1
|
Bostani A, Hoveizi E, Naddaf H, Razeghi J. Nerve Regeneration Through Differentiation of Endometrial-Derived Mesenchymal Stem Cells into Nerve-Like Cells Using Polyacrylonitrile/Chitosan Conduit and Berberine in a Rat Sciatic Nerve Injury Model. Mol Neurobiol 2024:10.1007/s12035-024-04344-9. [PMID: 38997619 DOI: 10.1007/s12035-024-04344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Nervous injuries are common in humans. One of the most advanced treatment methods is neural tissue engineering. This research aims to utilize nerve-like cells (NLCs) derived from endometrial mesenchymal stem cells (EnMSCs) on a polyacrylonitrile/chitosan (PAN/CS) scaffold, along with berberine, for the reconstruction of a rat sciatic nerve injury model. In this experimental study, EnMSCs were obtained through enzymatic digestion and identified using flow cytometry and their differentiation into adipocyte and osteoblast. PAN nanofiber scaffolds were produced through electrospinning, and EnMSCs were neurally differentiated on these scaffolds for grafting into an animal model. The expression of Nestin, Map-2, Tuj-1, and NF genes in NLCs was confirmed through RT-PCR and immunocytochemistry. Twenty-five adult male rats were used in this study, divided into 5 groups: (1) Scaffold/Cells/Berberine, (2) Scaffold/Cells, (3) Scaffold, (4) Berberine, and (5) Control. The animals were maintained for 8 weeks, and their sciatic nerve function (SFI) was assessed. Additionally, histological examinations were performed using hematoxylin/eosin, luxol fast blue staining, and immunohistochemistry. According to the results, extraction, identification, and differentiation of EnMSCs and fabrication of PAN conduit and its transplantation were successfully performed. The best behavioral performance and histology were observed in the Scaffold/Cells/Berberine group. The SFI test results were -24.08 for the Scaffold/Cells/Berberine group and -39.27 for the control group. The nerve diameter in these two groups was 591 µm and 80 µm, respectively, and the percentage of new nerve formation was 18.5% in the Scaffold/Cells/Berberine group and 0.2% in the control group. The immunohistochemistry results demonstrated that the intensity of the green color was higher in the groups with cells compared to the groups without cells. Furthermore, in the luxol staining results, all groups showed a significant improvement compared to the control group. In the Scaffold/Cells/Berberine group, fibers, and axons appeared denser, more organized, and displayed a higher intensity of blue staining. According to the results of this study, EnMSCs demonstrated efficient differentiation into NLCs. With the assistance of PAN/CS scaffolds and simultaneous administration of berberine, EnMSCs have the potential for nerve regeneration and recovery from sciatic nerve injury in the rat animal model.
Collapse
Affiliation(s)
- Aliasghar Bostani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hadi Naddaf
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jafar Razeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
The Twofold Role of Osteogenic Small Molecules in Parkinson's Disease Therapeutics: Crosstalk of Osteogenesis and Neurogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3813541. [PMID: 36545269 PMCID: PMC9763015 DOI: 10.1155/2022/3813541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Deemed one of the most problematic neurodegenerative diseases in the elderly population, Parkinson's disease remains incurable to date. Ongoing diagnostic studies, however, have revealed that a large number of small molecule drugs that trigger the BMP2-Smad signaling pathway with an osteogenic nature may be effective in Parkinson's disease treatment. Although BMP2 and Smad1, 3, and 5 biomolecules promote neurite outgrowth and neuroprotection in dopaminergic cells as well, small molecules are quicker at crossing the BBB and reaching the damaged dopaminergic neurons located in the substantia nigra due to a molecular weight less than 500 Da. It is worth noting that osteogenic small molecules that inhibit Smurf1 phosphorylation do not offer therapeutic opportunities for Parkinson's disease; whereas, osteogenic small molecules that trigger Smad1, 3, and 5 phosphorylation may have strong therapeutic implications in Parkinson's disease by increasing the survival rate of dopaminergic cells and neuritogenesis. Notably, from a different perspective, it might be said that osteogenic small molecules can possibly put forth therapeutic options for Parkinson's disease by improving neuritogenesis and cell survival.
