1
|
You D, Ni W, Huang Y, Zhou Q, Zhang Y, Jiang T, Chen Y, Li W. The proper timing of Atoh1 expression is pivotal for hair cell subtype differentiation and the establishment of inner ear function. Cell Mol Life Sci 2023; 80:349. [PMID: 37930405 PMCID: PMC10628023 DOI: 10.1007/s00018-023-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/07/2023]
Abstract
Atoh1 overexpression is essential for hair cell (HC) regeneration in the sensory epithelium of mammalian auditory and vestibular organs. However, Atoh1 overexpression alone cannot induce fully mature and functional HCs in the mammalian inner ear. In the current study, we investigated the effect of Atoh1 constitutive overexpression in native HCs by manipulating Atoh1 expression at different developmental stages. We demonstrated that constitutive overexpression of Atoh1 in native vestibular HCs did not affect cell survival but did impair vestibular function by interfering with the subtype differentiation of HCs and hair bundle development. In contrast, Atoh1 overexpression in cochlear HCs impeded their maturation, eventually leading to gradual HC loss in the cochlea and hearing dysfunction. Our study suggests that time-restricted Atoh1 expression is essential for the differentiation and survival of HCs in the inner ear, and this is pivotal for both hearing and vestibular function re-establishment through Atoh1 overexpression-induced HC regeneration strategies.
Collapse
Affiliation(s)
- Dan You
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Wenli Ni
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yikang Huang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Qin Zhou
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yanping Zhang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Tao Jiang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yan Chen
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Wenyan Li
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
2
|
Huang Y, Mao H, Chen Y. Regeneration of Hair Cells in the Human Vestibular System. Front Mol Neurosci 2022; 15:854635. [PMID: 35401109 PMCID: PMC8987309 DOI: 10.3389/fnmol.2022.854635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The vestibular system is a critical part of the human balance system, malfunction of this system will lead to balance disorders, such as vertigo. Mammalian vestibular hair cells, the mechanical receptors for vestibular function, are sensitive to ototoxic drugs and virus infection, and have a limited restorative capacity after damage. Considering that no artificial device can be used to replace vestibular hair cells, promoting vestibular hair cell regeneration is an ideal way for vestibular function recovery. In this manuscript, the development of human vestibular hair cells during the whole embryonic stage and the latest research on human vestibular hair cell regeneration is summarized. The limitations of current studies are emphasized and future directions are discussed.
Collapse
Affiliation(s)
- Yikang Huang
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huanyu Mao
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yan Chen,
| |
Collapse
|
3
|
Qian X, Ma R, Wang X, Xu X, Yang J, Chi F, Ren D. Simultaneous gentamicin-mediated damage and Atoh1 overexpression promotes hair cell regeneration in the neonatal mouse utricle. Exp Cell Res 2020; 398:112395. [PMID: 33279477 DOI: 10.1016/j.yexcr.2020.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Loss of hair cells from vestibular epithelium results in balance dysfunction. The current therapeutic regimen for vestibular diseases is limited. Upon injury or Atoh1 overexpression, hair cell replacement occurs rapidly in the mammalian utricle, suggesting a promising approach to induce vestibular hair cell regeneration. In this study, we applied simultaneous gentamicin-mediated hair cell ablation and Atoh1 overexpression to induce neonatal utricular hair cell formation in vitro. We confirmed that type I hair cells were the primary targets of gentamicin. Furthermore, injury and Atoh1 overexpression promoted hair cell regeneration in a timely and efficient manner through robust viral transfection. Hair cells regenerated with type II characteristics in the striola and type I/II characteristics in non-sensory regions. Rare EdU+/myosin7a+ cells in sensory regions and robust EdU+/myosin7a+ signals in ectopic regions indicate that transdifferentiation of supporting cells in situ, and mitosis and differentiation of non-sensory epithelial cells in ectopic regions, are sources of regenerative hair cells. Distinct regeneration patterns in in situ and ectopic regions suggested robust plasticity of vestibular non-sensory epithelium, generating more developed hair cell subtypes and thus providing a promising stem cell-like source of hair cells. These findings suggest that simultaneously causing injury and overexpressing Atoh1 promotes hair cell regeneration efficacy and maturity, thus expanding the understanding of ectopic plasticity in neonatal vestibular organs.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Rui Ma
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinwei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinda Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Juanmei Yang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
4
|
He L, Guo JY, Liu K, Wang GP, Gong SS. Research progress on flat epithelium of the inner ear. Physiol Res 2020; 69:775-785. [PMID: 32901490 DOI: 10.33549/physiolres.934447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome.
