case reports and animal studies, reveals that glucose hypometabolism is still poorly characterized both in vitro and in vivo in the different NCLs. Better identification of the glucose metabolism pathway impaired in the NCLs may open new avenues for evaluating the therapeutic potential of anti-diabetic agents in this population and thus raise the prospect of a therapeutic approach able to delay or even halt disease progression.
Collapse
Affiliation(s)
- Lorenzo Santucci
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Sara Bernardi
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rachele Vivarelli
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | | | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
3
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Zafra-Puerta L, Iglesias-Cabeza N, Burgos DF, Sciaccaluga M, González-Fernández J, Bellingacci L, Canonichesi J, Sánchez-Martín G, Costa C, Sánchez MP, Serratosa JM. Gene therapy for Lafora disease in the Epm2a -/- mouse model. Mol Ther 2024; 32:2130-2149. [PMID: 38796707 PMCID: PMC11286821 DOI: 10.1016/j.ymthe.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.
Collapse
Affiliation(s)
- Luis Zafra-Puerta
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Departament of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, University of Perugia, 06132 Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Jacopo Canonichesi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Rubio T, Campos-Rodríguez Á, Sanz P. Beneficial Effect of Fingolimod in a Lafora Disease Mouse Model by Preventing Reactive Astrogliosis-Derived Neuroinflammation and Brain Infiltration of T-lymphocytes. Mol Neurobiol 2024; 61:3105-3120. [PMID: 37971656 PMCID: PMC11087365 DOI: 10.1007/s12035-023-03766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Lafora disease (LD; OMIM#254780) is a rare, devastating, and fatal form of progressive myoclonus epilepsy that affects young adolescents and has no treatment yet. One of the hallmarks of the disease is the accumulation of aberrant poorly branched forms of glycogen (polyglucosans, PGs) in the brain and peripheral tissues. The current hypothesis is that this accumulation is causative of the pathophysiology of the disease. Another hallmark of LD is the presence of neuroinflammation. We have recently reported the presence of reactive glia-derived neuroinflammation in LD mouse models and defined the main inflammatory pathways that operate in these mice, mainly TNF and IL-6 signaling pathways. In addition, we described the presence of infiltration of peripheral immune cells in the brain parenchyma, which could cooperate and aggravate the neuroinflammatory landscape of LD. In this work, we have checked the beneficial effect of two compounds with the capacity to ameliorate neuroinflammation and reduce leukocyte infiltration into the brain, namely fingolimod and dimethyl fumarate. Our results indicate a beneficial effect of fingolimod in reducing reactive astrogliosis-derived neuroinflammation and T-lymphocyte infiltration, which correlated with the improved behavioral performance of the treated Epm2b-/- mice. On the contrary, dimethyl fumarate, although it was able to reduce reactive astrogliosis, was less effective in preventing neuroinflammation and T-lymphocyte infiltration and in modifying behavioral tests.
Collapse
Affiliation(s)
- Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | - Ángela Campos-Rodríguez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain.
| |
Collapse
|
6
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
7
|
Zimmern V, Minassian B. Progressive Myoclonus Epilepsy: A Scoping Review of Diagnostic, Phenotypic and Therapeutic Advances. Genes (Basel) 2024; 15:171. [PMID: 38397161 PMCID: PMC10888128 DOI: 10.3390/genes15020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases. In this scoping review, we examine English language publications from the past decade that address diagnostic, phenotypic, and therapeutic advances in all PMEs. We then highlight the major lessons that have been learned and point out avenues for future investigation that seem promising.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX 75390, USA;
| | | |
Collapse
|
8
|
Zafra-Puerta L, Burgos DF, Iglesias-Cabeza N, González-Fernández J, Sánchez-Martín G, Sánchez MP, Serratosa JM. Gene replacement therapy for Lafora disease in the Epm2a -/- mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571636. [PMID: 38168354 PMCID: PMC10760157 DOI: 10.1101/2023.12.14.571636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. Common symptoms include seizures, dementia, and a progressive neurological decline leading to death within 5-15 years from onset. The disease results from mutations transmitted with autosomal recessive inheritance in the EPM2A gene, encoding laforin, a dual-specificity phosphatase, or the EPM2B gene, encoding malin, an E3-ubiquitin ligase. Laforin has glucan phosphatase activity, is an adapter of enzymes involved in glycogen metabolism, is involved in endoplasmic reticulum-stress and protein clearance, and acts as a tumor suppressor protein. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein can lead to alterations in this complex, leading to the formation of Lafora bodies that contain abnormal, insoluble, and hyperphosphorylated forms of glycogen called polyglucosans. We used the Epm2a -/- knock-out mouse model of Lafora disease to apply a gene replacement therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment by means of neuropathological studies, behavioral tests, video-electroencephalography recording, and proteomic/phosphoproteomic analysis. Gene therapy with recombinant adeno-associated virus containing the EPM2A gene ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Improvements were observed for up to nine months following a single intracerebroventricular injection. In conclusion, gene replacement therapy with human EPM2A gene in the Epm2a -/- knock-out mice shows promise as a potential treatment for Lafora disease.
Collapse
|
9
|
Ferrari Aggradi CR, Rimoldi M, Romagnoli G, Velardo D, Meneri M, Iacobucci D, Ripolone M, Napoli L, Ciscato P, Moggio M, Comi GP, Ronchi D, Corti S, Abati E. Lafora Disease: A Case Report and Evolving Treatment Advancements. Brain Sci 2023; 13:1679. [PMID: 38137127 PMCID: PMC10742041 DOI: 10.3390/brainsci13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.
Collapse
Affiliation(s)
- Carola Rita Ferrari Aggradi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Martina Rimoldi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gloria Romagnoli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Davide Iacobucci
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Patrizia Ciscato
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| |
Collapse
|
10
|
Alnaaim SA, Al‐kuraishy HM, Al‐Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. New insights on the potential anti-epileptic effect of metformin: Mechanistic pathway. J Cell Mol Med 2023; 27:3953-3965. [PMID: 37737447 PMCID: PMC10747420 DOI: 10.1111/jcmm.17965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%-40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Saud A. Alnaaim
- Clinical Neurosciences Department, College of MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
11
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
12
|
Sun Y, Zhou Z, Wang Q, Yan J, Zhang Z, Cui T. MRI characteristics due to gene mutations in a Chinese pedigree with Lafora disease. Mol Genet Genomic Med 2023; 11:e2228. [PMID: 37455597 PMCID: PMC10568394 DOI: 10.1002/mgg3.2228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/20/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Lafora disease (LD) is a very rare autosomal recessive disorder manifesting primarily as fatal, congenital, and neurodegenerative epilepsies. We aimed to describe the MRI characteristics due to gene mutations in a Chinese pedigree with LD. METHODS Whole-exome sequencing, muscle biopsy, pedigree analysis, and MRI analysis were conducted. Five family members (two of whom were affected by LD) were whole-genome sequenced. Longitudinal changes in brain MRI volumes were analyzed by Freesurfer. RESULTS We identified a new intron heterozygous mutation in the EMP2A gene c.71 (exon 1) G>A in a Chinese LD pedigree that was characterized by refractory seizures, progressive vision impairment, and declines in motor and cognitive functions. The patient suffered generalized tonic-clonic seizures since the age of 15 years and had severe forms of progressive myoclonic seizure. She eventually died after being admitted to the intensive care unit due to status epilepticus at the age of 24 years. Period acid Schiff staining showed positive polyglucosan particles in muscle biopsy specimens. Regions of atrophy in the whole brain, and especially in the hippocampus, were detected. CONCLUSIONS We identified a new heterozygous mutation (c.71+1G>A) in a Chinese LD pedigree, which broadens the mutation spectrum of LD genes. We found that the patient exhibited brain volumetric atrophy along with rapidly worsening symptoms. These results contribute to our understanding of LD.