Collapse
|
3
|
Chen H, Shen Y, Zhang H, Long X, Deng K, Xu T, Li Y. Clinical application of polylactic acid/gelatin nanofibre membrane in hard-to-heal lower extremity venous ulcers. J Wound Care 2022; 31:930-940. [DOI: 10.12968/jowc.2022.31.11.930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: To evaluate the safety and effectiveness of polylactic acid/gelatin nanofibre membranes (PGNMs) in treating hard-to-heal lower extremity venous ulcer wounds. Method: In this prospective study, patients with venous leg ulcers (VLUs) were treated with PGNMs or standard of care. Wounds were assessed once a week until the wound was fully healed. Results: The treatment group was comprised of 10 patients with VLUs, aged between 47–64 years, with an average age of 56.58±6.19 years. The wounds were located in the lower leg and/or ankle. Average wound area was 8.91±13.57cm2 (range: 1.5–52.5cm2). Average wound healing time was 18.75±16.36 days. Of the patients, nine (90%) rated their pain as lighter when removing the dressing, with an average pain value of 2.0±1.0 points. There was less secondary trauma to the wound surface, and less bleeding. At six months after the wound healing, the scar evaluation (using the Vancouver Scar Scale) result was 3.75±1.96 points. Conclusion: In this study, the PGNMs were safe and effective in treating hard-to-heal lower extremity VLUs.
Collapse
Affiliation(s)
- Hongrang Chen
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yun Shen
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Haitao Zhang
- Department of Research & Development, East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Xiaoyan Long
- Department of Research & Development, East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Kunxue Deng
- Department of Research & Development, East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Tao Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongsheng Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
4
|
Tavakol S, Hoveizi E, Tavakol H, Almasi A, Soleimani M, Rabiee Motmaen S, Azedi F, Joghataei MT. Strong Binding of Phytochemicals to the Catalytic Domain of Tyrosine Hydroxylase as a Trojan Horse Decreases Dopamine in Dopaminergic Cells: Pharmaceutical Considerations in Schizophrenia and Parkinson's Disease. Curr Pharm Des 2022; 28:3428-3445. [PMID: 36330626 DOI: 10.2174/1381612829666221102151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Imbalances in dopamine levels result in neurological and psychological disorders such as elevated dopamine in Parkinson's disease. OBJECTIVE Despite a considerable number of advertisements claiming Aloe-vera's effectiveness in PD treatment, it has hidden long-term disadvantages for healthy people and PD patients. METHODS In the present investigation, the impacts of Aloe-vera on dopaminergic cells were evaluated. RESULTS The results indicated that the focal adhesion kinase (FAK) enhancement was in line with the Bax/Bcl2 ratio decrement, reactive oxygen specious (ROS) production, and nonsignificant alteration in the sub-G1phase of the cell cycle. It led to glial cell-derived neurotrophic factor (GDNF) upregulation but did not significantly change the BDNF level involved in depression and motor impairment recovery. These events apparently resulted in the enhancement in dopaminergic cell viability and neurite length and attenuated PI+ cells. However, it also induced neuronal nitric oxide synthase (nNOS) overexpression and nitric oxide (NO) and lactate dehydrogenase (LDH) production. Notably, docking results of the catalytic domain in tyrosine hydroxylase (TH) with the Aloe-vera constituents showed strong binding of most Aloe-vera constituents with the catalytic domain of TH, even stronger than L-tyrosine as an original substrate. Following the docking results, Aloe-vera downregulated TH protein and attenuated dopamine. CONCLUSION It can be hypothesized that Aloe-vera improves PD symptoms through enhancement in antiapoptotic markers and neurotrophic factors, while it suppresses TH and dopamine in the form of a Trojan horse, later resulting in the future deterioration of the disease symptoms. The results provide cues to pharmaceutical companies to use the active components of Aloe-vera as putative agents in neurological and psychiatric disorders and diseases to decrease dopamine in patients with enhanced dopamine levels.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hani Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Almasi
- Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Nose-to-Brain: The Next Step for Stem Cell and Biomaterial Therapy in Neurological Disorders. Cells 2022; 11:cells11193095. [PMID: 36231058 PMCID: PMC9564248 DOI: 10.3390/cells11193095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Neurological disorders are a leading cause of morbidity worldwide, giving rise to a growing need to develop treatments to revert their symptoms. This review highlights the great potential of recent advances in cell therapy for the treatment of neurological disorders. Through the administration of pluripotent or stem cells, this novel therapy may promote neuroprotection, neuroplasticity, and neuroregeneration in lesion areas. The review also addresses the administration of these therapeutic molecules by the intranasal route, a promising, non-conventional route that allows for direct access to the central nervous system without crossing the blood–brain barrier, avoiding potential adverse reactions and enabling the administration of large quantities of therapeutic molecules to the brain. Finally, we focus on the need to use biomaterials, which play an important role as nutrient carriers, scaffolds, and immune modulators in the administration of non-autologous cells. Little research has been conducted into the integration of biomaterials alongside intranasally administered cell therapy, a highly promising approach for the treatment of neurological disorders.
Collapse
|
6
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
7
|
Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed Pharmacother 2021; 137:111236. [PMID: 33486201 DOI: 10.1016/j.biopha.2021.111236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023] Open
Abstract
Currently, stem cell nanotechnology is one of the novel and exciting fields. Certain experimental studies conducted on the interaction of stem cells with nanostructures or nanomaterials have made significant progress. The significance of nanostructures, nanotechnology, and nanomaterials in the development of stem cell-based therapies for degenerative diseases and injuries has been well established. Specifically, the structure and properties of nanomaterials affecting the propagation and differentiation of stem cells have become a new interdisciplinary frontier in material science and regeneration medicines. In the current review, we highlight the recent major progress in this field, explore the application prospects, and discuss the issues, approaches, and challenges, to improve the applications of nanotechnology in the research and development of stem cells.
Collapse
|
8
|
Siafaka PI, Özcan Bülbül E, Dilsiz P, Karantas ID, Okur ME, Üstündağ Okur N. Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: current status and applications. J Drug Target 2021; 29:476-490. [PMID: 33269637 DOI: 10.1080/1061186x.2020.1859516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegeneration is defined as the progressive atrophy and loss of function of neurons; it is present in neurodegenerative disorders such as Multiple Sclerosis, Alzheimer's, Huntington's, and Parkinson's diseases. The detection of such disorders is performed by various imaging modalities while their therapeutic management is quite challenging. Besides, the pathogenesis of neurodegenerative disorders is still under ongoing research due to complex and multi-factorial mechanisms. Currently, targeting the specific proteins responsible for neurodegeneration is of great interest to many researchers. Furthermore, nanotechnology-based approaches for targeting the affected neurons became an emerging field of interest. Nanostructures of various forms have been developed aiming to act as therapeutics for neurodegeneration, in which electrospun nanofibers seem to play an important role as biomedical products for both detection and management of the diseases. Electrospinning is an intriguing method able to produce nanofibers with a wide range of sizes and morphological characteristics. Such nanofibrous matrices can be delivered through different administration routes to target various diseases. In this review, the most recent advancements in electrospun nanofibrous systems that target or detect multiple neurodegenerative diseases have been enlightened and an introduction to the general aspects of neurodegenerative diseases and the electrospinning process has been made. Finally, future perspectives of neurodegeneration targeting were also discussed.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Pelin Dilsiz