Collapse
Affiliation(s)
- L He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China. ,
| | | | | | | | | |
Collapse
|
5
|
Developmental and Functional Hair Cell-Like Cells Induced by Atoh1 Overexpression in the Adult Mammalian Cochlea In Vitro. Neural Plast 2020; 2020:8885813. [PMID: 33204251 PMCID: PMC7661126 DOI: 10.1155/2020/8885813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Hair cells (HCs) in the mammalian cochleae cannot spontaneously regenerate once damaged, resulting in permanent hearing loss. It has been shown that Atoh1 overexpression induces hair cell-like cells (HCLCs) in the cochlea of newborn rodents, but this is hard to achieve in adult mammals. In this study, we used a three-dimensional cochlear culture system and an adenoviral-mediated delivery vector to overexpress Atoh1 in adult mouse cochleae. HCLCs were successfully induced from 3 days after virus infection (3 DVI) in vitro, and the number increased with time. HCLCs were myosin7a positive and distinguishable from remnant HCs in a culture environment. Meanwhile, patch-clamp results showed that noninactive outward potassium currents (sustained outward potassium currents) could be recorded in HCLCs and that their magnitude increased with time, similar to normal HCs. Furthermore, transient HCN currents were recorded in some HCLCs, indicating that the HCLCs experienced a developmental stage similar to normal HCs. We also compared the electrophysiological features of HCLCs from adult mice with native HCs and found the HCLCs gradually matured, similar to the normal HCs. Meanwhile, HCLCs from adult mice possessed the same bundles as developmental HCs. However, these HCLCs did not express prestin, which is a special marker for outer hair cells (OHCs), even at 13 DVI. These results demonstrate that Atoh1 overexpression induces HCLC formation in the adult mammalian cochlea and that these HCLCs were functional and experienced a developmental process similar to that of normal HCs.
Collapse
|
6
|
Sayyid ZN, Wang T, Chen L, Jones SM, Cheng AG. Atoh1 Directs Regeneration and Functional Recovery of the Mature Mouse Vestibular System. Cell Rep 2020; 28:312-324.e4. [PMID: 31291569 PMCID: PMC6659123 DOI: 10.1016/j.celrep.2019.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/13/2019] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Utricular hair cells (HCs) are mechanoreceptors required for vestibular function. After damage, regeneration of mammalian utricular HCs is limited and regenerated HCs appear immature. Thus, loss of vestibular function is presumed irreversible. Here, we found partial HC replacement and functional recovery in the mature mouse utricle, both enhanced by overexpressing the transcription factor Atoh1. Following damage, long-term fate mapping revealed that support cells non-mitotically and modestly regenerated HCs displaying no or immature bundles. By contrast, Atoh1 overexpression stimulated proliferation and widespread regeneration of HCs exhibiting elongated bundles, patent mechanotransduction channels, and synaptic connections. Finally, although damage without Atoh1 overexpression failed to initiate or sustain a spontaneous functional recovery, Atoh1 overexpression significantly enhanced both the degree and percentage of animals exhibiting sustained functional recovery. Therefore, the mature, damaged utricle has an Atoh1-responsive regenerative program leading to functional recovery, underscoring the potential of a reprogramming approach to sensory regeneration. The mature mouse utricle, which detects linear acceleration, displays limited regeneration, but whether function returns is unknown. Sayyid et al. show that regenerated hair cells appear and mature over months, resulting in a limited, unsustained functional recovery. Atoh1 overexpression enhances regeneration and leads to a sustained recovery of vestibular function.
Collapse
Affiliation(s)
- Zahra N Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Shibata SB, West MB, Du X, Iwasa Y, Raphael Y, Kopke RD. Gene therapy for hair cell regeneration: Review and new data. Hear Res 2020; 394:107981. [DOI: 10.1016/j.heares.2020.107981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
|
8
|
Direct reprogramming adult fibroblast into cells with partial inner ear hair cell characteristics through cell activation and signal directed approach. Neurosci Lett 2020; 729:135010. [PMID: 32344104 DOI: 10.1016/j.neulet.2020.135010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022]
Abstract
Loss of inner ear hair cell (HC) is an irreversible process in mammals and is the most common cause of human hearing and balance disorders especially in the elderly. Cell therapy based on highly scalable generation of HC linage and inner ear transplantation is one of the most promising therapeutic approaches for HC impairment. For fibroblast is quite abundant and readily available in human body, it is an ideal endogenous cell source to generate HC lineage for transplantation purpose. In the present study, by using a cell activation and signaling directed method, we demonstrate that adult fibroblast can be direct reprogrammed into a kind of cell which expresses lots of HC markers. At the same time, an intermediate progenitor stage exists during such a lineage conversion and activation of FGF pathway is critical for its formation. Although these reprogrammed cells still lack some of the key features of HC such as mechanosensitive ion channel hence have not acquired the functional properties of HC, the findings reported here raise the possibility of reprogramming endogenous fibroblasts into functional HC for regenerative purpose.