Collapse
Affiliation(s)
- Yueqian Sun
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ziqi Zhou
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Beijing Institute for Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Jing Yan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tao Cui
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
13
|
Cameron JM, Ellis CA, Berkovic SF. ILAE Genetics Literacy series: Progressive myoclonus epilepsies. Epileptic Disord 2023; 25:670-680. [PMID: 37616028 PMCID: PMC10947580 DOI: 10.1002/epd2.20152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Progressive Myoclonus Epilepsy (PME) is a rare epilepsy syndrome characterized by the development of progressively worsening myoclonus, ataxia, and seizures. A molecular diagnosis can now be established in approximately 80% of individuals with PME. Almost fifty genetic causes of PME have now been established, although some remain extremely rare. Herein, we provide a review of clinical phenotypes and genotypes of the more commonly encountered PMEs. Using an illustrative case example, we describe appropriate clinical investigation and therapeutic strategies to guide the management of this often relentlessly progressive and devastating epilepsy syndrome. This manuscript in the Genetic Literacy series maps to Learning Objective 1.2 of the ILAE Curriculum for Epileptology (Epileptic Disord. 2019;21:129).
Collapse
Affiliation(s)
- Jillian M. Cameron
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | - Colin A. Ellis
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | | |
Collapse
|
14
|
Moreno-Estellés M, Campos-Rodríguez Á, Rubio-Villena C, Kumarasinghe L, Garcia-Gimeno MA, Sanz P. Deciphering the Polyglucosan Accumulation Present in Lafora Disease Using an Astrocytic Cellular Model. Int J Mol Sci 2023; 24:ijms24076020. [PMID: 37046993 PMCID: PMC10094345 DOI: 10.3390/ijms24076020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Lafora disease (LD) is a neurological disorder characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of insoluble forms of glycogen (polyglucosan bodies, or PGBs) in the brain. The accumulation of PGBs is causative of the pathophysiological features of LD. However, despite the efforts made by different groups, the question of why PGBs accumulate in the brain is still unanswered. We have recently demonstrated that, in vivo, astrocytes accumulate most of the PGBs present in the brain, and this could lead to astrocyte dysfunction. To develop a deeper understanding of the defects present in LD astrocytes that lead to LD pathophysiology, we obtained pure primary cultures of astrocytes from LD mice from the postnatal stage under conditions that accumulate PGBs, the hallmark of LD. These cells serve as novel in vitro models for studying PGBs accumulation and related LD dysfunctions. In this sense, the metabolomics of LD astrocytes indicate that they accumulate metabolic intermediates of the upper part of the glycolytic pathway, probably as a consequence of enhanced glucose uptake. In addition, we also demonstrate the feasibility of using the model in the identification of different compounds that may reduce the accumulation of polyglucosan inclusions.
Collapse
Affiliation(s)
- Mireia Moreno-Estellés
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
| | - Ángela Campos-Rodríguez
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
| | - Carla Rubio-Villena
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC)-Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| | - Lorena Kumarasinghe
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de València, 46022 Valencia, Spain
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
15
|
Romá-Mateo C, Lorente-Pozo S, Márquez-Thibaut L, Moreno-Estellés M, Garcés C, González D, Lahuerta M, Aguado C, García-Giménez JL, Sanz P, Pallardó FV. Age-Related microRNA Overexpression in Lafora Disease Male Mice Provides Links between Neuroinflammation and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24021089. [PMID: 36674605 PMCID: PMC9865572 DOI: 10.3390/ijms24021089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
- Fundación Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (P.S.); Tel.: +34-963983170 (C.R.-M.); +34-963391760 (P.S.)
| | - Sheila Lorente-Pozo
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Lucía Márquez-Thibaut
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Parc Hospitalari Martí i Julià de Salt, 17190 Girona, Spain
| | - Mireia Moreno-Estellés
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - Concepción Garcés
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
| | - Daymé González
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain
- Novartis Institutes for BioMedical Research (NIBR), Novartis Campus, CH-4056 Basel, Switzerland
| | - Marcos Lahuerta
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
- Fundación Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (P.S.); Tel.: +34-963983170 (C.R.-M.); +34-963391760 (P.S.)
| | - Federico V. Pallardó
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
- Fundación Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
| |
Collapse
|
16
|
Burgos DF, Machío-Castello M, Iglesias-Cabeza N, Giráldez BG, González-Fernández J, Sánchez-Martín G, Sánchez MP, Serratosa JM. Early Treatment with Metformin Improves Neurological Outcomes in Lafora Disease. Neurotherapeutics 2023; 20:230-244. [PMID: 36303102 PMCID: PMC10119355 DOI: 10.1007/s13311-022-01304-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B genes that usually appears during adolescence. The Epm2a-/- and Epm2b-/- knock-out mouse models of the disease develop behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administration in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegeneration, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with slower deterioration of their daily living activities.
Collapse
Affiliation(s)
- Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, 28029, Madrid, Spain
| | - María Machío-Castello
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Beatriz G Giráldez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- Department of Parasitology, School of Pharmacy, Complutense de Madrid University, 28040, Madrid, Spain
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
17
|
Rubio T, Viana R, Moreno-Estellés M, Campos-Rodríguez Á, Sanz P. TNF and IL6/Jak2 signaling pathways are the main contributors of the glia-derived neuroinflammation present in Lafora disease, a fatal form of progressive myoclonus epilepsy. Neurobiol Dis 2023; 176:105964. [PMID: 36526090 PMCID: PMC10682476 DOI: 10.1016/j.nbd.2022.105964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy (prevalence <1:1,000,000) characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies, in the brain but also in peripheral tissues. LD is the most severe form of the group of progressive myoclonus epilepsies, since patients present a rapid deterioration and dementia with amplification of seizures, leading to death after a decade from the onset of the first symptoms. We have recently described that reactive glia-derived neuroinflammation should be considered a novel hallmark of LD since we observed a florid upregulation of differentially expressed genes in both LD mouse lines, which were mainly related to mediators of inflammatory response. In this work, we define an upregulation of the expression of mediators of the TNF and IL6/JAK2 signaling pathways in LD. In addition, we describe the activation of the non-canonical form of the inflammasome. Furthermore, we describe the infiltration of peripheral immune cells in the brain parenchyma, which could aggravate glia-derived neuroinflammation. Finally, we describe CXCL10 and S100b as blood biomarkers of the disease, which will allow the study of the progression of the disease using serum blood samples. We consider that the identification of these initial inflammatory changes in LD will be very important to implement possible anti-inflammatory therapeutic strategies to prevent the development of the disease.