Collapse
|
9
|
Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res 2019; 385:107838. [PMID: 31751832 DOI: 10.1016/j.heares.2019.107838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022]
Abstract
In amniotes, head movements are encoded by two types of vestibular hair cells (type I and type II) with unique morphology, physiology, and innervation. After hair cell destruction in mature rodents, supporting cells regenerate some type II hair cells, but no type I hair cells are replaced. The transcription factor Atoh1 is required for hair cell development, and Atoh1 is upregulated in supporting cells, the hair cell progenitors, in mature chickens and mice following hair cell damage. We investigated whether Atoh1 is required for type II hair cell regeneration in adult mice after genetic ablation of hair cells. First, we used a knock-in Atoh1 reporter to demonstrate that supporting cells in the utricle, a vestibular organ that detects linear acceleration of the head, upregulate Atoh1 expression by 7 days after hair cell destruction was initiated. Next, we labeled supporting cells prior to damage and fate-mapped them over time to test whether conditional deletion of Atoh1 from supporting cells prevented them from converting into hair cells after damage. In mice with normal Atoh1 expression, fate-mapped supporting cells in the adult utricle gave rise to hundreds of type II hair cells after hair cell destruction, but they did not form new type I hair cells. By contrast, mice with Atoh1 deletion prior to hair cell damage had only 10-20 fate-mapped type II hair cells per utricle at 3 weeks post-damage, and numbers did not change at 12 weeks after hair cell destruction. Supporting cells had normal cell shape and nuclear density up to 12 weeks after Atoh1 deletion. Similar observations were made in two other vestibular organs, the saccule and the lateral ampulla. Our findings demonstrate that Atoh1 is necessary in adult mouse supporting cells for regeneration of type II vestibular hair cells and that deletion of Atoh1 from supporting cells prior to damage does not appear to induce supporting cells to die or to proliferate.
Collapse
|
10
|
Holman HA, Poppi LA, Frerck M, Rabbitt RD. Spontaneous and Acetylcholine Evoked Calcium Transients in the Developing Mouse Utricle. Front Cell Neurosci 2019; 13:186. [PMID: 31133810 PMCID: PMC6514437 DOI: 10.3389/fncel.2019.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Spontaneous calcium transients are present during early postnatal development in the mouse retina and cochlea, and play an important role in maturation of the sensory organs and neural circuits in the central nervous system (CNS). It is not known whether similar calcium transients occur during postnatal development in the vestibular sensory organs. Here we demonstrate spontaneous intracellular calcium transients in sensory hair cells (HCs) and supporting cells (SCs) in the murine utricular macula during the first two postnatal weeks. Calcium transients were monitored using a genetically encoded calcium indicator, GCaMP5G (G5), at 100 ms-frame−1 in excised utricle sensory epithelia, including HCs, SCs, and neurons. The reporter line expressed G5 and tdTomato (tdT) in a Gad2-Cre dependent manner within a subset of utricular HCs, SCs and neurons. Kinetics of the G5 reporter limited temporal resolution to calcium events lasting longer than 200 ms. Spontaneous calcium transients lasting 1-2 s were observed in the expressing population of HCs at birth and slower spontaneous transients lasting 10-30 s appeared in SCs by P3. Beginning at P5, calcium transients could be modulated by application of the efferent neurotransmitter acetylcholine (ACh). In mature mice, calcium transients in the utricular macula occurred spontaneously, had a duration 1-2 s, and could be modulated by the exogenous application of acetylcholine (ACh) or muscarine. Long-lasting calcium transients evoked by ACh in mature mice were blocked by atropine, consistent with previous reports describing the role of muscarinic receptors expressed in calyx bearing afferents in efferent control of vestibular sensation. Large spontaneous and ACh evoked transients were reversibly blocked by the inositol trisphosphate receptor (IP3R) antagonist aminoethoxydiphenyl borate (2-APB). Results demonstrate long-lasting calcium transients are present in the utricular macula during the first postnatal week, and that responses to ACh mature over this same time period.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Lauren A Poppi
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,School of Biomedical Science and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Micah Frerck
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Neuroscience Program, University of Utah, Salt Lake City, UT, United States.,Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Jen HI, Hill MC, Tao L, Sheng K, Cao W, Zhang H, Yu HV, Llamas J, Zong C, Martin JF, Segil N, Groves AK. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 2019; 8:e44328. [PMID: 31033441 PMCID: PMC6504235 DOI: 10.7554/elife.44328] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mammalian cochlea loses its ability to regenerate new hair cells prior to the onset of hearing. In contrast, the adult vestibular system can produce new hair cells in response to damage, or by reprogramming of supporting cells with the hair cell transcription factor Atoh1. We used RNA-seq and ATAC-seq to probe the transcriptional and epigenetic responses of utricle supporting cells to damage and Atoh1 transduction. We show that the regenerative response of the utricle correlates with a more accessible chromatin structure in utricle supporting cells compared to their cochlear counterparts. We also provide evidence that Atoh1 transduction of supporting cells is able to promote increased transcriptional accessibility of some hair cell genes. Our study offers a possible explanation for regenerative differences between sensory organs of the inner ear, but shows that additional factors to Atoh1 may be required for optimal reprogramming of hair cell fate.