Collapse
Affiliation(s)
- Teresa Rubio
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Mireia Moreno-Estellés
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | | - Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain..
| |
Collapse
|
18
|
Della Vecchia S, Marchese M, Santorelli FM. Glial Contributions to Lafora Disease: A Systematic Review. Biomedicines 2022; 10:biomedicines10123103. [PMID: 36551859 PMCID: PMC9776290 DOI: 10.3390/biomedicines10123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Lafora disease (LD) is a neurodegenerative condition characterized by the accumulation of polyglucosan bodies (PBs) throughout the brain. Alongside metabolic and molecular alterations, neuroinflammation has emerged as another key histopathological feature of LD. METHODS To investigate the role of astrocytes and microglia in LD, we performed a systematic review according to the PRISMA statement. PubMed, Scopus, and Web-of-Science database searches were performed independently by two reviewers. RESULTS Thirty-five studies analyzing the relationship of astrocytes and microglia with LD and/or the effects of anti-inflammatory treatments in LD animal models were identified and included in the review. Although LD has long been dominated by a neuronocentric view, a growing body of evidence suggests a role of glial cells in the disease, starting with the finding that these cells accumulate PBs. We discuss the potential meaning of glial PB accumulations, the likely factors activating glial cells, and the possible contribution of glial cells to LD neurodegeneration and epilepsy. CONCLUSIONS Given the evidence for the role of neuroinflammation in LD, future studies should consider glial cells as a potential therapeutic target for modifying/delaying LD progression; however, it should be kept in mind that these cells can potentially assume multiple reactive phenotypes, which could influence the therapeutic response.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Correspondence: (S.D.V.); (F.M.S.)
| | - Maria Marchese
- Neurobiology, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Neurobiology, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Correspondence: (S.D.V.); (F.M.S.)
| |
Collapse
|
19
|
Mollá B, Heredia M, Campos Á, Sanz P. Pharmacological Modulation of Glutamatergic and Neuroinflammatory Pathways in a Lafora Disease Mouse Model. Mol Neurobiol 2022; 59:6018-6032. [PMID: 35835895 PMCID: PMC9463199 DOI: 10.1007/s12035-022-02956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022]
Abstract
Lafora disease (LD) is a fatal rare neurodegenerative disorder that affects young adolescents and has no treatment yet. The hallmark of LD is the presence of polyglucosan inclusions (PGs), called Lafora bodies (LBs), in the brain and peripheral tissues. LD is caused by mutations in either EPM2A or EPM2B genes, which, respectively, encode laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase, with identical clinical features. LD knockout mouse models (Epm2a - / - and Epm2b - / -) recapitulate PG body accumulation, as in the human pathology, and display alterations in glutamatergic transmission and neuroinflammatory pathways in the brain. In this work, we show the results of four pre-clinical trials based on the modulation of glutamatergic transmission (riluzole and memantine) and anti-neuroinflammatory interventions (resveratrol and minocycline) as therapeutical strategies in an Epm2b - / - mouse model. Drugs were administered in mice from 3 to 5 months of age, corresponding to early stage of the disease, and we evaluated the beneficial effect of the drugs by in vivo behavioral phenotyping and ex vivo histopathological brain analyses. The behavioral assessment was based on a battery of anxiety, cognitive, and neurodegenerative tests and the histopathological analyses included a panel of markers regarding PG accumulation, astrogliosis, and microgliosis. Overall, the outcome of ameliorating the excessive glutamatergic neurotransmission present in Epm2b - / - mice by memantine displayed therapeutic effectiveness at the behavioral levels. Modulation of neuroinflammation by resveratrol and minocycline also showed beneficial effects at the behavioral level. Therefore, our study suggests that both therapeutical strategies could be beneficial for the treatment of LD patients. A mouse model of Lafora disease (Epm2b-/-) was used to check the putative beneficial effect of different drugs aimed to ameliorate the alterations in glutamatergic transmission and/or neuroinflammation present in the model. Drugs in blue gave a more positive outcome than the rest.
Collapse
Affiliation(s)
- Belén Mollá
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Miguel Heredia
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Ángela Campos
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
| | - Pascual Sanz
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
20
|
A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis. Seizure 2022; 101:253-261. [PMID: 36116284 DOI: 10.1016/j.seizure.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Available anti-seizure medications (ASMs) target the symptomatology of the disease rather than any significant disease/epileptogenesis modifying actions. There are critical concerns of drug resistance and seizure recurrence during epilepsy management. So, drug repurposing is evolving as a paradigm change in the quest for novel epilepsy treatment strategies. Metformin, a well-known anti-diabetic drug has shown multiple pieces of evidence of its potential antiepileptic action. OBJECTIVE This review elucidates various mechanisms underlying the beneficial role of metformin in seizure control and modulation of the epileptogenesis process. METHODS Preclinical and clinical evidence involving metformin's role in epilepsy and special conditions like tuberous sclerosis have been reviewed in this paper. The putative mechanisms of epileptogenesis modulation through the use of metformin are also summarised. RESULTS This review found the efficacy of metformin in different seizure models including genetic knockout model, chemical induced, and kindling models. Only one clinical study of metformin in tuberous sclerosis has shown a reduction in seizure frequency and tumor volume compared to placebo. The suggested mechanisms of metformin relevant to epileptogenesis modulation mainly encompass AMPK activation, mTOR inhibition, protection against blood-brain-barrier disruption, inhibition of neuronal apoptosis, and reduction of oxidative stress. In addition to seizure protection, metformin has a potential role in attenuating adverse effects associated with epilepsy and ASMs such as cognition and memory impairment. CONCLUSION Metformin has shown promising utility in epilepsy management and epileptogenesis modulation. The evidence in this review substantiates the need for a robust clinical trial to explore the efficacy and safety of metformin in persons with epilepsy.
Collapse
|
21
|
Nitschke S, Sullivan MA, Mitra S, Marchioni C, Lee JP Y, Smith BH, Ahonen S, Wu J, Chown E, Wang P, Petković S, Zhao X, DiGiovanni LF, Perri AM, Israelian L, Grossman TR, Kordasiewicz H, Vilaplana F, Iwai K, Nitschke F, Minassian BA. Glycogen synthase downregulation rescues the amylopectinosis of murine RBCK1 deficiency. Brain 2022; 145:2361-2377. [PMID: 35084461 PMCID: PMC9612801 DOI: 10.1093/brain/awac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 12/06/2023] Open
Abstract
Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.
Collapse
Affiliation(s)
- Silvia Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitchell A Sullivan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Glycation and Diabetes Complications, Mater Research Institute–The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer P Y Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin E Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Sara Petković
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Laura F DiGiovanni
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Lori Israelian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Tamar R Grossman
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Holly Kordasiewicz
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 10691, Sweden
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Disruption of the Ubiquitin-Proteasome System and Elevated Endoplasmic Reticulum Stress in Epilepsy. Biomedicines 2022; 10:biomedicines10030647. [PMID: 35327449 PMCID: PMC8945847 DOI: 10.3390/biomedicines10030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The epilepsies are a broad group of conditions characterized by repeated seizures, and together are one of the most common neurological disorders. Additionally, epilepsy is comorbid with many neurological disorders, including lysosomal storage diseases, syndromic intellectual disability, and autism spectrum disorder. Despite the prevalence, treatments are still unsatisfactory: approximately 30% of epileptic patients do not adequately respond to existing therapeutics, which primarily target ion channels. Therefore, new therapeutic approaches are needed. Disturbed proteostasis is an emerging mechanism in epilepsy, with profound effects on neuronal health and function. Proteostasis, the dynamic balance of protein synthesis and degradation, can be directly disrupted by epilepsy-associated mutations in various components of the ubiquitin-proteasome system (UPS), or impairments can be secondary to seizure activity or misfolded proteins. Endoplasmic reticulum (ER) stress can arise from failed proteostasis and result in neuronal death. In light of this, several treatment modalities that modify components of proteostasis have shown promise in the management of neurological disorders. These include chemical chaperones to assist proper folding of proteins, inhibitors of overly active protein degradation, and enhancers of endogenous proteolytic pathways, such as the UPS. This review summarizes recent work on the pathomechanisms of abnormal protein folding and degradation in epilepsy, as well as treatment developments targeting this area.
Collapse
|
23
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
24
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Mollá B, Heredia M, Sanz P. Modulators of Neuroinflammation Have a Beneficial Effect in a Lafora Disease Mouse Model. Mol Neurobiol 2021; 58:2508-2522. [PMID: 33447969 PMCID: PMC8167455 DOI: 10.1007/s12035-021-02285-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
Lafora disease (LD; OMIM#274780) is a fatal rare neurodegenerative disorder characterized by generalized epileptic seizures and the presence of polyglucosan inclusions (PGs), called Lafora bodies (LBs), typically in the brain. LD is caused by mutations in two genes EPM2A or EPM2B, which encode respectively laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase. Much remains unknown about the molecular bases of LD and, unfortunately, appropriate treatment is still missing; therefore patients die within 10 years from the onset of the disease. Recently, we have identified neuroinflammation as one of the initial determinants in LD. In this work, we have investigated anti-inflammatory treatments as potential therapies in LD. With this aim, we have performed a preclinical study in an Epm2b-/- mouse model with propranolol, a β-adrenergic antagonist, and epigallocatechin gallate (EGCG), an antioxidant from green tea extract, both of which displaying additional anti-inflammatory properties. In vivo motor and cognitive behavioral tests and ex vivo histopathological brain analyses were used as parameters to assess the therapeutic potential of propranolol and EGCG. After 2 months of treatment, we observed an improvement not only in attention defects but also in neuronal disorganization, astrogliosis, and microgliosis present in the hippocampus of Epm2b-/- mice. In general, propranolol intervention was more effective than EGCG in preventing the appearance of astrocyte and microglia reactivity. In summary, our results confirm the potential therapeutic effectiveness of the modulators of inflammation as novel treatments in Lafora disease.
Collapse
Affiliation(s)
- Belén Mollá
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain.
| | - Miguel Heredia
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain
| | - Pascual Sanz
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain
| |
Collapse
|
26
|
Markussen KH, Macedo JKA, Machío M, Dolce A, Goldberg YP, Vander Kooi CW, Gentry MS. The 6th International Lafora Epilepsy Workshop: Advances in the search for a cure. Epilepsy Behav 2021; 119:107975. [PMID: 33946009 PMCID: PMC8154720 DOI: 10.1016/j.yebeh.2021.107975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Lafora disease (LD) is a fatal childhood dementia with severe epilepsy and also a glycogen storage disease that is caused by recessive mutations in either the EPM2A or EPM2B genes. Aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) are both a hallmark and driver of the disease. The 6th International Lafora Epilepsy Workshop was held online due to the pandemic. Nearly 300 clinicians, academic and industry scientists, trainees, NIH representatives, and LD friends and family members participated in the event. Speakers covered aspects of LD including progress towards the clinic, the importance of establishing clinical progression, translational progress with repurposed drugs and additional pre-clinical therapies, and novel discoveries that define foundational LD mechanisms.
Collapse
Affiliation(s)
- Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - María Machío
- Fundación Jimenez Diaz Hospital, UAM, 28045 Madrid, Spain
| | - Alison Dolce
- Division of Neurology, Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas 75390, USA
| | - Y. Paul Goldberg
- Department of Clinical Development, Ionis Pharmaceuticals, Carlsbad, CA, 92008 USA
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA,Lafora Epilepsy Cure Initiative (LECI), USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Alliance, and Epilepsy Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA,Lafora Epilepsy Cure Initiative (LECI), USA
| |
Collapse
|
27
|
Beneficial Effects of Metformin on the Central Nervous System, with a Focus on Epilepsy and Lafora Disease. Int J Mol Sci 2021; 22:ijms22105351. [PMID: 34069559 PMCID: PMC8160983 DOI: 10.3390/ijms22105351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Metformin is a drug in the family of biguanide compounds that is widely used in the treatment of type 2 diabetes (T2D). Interestingly, the therapeutic potential of metformin expands its prescribed use as an anti-diabetic drug. In this sense, it has been described that metformin administration has beneficial effects on different neurological conditions. In this work, we review the beneficial effects of this drug as a neuroprotective agent in different neurological diseases, with a special focus on epileptic disorders and Lafora disease, a particular type of progressive myoclonus epilepsy. In addition, we review the different proposed mechanisms of action of metformin to understand its function at the neurological level.
Collapse
|
28
|
Sinha P, Verma B, Ganesh S. Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress. Mol Neurobiol 2021; 58:1088-1101. [PMID: 33094475 DOI: 10.1007/s12035-020-02170-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Lafora disease (LD) is one of the progressive and fatal forms of a neurodegenerative disorder and is characterized by teenage-onset myoclonic seizures. Neuropathological changes in LD include the formation of abnormal glycogen as Lafora bodies, gliosis, and neuroinflammation. LD is caused by defects in the gene coding for phosphatase (laforin) or ubiquitin ligase (malin). Mouse models of LD, developed by targeted disruption of these two genes, develop most symptoms of LD and show increased susceptibility to induced seizures. Studies on mouse models also suggest that defective autophagy might contribute to LD etiology. In an attempt to understand the specific role of autophagy in LD pathogenesis, in this study, we fed LD animals with trehalose, an inducer of autophagy, for 3 months and looked at its effect on the neuropathology and seizure susceptibility. We demonstrate here that trehalose ameliorates gliosis, neuroinflammation, and endoplasmic reticulum stress and reduces susceptibility to induced seizures in LD animals. However, trehalose did not affect the formation of Lafora bodies, suggesting the epileptic phenotype in LD could be either secondary to or independent of Lafora bodies. Taken together, our results suggest that autophagy inducers can be considered as potential therapeutic molecules for Lafora disease.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
29
|
Perez-Jimenez E, Viana R, Muñoz-Ballester C, Vendrell-Tornero C, Moll-Diaz R, Garcia-Gimeno MA, Sanz P. Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: Implications in Lafora disease. Glia 2020; 69:1170-1183. [PMID: 33368637 DOI: 10.1002/glia.23956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 01/13/2023]
Abstract
Lafora disease (LD) is a fatal rare type of progressive myoclonus epilepsy that appears during early adolescence. The disease is caused by mutations in EPM2A or EPM2B genes, which encode laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase, respectively. Although the exact roles of laforin and malin are still not well understood, it is known that they work as a complex in which laforin recruits targets that will be ubiquitinated by malin. Recently, we suggested that the type of epilepsy that accompanies LD could be due to deficiencies in the function of the astrocytic glutamate transporter GLT-1. We described that astrocytes from LD mouse models presented decreased levels of GLT-1 at the plasma membrane, leading to increased levels of glutamate in the brain parenchyma. In this work, we present evidence indicating that in the absence of a functional laforin/malin complex (as in LD cellular models) there is an alteration in the ubiquitination of GLT-1, which could be the cause of the reduction in the levels of GLT-1 at the plasma membrane. On the contrary, overexpression of the laforin/malin complex promotes the retention of GLT-1 at the plasma membrane. This retention may be due to the direct ubiquitination of GLT-1 and/or to an opposite effect of this complex on the dynamics of the Nedd4.2-mediated endocytosis of the transporter. This work, therefore, presents new pieces of evidence on the regulation of GLT-1 by the laforin/malin complex, highlighting its value as a therapeutic target for the amelioration of the type of epilepsy that accompanies LD.