Collapse
Affiliation(s)
- Hsin-I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Matthew C Hill
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Kuanwei Sheng
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonUnited States
| | - Wenjian Cao
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Hongyuan Zhang
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Haoze V Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Juan Llamas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Chenghang Zong
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - James F Martin
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUnited States
- The Texas Heart InstituteHoustonUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| |
Collapse
|
12
|
Atkinson PJ, Kim GS, Cheng AG. Direct cellular reprogramming and inner ear regeneration. Expert Opin Biol Ther 2019; 19:129-139. [PMID: 30584811 DOI: 10.1080/14712598.2019.1564035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Sound is integral to communication and connects us to the world through speech and music. Cochlear hair cells are essential for converting sounds into neural impulses. However, these cells are highly susceptible to damage from an array of factors, resulting in degeneration and ultimately irreversible hearing loss in humans. Since the discovery of hair cell regeneration in birds, there have been tremendous efforts to identify therapies that could promote hair cell regeneration in mammals. AREAS COVERED Here, we will review recent studies describing spontaneous hair cell regeneration and direct cellular reprograming as well as other factors that mediate mammalian hair cell regeneration. EXPERT OPINION Numerous combinatorial approaches have successfully reprogrammed non-sensory supporting cells to form hair cells, albeit with limited efficacy and maturation. Studies on epigenetic regulation and transcriptional network of hair cell progenitors may accelerate discovery of more promising reprogramming regimens.
Collapse
Affiliation(s)
- Patrick J Atkinson
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Grace S Kim
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Alan G Cheng
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
13
|
Molecular therapy for genetic and degenerative vestibular disorders. Curr Opin Otolaryngol Head Neck Surg 2018; 26:307-311. [PMID: 30045104 DOI: 10.1097/moo.0000000000000477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The primary purpose of this review is to summarize current literature in the field of vestibular regeneration with a focus on recent developments in molecular and gene therapies. RECENT FINDINGS Since the discovery of limited vestibular hair cell regeneration in mammals in the 1990s, many elegant studies have improved our knowledge of mechanisms of development and regeneration of the vestibular system. A better understanding of the developmental pathways of the vestibular organs has fueled various biological strategies to enhance regeneration, including novel techniques in deriving vestibular hair cells from embryonic and induced pluripotent stem cells. In addition, the identification of specific genetic mutations responsible for vestibular disorders has opened various opportunities for gene replacement therapy. SUMMARY Vestibular dysfunction is a significant clinical problem with limited therapeutic options, warranting research on biological strategies to repair/regenerate the vestibular organs to restore function. The use of gene therapy appears promising in animal models of vestibular dysfunction.