Collapse
Affiliation(s)
- Eva Perez-Jimenez
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Valencia, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Biomedicina de Valencia, Valencia, Spain
| | - Rosa Viana
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Valencia, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Biomedicina de Valencia, Valencia, Spain
| | - Carmen Muñoz-Ballester
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Valencia, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Biomedicina de Valencia, Valencia, Spain
| | - Carlos Vendrell-Tornero
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Valencia, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Biomedicina de Valencia, Valencia, Spain
| | - Raquel Moll-Diaz
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Valencia, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Biomedicina de Valencia, Valencia, Spain
| | | | - Pascual Sanz
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Valencia, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Biomedicina de Valencia, Valencia, Spain
| |
Collapse
|
30
|
Israelian L, Wang P, Gabrielian S, Zhao X, Minassian BA. Ketogenic diet reduces Lafora bodies in murine Lafora disease. NEUROLOGY-GENETICS 2020; 6:e533. [PMID: 33324758 PMCID: PMC7713716 DOI: 10.1212/nxg.0000000000000533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Lori Israelian
- Institute of Medical Science (L.I.), University of Toronto, ON; Program in Genetics and Genome Biology (L.I., P.W., S.G., X.Z., B.A.M.), The Hospital for Sick Children Research Institute, Toronto, ON, Canada; and Division of Neurology (B.A.M.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Peixiang Wang
- Institute of Medical Science (L.I.), University of Toronto, ON; Program in Genetics and Genome Biology (L.I., P.W., S.G., X.Z., B.A.M.), The Hospital for Sick Children Research Institute, Toronto, ON, Canada; and Division of Neurology (B.A.M.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Shoghig Gabrielian
- Institute of Medical Science (L.I.), University of Toronto, ON; Program in Genetics and Genome Biology (L.I., P.W., S.G., X.Z., B.A.M.), The Hospital for Sick Children Research Institute, Toronto, ON, Canada; and Division of Neurology (B.A.M.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Xiaochu Zhao
- Institute of Medical Science (L.I.), University of Toronto, ON; Program in Genetics and Genome Biology (L.I., P.W., S.G., X.Z., B.A.M.), The Hospital for Sick Children Research Institute, Toronto, ON, Canada; and Division of Neurology (B.A.M.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Berge A Minassian
- Institute of Medical Science (L.I.), University of Toronto, ON; Program in Genetics and Genome Biology (L.I., P.W., S.G., X.Z., B.A.M.), The Hospital for Sick Children Research Institute, Toronto, ON, Canada; and Division of Neurology (B.A.M.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
31
|
Burgos DF, Cussó L, Sánchez-Elexpuru G, Calle D, Perpinyà MB, Desco M, Serratosa JM, Sánchez MP. Structural and Functional Brain Abnormalities in Mouse Models of Lafora Disease. Int J Mol Sci 2020; 21:ijms21207771. [PMID: 33092303 PMCID: PMC7589150 DOI: 10.3390/ijms21207771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in the EPM2A and EPM2B genes, encoding laforin and malin proteins respectively, are responsible for Lafora disease, a fatal form of progressive myoclonus epilepsy with autosomal recessive inheritance. Neuroimaging studies of patients with Lafora disease have shown different degrees of brain atrophy, decreased glucose brain uptake and alterations on different brain metabolites mainly in the frontal cortex, basal ganglia and cerebellum. Mice deficient for laforin and malin present many features similar to those observed in patients, including cognitive, motor, histological and epileptic hallmarks. We describe the neuroimaging features found in two mouse models of Lafora disease. We found altered volumetric values in the cerebral cortex, hippocampus, basal ganglia and cerebellum using magnetic resonance imaging (MRI). Positron emission tomography (PET) of the cerebral cortex, hippocampus and cerebellum of Epm2a-/- mice revealed abnormal glucose uptake, although no alterations in Epm2b-/- mice were observed. Magnetic resonance spectroscopy (MRS) revealed significant changes in the concentration of several brain metabolites, including N-acetylaspartate (NAA), in agreement with previously described findings in patients. These data may provide new insights into disease mechanisms that may be of value for developing new biomarkers for diagnosis, prevention and treatment of Lafora disease using animal models.
Collapse
Affiliation(s)
- Daniel F. Burgos
- Laboratory of Neurology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (D.F.B.); (G.S.-E.); (M.B.P.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (L.C.); (M.D.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Gentzane Sánchez-Elexpuru
- Laboratory of Neurology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (D.F.B.); (G.S.-E.); (M.B.P.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Calle
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Max Bautista Perpinyà
- Laboratory of Neurology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (D.F.B.); (G.S.-E.); (M.B.P.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (L.C.); (M.D.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - José M. Serratosa
- Laboratory of Neurology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (D.F.B.); (G.S.-E.); (M.B.P.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Marina P. Sánchez
- Laboratory of Neurology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (D.F.B.); (G.S.-E.); (M.B.P.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Correspondence: ; Tel./Fax: +34-91-5497700
| |
Collapse
|
32
|
Israelian L, Nitschke S, Wang P, Zhao X, Perri AM, Lee JPY, Verhalen B, Nitschke F, Minassian BA. Ppp1r3d deficiency preferentially inhibits neuronal and cardiac Lafora body formation in a mouse model of the fatal epilepsy Lafora disease. J Neurochem 2020; 157:1897-1910. [PMID: 32892347 DOI: 10.1111/jnc.15176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Mammalian glycogen chain lengths are subject to complex regulation, including by seven proteins (protein phosphatase-1 regulatory subunit 3, PPP1R3A through PPP1R3G) that target protein phosphatase-1 (PP1) to glycogen to activate the glycogen chain-elongating enzyme glycogen synthase and inactivate the chain-shortening glycogen phosphorylase. Lafora disease is a fatal neurodegenerative epilepsy caused by aggregates of long-chained, and as a result insoluble, glycogen, termed Lafora bodies (LBs). We previously eliminated PPP1R3C from a Lafora disease mouse model and studied the effect on LB formation. In the present work, we eliminate and study the effect of absent PPP1R3D. In the interim, brain cell type levels of all PPP1R3 genes have been published, and brain cell type localization of LBs clarified. Integrating these data we find that PPP1R3C is the major isoform in most tissues including brain. In the brain, PPP1R3C is expressed at 15-fold higher levels than PPP1R3D in astrocytes, the cell type where most LBs form. PPP1R3C deficiency eliminates ~90% of brain LBs. PPP1R3D is quantitatively a minor isoform, but possesses unique MAPK, CaMK2 and 14-3-3 binding domains and appears to have an important functional niche in murine neurons and cardiomyocytes. In neurons, it is expressed equally to PPP1R3C, and its deficiency eliminates ~50% of neuronal LBs. In heart, it is expressed at 25% of PPP1R3C where its deficiency eliminates ~90% of LBs. This work studies the role of a second (PPP1R3D) of seven PP1 subunits that regulate the structure of glycogen, toward better understanding of brain glycogen metabolism generally, and in Lafora disease.