Collapse
|
14
|
You D, Guo L, Li W, Sun S, Chen Y, Chai R, Li H. Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle. Front Mol Neurosci 2018; 11:137. [PMID: 29760650 PMCID: PMC5937014 DOI: 10.3389/fnmol.2018.00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ SCs, especially those in the striolar region, can regenerate HCs. In this study, we isolated Lgr5+ SCs and Plp1+ SCs (which originate from the striolar and extrastriolar regions, respectively) from transgenic mice by flow cytometry so as to compare the properties of these two subsets of SCs. We found that the Lgr5+ progenitors had greater proliferation and HC regeneration ability than the Plp1+ SCs and that the Lgr5+ progenitors responded more strongly to Wnt and Notch signaling than Plp1+ SCs. We then compared the gene expression profiles of the two populations by RNA-Seq and identified several genes that were significantly differentially expressed between the two populations, including genes involved in the cell cycle, transcription and cell signaling pathways. Targeting these genes and pathways might be a potential way to activate HC regeneration.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences and The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Luo WW, Wang XW, Ma R, Chi FL, Chen P, Cong N, Gu YY, Ren DD, Yang JM. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae. Front Mol Neurosci 2018. [PMID: 29515364 PMCID: PMC5826362 DOI: 10.3389/fnmol.2018.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.
Collapse
Affiliation(s)
- Wen-Wei Luo
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Xin-Wei Wang
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Rui Ma
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Fang-Lu Chi
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Ping Chen
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Ning Cong
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Yu-Yan Gu
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Dong-Dong Ren
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Juan-Mei Yang
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| |
Collapse
|
16
|
Mann ZF, Gálvez H, Pedreno D, Chen Z, Chrysostomou E, Żak M, Kang M, Canden E, Daudet N. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. eLife 2017; 6:e33323. [PMID: 29199954 PMCID: PMC5724992 DOI: 10.7554/elife.33323] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.
Collapse
Affiliation(s)
- Zoe F Mann
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Héctor Gálvez
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - David Pedreno
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Ziqi Chen
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Magdalena Żak
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Miso Kang
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Nicolas Daudet
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
18
|
Luo WW, Han Z, Ren DD, Wang XW, Chi FL, Yang JM. Notch pathway inhibitor DAPT enhances Atoh1 activity to generate new hair cells in situ in rat cochleae. Neural Regen Res 2017; 12:2092-2099. [PMID: 29323051 PMCID: PMC5784360 DOI: 10.4103/1673-5374.221169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Atoh1 overexpression in cochlear epithelium induces new hair cell formation. Use of adenovirus-mediated Atoh1 overexpression has mainly focused on the rat lesser epithelial ridge and induces ectopic hair cell regeneration. The sensory region of rat cochlea is difficult to transfect, thus new hair cells are rarely produced in situ in rat cochlear explants. After culturing rat cochleae in medium containing 10% fetal bovine serum, adenovirus successfully infected the sensory region as the width of the supporting cell area was significantly increased. Adenovirus encoding Atoh1 infected the sensory region and induced hair cell formation in situ. Combined application of the Notch inhibitor DAPT and Atoh1 increased the Atoh1 expression level and decreased hes1 and hes5 levels, further promoting hair cell generation. Our results demonstrate that DAPT enhances Atoh1 activity to promote hair cell regeneration in rat cochlear sensory epithelium in vitro.
Collapse
Affiliation(s)
- Wen-Wei Luo
- Department of Otolaryngology, Eye & ENT Hospital of Fudan University; Research Institute of Otolaryngology, Fudan University, Shanghai, China
| | - Zhao Han
- Department of Otolaryngology, Eye & ENT Hospital of Fudan University; Research Institute of Otolaryngology, Fudan University, Shanghai, China
| | - Dong-Dong Ren
- Department of Otolaryngology, Eye & ENT Hospital of Fudan University; Research Institute of Otolaryngology, Fudan University, Shanghai, China
| | - Xin-Wei Wang
- Department of Otolaryngology, Eye & ENT Hospital of Fudan University; Research Institute of Otolaryngology, Fudan University, Shanghai, China
| | - Fang-Lu Chi
- Department of Otolaryngology, Eye & ENT Hospital of Fudan University; Research Institute of Otolaryngology, Fudan University, Shanghai, China
| | - Juan-Mei Yang
- Department of Otolaryngology, Eye & ENT Hospital of Fudan University; Research Institute of Otolaryngology, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wu J, Li W, Lin C, Chen Y, Cheng C, Sun S, Tang M, Chai R, Li H. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 2016; 6:29418. [PMID: 27435629 PMCID: PMC4951696 DOI: 10.1038/srep29418] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Chen Lin
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yan Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Cheng Cheng
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Shan Sun
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Mingliang Tang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| |
Collapse
|
20
|
Li W, You D, Chen Y, Chai R, Li H. Regeneration of hair cells in the mammalian vestibular system. Front Med 2016; 10:143-51. [DOI: 10.1007/s11684-016-0451-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|