Collapse
Affiliation(s)
- Lori Israelian
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Silvia Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jennifer P Y Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Brandy Verhalen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Felix Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Berge A Minassian
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert Rev Mol Med 2020; 22:e4. [PMID: 32938505 PMCID: PMC7520540 DOI: 10.1017/erm.2020.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive myoclonus epilepsies (PMEs) are a group of genetic neurological disorders characterised by the occurrence of epileptic seizures, myoclonus and progressive neurological deterioration including cerebellar involvement and dementia. The primary cause of PMEs is variable and alterations in the corresponding mutated genes determine the progression and severity of the disease. In most cases, they lead to the death of the patient after a period of prolonged disability. PMEs also share poor information on the pathophysiological bases and the lack of a specific treatment. Recent reports suggest that neuroinflammation is a common trait under all these conditions. Here, we review similarities and differences in neuroinflammatory response in several PMEs and discuss the window of opportunity of using anti-inflammatory drugs in the treatment of several of these conditions.
Collapse
|
34
|
Fu J, Tao T, Li Z, Chen Y, Li J, Peng L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2020; 131:110658. [PMID: 32841895 DOI: 10.1016/j.biopha.2020.110658] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are a diverse group of neurological disorders, which are characterized by spontaneous recurrent seizures. Although a wide range of pathogenic mechanisms such as alterations in ion channels, inflammation and neuronal loss have been reported to be implicated in the epileptogenesis, the underlying pathogenesis of epilepsy remains unclear currently. Endoplasmic reticulum (ER) stress is regarded as a condition that unfolded or misfolded proteins accumulate in the ER lumen. Excessive or prolonged ER stress causes the activation of the unfolded protein response (UPR) to buffer ER stress and restore ER homeostasis. Increasing evidence has indicated dysregulated ER stress during epileptogenesis, which may participate in various pathological processes associated with epilepsy. In this present review, we summarized recent advances in the involvement of ER stress in the pathogenesis of epilepsy. Additionally, the antiepileptic and neuroprotective effects of interventions targeting ER stress were also discussed.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China; Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tao Tao
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Zuoxiao Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jinglun Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| | - Lilei Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
35
|
Aso E, Andrés-Benito P, Grau-Escolano J, Caltana L, Brusco A, Sanz P, Ferrer I. Cannabidiol-Enriched Extract Reduced the Cognitive Impairment but Not the Epileptic Seizures in a Lafora Disease Animal Model. Cannabis Cannabinoid Res 2020; 5:150-163. [PMID: 32656347 DOI: 10.1089/can.2019.0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Lafora disease (LD) is a rare form of progressive infantile epilepsy in which rapid neurological deterioration occurs as the disease advances, leading the patients to a vegetative state and then death, usually within the first decade of disease onset. Based on the capacity of the endogenous cannabinoid system (ECS) to modulate several cellular processes commonly altered in many neurodegenerative processes, as well as the antiepileptic properties of certain natural cannabinoids, the aim of this study was to evaluate the role of the ECS in LD progression. Materials and Methods: We tested whether a natural cannabis extract highly enriched in cannabidiol (CBD) might be effective in curbing the pathological phenotype of malin knockout (KO) mice as an animal model of LD. Results: Our results reveal for the first time that alterations in the ECS occur during the evolution of LD, mainly at the level of CB1, CB2, and G protein-coupled receptor 55 (GPR55) receptor expression, and that a CBD-enriched extract (CBDext) is able to reduce the cognitive impairment exhibited by malin KO mice. However, in contrast to what has previously been reported for other kinds of refractory epilepsy in childhood, the CBD-enriched extract does not reduce the severity of the epileptic seizures induced in this animal model of LD. Conclusions: In summary, this study reveals that the ECS might play a role in LD and that a CBD-enriched extract partially reduces the dementia-like phenotype, but not the increased vulnerability to epileptic seizures, exhibited by an animal model of such a life-threatening disease.
Collapse
Affiliation(s)
- Ester Aso
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de En.fermedades Neurodegenerativas, Instituto Carlos III, Madrid, Spain.,Unitat de Anatomia Patològica, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Jordi Grau-Escolano
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Laura Caltana
- Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Group U742, Valencia, Spain
| | - Isidre Ferrer
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de En.fermedades Neurodegenerativas, Instituto Carlos III, Madrid, Spain.,Unitat de Anatomia Patològica, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
36
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
37
|
Tang B, Frasinyuk MS, Chikwana VM, Mahalingan KK, Morgan CA, Segvich DM, Bondarenko SP, Mrug GP, Wyrebek P, Watt DS, DePaoli-Roach AA, Roach PJ, Hurley TD. Discovery and Development of Small-Molecule Inhibitors of Glycogen Synthase. J Med Chem 2020; 63:3538-3551. [PMID: 32134266 DOI: 10.1021/acs.jmedchem.9b01851] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The overaccumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Accumulating evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these GSDs. Using a fluorescence polarization assay designed to screen for inhibitors of the key glycogen synthetic enzyme, glycogen synthase (GS), we identified a substituted imidazole, (rac)-2-methoxy-4-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)-4-phenyl-1H-imidazol-5-yl)phenol (H23), as a first-in-class inhibitor for yeast GS 2 (yGsy2p). Data from X-ray crystallography at 2.85 Å, as well as kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2p. The high conservation of residues between human and yeast GS in direct contact with H23 informed the development of around 500 H23 analogs. These analogs produced a structure-activity relationship profile that led to the identification of a substituted pyrazole, 4-(4-(4-hydroxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)pyrogallol, with a 300-fold improved potency against human GS. These substituted pyrazoles possess a promising scaffold for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.
Collapse
Affiliation(s)
- Buyun Tang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Mykhaylo S Frasinyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv 02094, Ukraine.,National University of Food Technologies, Kyiv 01601, Ukraine
| | - Vimbai M Chikwana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Krishna K Mahalingan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Cynthia A Morgan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | | | - Galyna P Mrug
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv 02094, Ukraine.,National University of Food Technologies, Kyiv 01601, Ukraine
| | - Przemyslaw Wyrebek
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506, Kentucky, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington 40536, Kentucky, United States
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506, Kentucky, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington 40536, Kentucky, United States.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| |
Collapse
|
38
|
Palhegyi AM, Seranova E, Dimova S, Hoque S, Sarkar S. Biomedical Implications of Autophagy in Macromolecule Storage Disorders. Front Cell Dev Biol 2019; 7:179. [PMID: 31555645 PMCID: PMC6742707 DOI: 10.3389/fcell.2019.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
An imbalance between the production and clearance of macromolecules such as proteins, lipids and carbohydrates can lead to a category of diseases broadly known as macromolecule storage disorders. These include, but not limited to, neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease associated with accumulation of aggregation-prone proteins, Lafora and Pompe disease associated with glycogen accumulation, whilst lipid accumulation is characteristic to Niemann-Pick disease and Gaucher disease. One of the underlying factors contributing to the build-up of macromolecules in these storage disorders is the intracellular degradation pathway called autophagy. This process is the primary clearance route for unwanted macromolecules, either via bulk non-selective degradation, or selectively via aggrephagy, glycophagy and lipophagy. Since autophagy plays a vital role in maintaining cellular homeostasis, cell viability and human health, malfunction of this process could be detrimental. Indeed, defective autophagy has been reported in a number of macromolecule storage disorders where autophagy is impaired at distinct stages, such as at the level of autophagosome formation, autophagosome maturation or improper lysosomal degradation of the autophagic cargo. Of biomedical relevance, autophagy is regulated by multiple signaling pathways that are amenable to chemical perturbations by small molecules. Induction of autophagy has been shown to improve cell viability and exert beneficial effects in experimental models of various macromolecule storage disorders where the lysosomal functionality is not overtly compromised. In this review, we will discuss the role of autophagy in certain macromolecule storage disorders and highlight the potential therapeutic benefits of autophagy enhancers in these pathological conditions.
Collapse
Affiliation(s)
- Adina Maria Palhegyi
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Elena Seranova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Simona Dimova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sheabul Hoque
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sovan Sarkar
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
40
|
H S N, Paudel YN, K L K. Envisioning the neuroprotective effect of Metformin in experimental epilepsy: A portrait of molecular crosstalk. Life Sci 2019; 233:116686. [PMID: 31348946 DOI: 10.1016/j.lfs.2019.116686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy is a neurological disorder characterized by an enduring predisposition to generate and aggravate epileptic seizures affecting around 1% of global population making it a serious health concern. Despite the recent advances in epilepsy research, no disease-modifying treatment able to terminate epileptogenesis have been reported yet reflecting the complexity in understanding the disease pathogenesis. To overcome the current treatment gap against epilepsy, one effective approach is to explore anti-epileptic effects from a drug that are approved to treat non-epileptic diseases. In this regard, Metformin emerged as an ideal candidate which is a first line treatment option for type 2 diabetes mellitus (T2DM), has conferred neuroprotection in several in vivo neurological disorders such as Alzheimer's diseases (AD), Parkinson's disease (PD), Stroke, Huntington's diseases (HD) including epilepsy. In addition, Metformin has ameliorated cognitive alteration, learning and memory induced by epilepsy as well as in animal model of AD. Herein, we review the promising findings demonstrated upon Metformin treatment against animal model of epilepsy however, the precise underlying mechanism of anti-epileptic potential of Metformin is not well understood. However, there is a growing understanding that Metformin demonstrates its anti-epileptic effect mainly via ameliorating brain oxidative damage, activation of AMPK, inhibition of mTOR pathway, downregulation of α-synuclein, reducing apoptosis, downregulation of BDNF and TrkB level. These reflects that Metformin being non-anti-epileptic drug (AED) has a potential to ameliorate the cellular pathways that were impaired in epilepsy reflecting its therapeutical potential against epileptic seizure that might plausibly overcome the limitations of today epilepsy treatment.
Collapse
Affiliation(s)
- Nandini H S
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Krishna K L
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India.
| |
Collapse
|
41
|
Bisulli F, Muccioli L, d'Orsi G, Canafoglia L, Freri E, Licchetta L, Mostacci B, Riguzzi P, Pondrelli F, Avolio C, Martino T, Michelucci R, Tinuper P. Treatment with metformin in twelve patients with Lafora disease. Orphanet J Rare Dis 2019; 14:149. [PMID: 31227012 PMCID: PMC6588886 DOI: 10.1186/s13023-019-1132-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
Background Lafora disease (LD) is a rare, lethal, progressive myoclonus epilepsy for which no targeted therapy is currently available. Studies on a mouse model of LD showed a good response to metformin, a drug with a well known neuroprotective effect. For this reason, in 2016, the European Medicines Agency granted orphan designation to metformin for the treatment of LD. However, no clinical data is available thus far. Methods We retrospectively collected data on LD patients treated with metformin referred to three Italian epilepsy centres. Results Twelve patients with genetically confirmed LD (6 EPM2A, 6 NHLRC1) at middle/late stages of disease were treated with add-on metformin for a mean period of 18 months (range: 6–36). Metformin was titrated to a mean maintenance dose of 1167 mg/day (range: 500–2000 mg). In four patients dosing was limited by gastrointestinal side-effects. No serious adverse events occurred. Three patients had a clinical response, which was temporary in two, characterized by a reduction of seizure frequency and global clinical improvement. Conclusions Metformin was overall safe in our small cohort of LD patients. Even though the clinical outcome was poor, this may be related to the advanced stage of disease in our cases and we cannot exclude a role of metformin in slowing down LD progression. Therefore, on the grounds of the preclinical data, we believe that treatment with metformin may be attempted as early as possible in the course of LD.
Collapse
Affiliation(s)
- Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy. .,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe d'Orsi
- Epilepsy Centre, Clinic of Nervous System Diseases, University of Foggia, Ospedali Riuniti, Foggia, Italy
| | - Laura Canafoglia
- Department of Neurophysiology and Diagnostic Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Pediatric Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Patrizia Riguzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Federica Pondrelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Avolio
- Epilepsy Centre, Clinic of Nervous System Diseases, University of Foggia, Ospedali Riuniti, Foggia, Italy
| | - Tommaso Martino
- Epilepsy Centre, Clinic of Nervous System Diseases, University of Foggia, Ospedali Riuniti, Foggia, Italy
| | - Roberto Michelucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Panda PK, Fahrner A, Vats S, Seranova E, Sharma V, Chipara M, Desai P, Torresi J, Rosenstock T, Kumar D, Sarkar S. Chemical Screening Approaches Enabling Drug Discovery of Autophagy Modulators for Biomedical Applications in Human Diseases. Front Cell Dev Biol 2019; 7:38. [PMID: 30949479 PMCID: PMC6436197 DOI: 10.3389/fcell.2019.00038] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation pathway for malfunctioning aggregation-prone proteins, damaged organelles, unwanted macromolecules and invading pathogens. This process is essential for maintaining cellular and tissue homeostasis that contribute to organismal survival. Autophagy dysfunction has been implicated in the pathogenesis of diverse human diseases, and therefore, therapeutic exploitation of autophagy is of potential biomedical relevance. A number of chemical screening approaches have been established for the drug discovery of autophagy modulators based on the perturbations of autophagy reporters or the clearance of autophagy substrates. These readouts can be detected by fluorescence and high-content microscopy, flow cytometry, microplate reader and immunoblotting, and the assays have evolved to enable high-throughput screening and measurement of autophagic flux. Several pharmacological modulators of autophagy have been identified that act either via the classical mechanistic target of rapamycin (mTOR) pathway or independently of mTOR. Many of these autophagy modulators have been demonstrated to exert beneficial effects in transgenic models of neurodegenerative disorders, cancer, infectious diseases, liver diseases, myopathies as well as in lifespan extension. This review describes the commonly used chemical screening approaches in mammalian cells and the key autophagy modulators identified through these methods, and highlights the therapeutic benefits of these compounds in specific disease contexts.
Collapse
Affiliation(s)
- Prashanta Kumar Panda
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandra Fahrner
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Somya Vats
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Vartika Sharma
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Priyal Desai
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jorge Torresi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Tatiana Rosenstock
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
The Effect of Metformin in Experimentally Induced Animal Models of Epileptic Seizure. Behav Neurol 2019; 2019:6234758. [PMID: 30863464 PMCID: PMC6378775 DOI: 10.1155/2019/6234758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Epilepsy is one of the common neurological illnesses which affects millions of individuals globally. Although the majority of epileptic patients have a good response for the currently available antiepileptic drugs (AEDs), about 30-40% of epileptic patients are developing resistance. In addition to low safety profiles of most of existing AEDs, there is no AED available for curative or disease-modifying actions for epilepsy so far. Objectives This systematic review is intended to evaluate the effect of metformin in acute and chronic animal models of an epileptic seizure. Methods We searched PubMed, SCOPUS, Sciences Direct, and grey literature in order to explore articles published in English from January 2010 to November 2018, using key terms “epilepsy,” “seizure,” “metformin,” “oral hypoglycemic agents,” and “oral antidiabetic drugs”. The qualities of all the included articles were assessed according to the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES). Results Out of six hundred fifty original articles retrieved, eleven of them fulfilled the inclusion criteria and were included for final qualitative analysis. In these studies, metformin showed to control seizure attacks by attenuating seizure generation, delaying the onset of epilepsy, reducing hippocampal neuronal loss, and averting cognitive impairments in both acute and chronic models of an epileptic seizure. The possible mechanisms for its antiseizure or antiepileptic action might be due to activation of AMPK, antiapoptotic, antineuroinflammatory, and antioxidant properties, which possibly modify disease progression through affecting epileptogenesis. Conclusion This review revealed the benefits of metformin in alleviating symptoms of epileptic seizure and modifying different cellular and molecular changes that affect the natural history of the disease in addition to its good safety profile.
Collapse
|
44
|
Desdentado L, Espert R, Sanz P, Tirapu-Ustarroz J. [Lafora disease: a review of the literature]. Rev Neurol 2019; 68:66-74. [PMID: 30638256 PMCID: PMC6531605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Lafora disease is autosomal recessive progressive myoclonus epilepsy with late childhood-to teenage-onset caused by loss-of-function mutations in either EPM2A or EPM2B genes encoding laforin or malin, respectively. DEVELOPMENT The main symptoms of Lafora disease, which worsen progressively, are: myoclonus, occipital seizures, generalized tonic-clonic seizures, cognitive decline, neuropsychiatric syptoms and ataxia with a fatal outcome. Pathologically, Lafora disease is characterized by the presence of polyglucosans deposits (named Lafora bodies), in the brain, liver, muscle and sweat glands. Diagnosis of Lafora disease is made through clinical, electrophysiological, histological and genetic findings. Currently, there is no treatment to cure or prevent the development of the disease. Traditionally, antiepileptic drugs are used for the management of myoclonus and seizures. However, patients become drug-resistant after the initial stage. CONCLUSIONS Lafora disease is a rare pathology that has serious consequences for patients and their caregivers despite its low prevalence. Therefore, continuing research in order to clarify the underlying mechanisms and hopefully developing new palliative and curative treatments for the disease is necessary.
Collapse
Affiliation(s)
- L Desdentado
- Hospital Clinico Universitario de Valencia, 46010 Valencia, Espana
| | - R Espert
- Hospital Clinico Universitario de Valencia, 46010 Valencia, Espana
- Universidad de Valencia, 46071 Valencia, Espana
| | - P Sanz
- Instituto de Biomedicina de Valencia, 46010 Valencia, Venezuela
| | | |
Collapse
|
45
|
Hussein AM, Eldosoky M, El-Shafey M, El-Mesery M, Ali AN, Abbas KM, Abulseoud OA. Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can J Physiol Pharmacol 2018; 97:37-46. [PMID: 30308130 DOI: 10.1139/cjpp-2018-0266] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to examine the possible neuroprotective and antiepileptic effects of metformin (Metf) in a rat model of pentylenetetrazole (PTZ)-induced epilepsy and its possible underlying mechanisms. Forty male albino rats were assigned to 4 groups of equal size: (1) normal control (NC) group, (2) Metf group: daily treatment with Metf (200 mg/kg, i.p.) for 2 weeks, (3) PTZ group: treatment with PTZ (50 mg/kg, i.p.) every other day for 2 weeks, and (4) Metf + PTZ group: daily treatment with PTZ and metformin (200 mg/kg, i.p.) for 2 weeks. Administration of PTZ caused a significant increase in seizure score and duration, induced a state of oxidative stress (high malondialdehyde, low reduced glutathione and catalase activity), and led to the upregulation of β-catenin, caspase-3, and its cleavage products, Hsp70 and α-synuclein, in hippocampal regions as well as a significant reduction in seizure latency. While Metf treatment significantly ameliorated PTZ-induced seizures, attenuated oxidative stress, and upregulated α-synuclein and β-catenin expression, it also inhibited caspase-3 activation and the release of the cleavage product and caused more upregulation in Hsp70 expression in hippocampal regions (p < 0.05). In conclusion, the antiepileptic and neuroprotective effects of Metf in PTZ-induced epilepsy might be due to the inhibition of apoptosis, attenuation of oxidative stress and α-synuclein expression, and upregulation of Hsp70.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- a Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Eldosoky
- a Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Shafey
- b Department of Human Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- c Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amr N Ali
- d Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled M Abbas
- d Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- e Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, Baltimore, MD, USA
| |
Collapse
|
46
|
Lafora Disease: A Ubiquitination-Related Pathology. Cells 2018; 7:cells7080087. [PMID: 30050012 PMCID: PMC6116066 DOI: 10.3390/cells7080087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
Lafora disease (LD, OMIM254780) is a rare and fatal form of progressive myoclonus epilepsy (PME). Among PMEs, LD is unique because of the rapid neurological deterioration of the patients and the appearance in brain and peripheral tissues of insoluble glycogen-like (polyglucosan) inclusions, named Lafora bodies (LBs). LD is caused by mutations in the EPM2A gene, encoding the dual phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Laforin and malin form a functional complex that is involved in the regulation of glycogen synthesis. Thus, in the absence of a functional complex glycogen accumulates in LBs. In addition, it has been suggested that the laforin-malin complex participates in alternative physiological pathways, such as intracellular protein degradation, oxidative stress, and the endoplasmic reticulum unfolded protein response. In this work we review the possible cellular functions of laforin and malin with a special focus on their role in the ubiquitination of specific substrates. We also discuss here the pathological consequences of defects in laforin or malin functions, as well as the therapeutic strategies that are being explored for LD.
Collapse
|
47
|
|
48
|
Parihar R, Rai A, Ganesh S. Lafora disease: from genotype to phenotype. J Genet 2018; 97:611-624. [PMID: 30027899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The progressive myoclonic epilepsy of Lafora or Lafora disease (LD) is a neurodegenerative disorder characterized by recurrent seizures and cognitive deficits. With typical onset in the late childhood or early adolescence, the patients show progressive worsening of the disease symptoms, leading to death in about 10 years. It is an autosomal recessive disorder caused by the loss-of-function mutations in the EPM2A gene, coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an E3 ubiquitin ligase (malin). LD is characterized by the presence of abnormally branched water insoluble glycogen inclusions known as Lafora bodies in the neurons and other tissues, suggesting a role for laforin and malin in glycogen metabolic pathways. Mouse models of LD, developed by targeted disruption of the Epm2a or Nhlrc1 gene, recapitulated most of the symptoms and pathological features as seen in humans, and have offered insight into the pathomechanisms. Besides the formation of Lafora bodies in the neurons in the presymptomatic stage, the animal models have also demonstrated perturbations in the proteolytic pathways, such as ubiquitin proteasome system and autophagy, and inflammatory response. This review attempts to provide a comprehensive coverage on the genetic defects leading to the LD in humans, on the functional properties of the laforin and malin proteins, and on how defects in any one of these two proteins result in a clinically similar phenotype. We also discuss the disease pathologies as revealed by the studies on the animal models and, finally, on the progress with therapeutic attempts albeit in the animal models.
Collapse
Affiliation(s)
- Rashmi Parihar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | |
Collapse
|
49
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
50
|
Ejlerskov P, Ashkenazi A, Rubinsztein DC. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases. Neurobiol Dis 2018; 122:3-8. [PMID: 29625255 DOI: 10.1016/j.nbd.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/22/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrick Ejlerskov
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK; University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Avraham Ashkenazi
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - David C Rubinsztein
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge Biomedical Campus, Hills Road, Cambridge, UK.
| |
Collapse
|