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.,Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | | | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
9
|
Gooraninejad S, Hoveizi E, Hushmandi K, Gooraninejad S, Tabatabaei SRF. Small Molecule Differentiate PDX1-Expressing Cells Derived from Human Endometrial Stem Cells on PAN Electrospun Nanofibrous Scaffold: Applications for the Treatment of Diabetes in Rat. Mol Neurobiol 2020; 57:3969-3978. [PMID: 32632606 DOI: 10.1007/s12035-020-02007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022]
Abstract
In this study, we designed an engineered tissue and transplanted it to an animal model, trying to take an effective step toward meeting the needs of diabetic patients. Here, human endometrial cells were differentiated into PDX1-expressing cells using a small molecule of Y-27632 on polyacrylonitrile (PAN) electrospun scaffolds and transplanted into diabetic rats. PAN nanofibers were made by electrospinning. RT-PCR and immunocytochemical analysis were performed to express pancreatic precursor (PP) genes. The differentiated cells were then transplanted into the abdominal cavity of diabetic rats with Streptozotocin. In another group of rats, differentiated cells were injected through the tail. Blood glucose was measured 7, 14, and 28 days after transplantation, and rat weight was also measured. The results showed that the expression of PP markers including Sox-17, Ngn3, Pdx1, and NKx2.2 genes was significantly increased in differentiated cells compared to the control group. In diabetic rats receiving differentiated cells, both transplanted and injected, glucose concentration as well as body weight improved compared to the control group. Rats receiving transplants in the peritoneum had a lower blood glucose concentration than those in the cell receiving group by injection, and the cell receiving group in the form of injections was more effective in increasing the body weight of rats than in the other groups. According to the results of the study, the transplantation of PP from endometrium using PAN scaffolding at the site of peritoneum could be recommended for the treatment of diabetes, although further studies are needed to provide a complete cure.
Collapse
Affiliation(s)
- Saad Gooraninejad
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Kiavash Hushmandi
- DVM Graduate, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sina Gooraninejad
- DVM Graduate, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Shushtar, Iran
| | - Seyed Reza Fatemi Tabatabaei
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
10
|
Poormoghadam D, Almasi A, Ashrafizadeh M, Sarem Vishkaei A, Rezayat SM, Tavakol S. The particle size of drug nanocarriers dictates the fate of neurons; critical points in neurological therapeutics. NANOTECHNOLOGY 2020; 31:335101. [PMID: 32479427 DOI: 10.1088/1361-6528/ab8d6b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neurological disorders and diseases are on the rise in the world, while pharmacists are being encouraged to encapsulate drugs into the nanocarriers. The critical key question is which size of nanocarrier has a promising neurotherapeutic effect. In the present study, FTY-720, an FDA approved drug, was encapsulated into O/W nanocarriers. SEM and DLS data indicated in ultrasonication and stirring methods resulted in spherical nanocarriers with a particle size of 60 and 195 nm (nF60 and nF195), respectively. Further to investigate the effect of particle size on neuronal cells, MTT assay, PI flow-cytometry, LDH release, and NO production examinations were performed. Results showed that small nanocarriers increased cell viability along with the decline of dead cells, while both nanocarriers decreased LDH release and NO production as compared to the conventional drug. Notably, qRT-PCR and western blotting data related to apoptotic markers indicated in the increase of cell mortality in cells treated by nF190 was not due to the increase of apoptosis and Bax/Bcl2 ratio. It is worth mentioning that integrin α5 as a cell surface receptor involves in neuritogenesis was over-expressed in neuronal cells treated by small nanocarriers. However, nF60 increased PTK2 over-expression along with neurite outgrowth, as well. In other words, nanocarriers at the size of 60 nm are preferred to 195 nm as a drug carrier in neurotherapy due to profound impacts on neural cells. Thanks to small nanocarrier broad positive action on neural viability and neurite outgrowth. The present study discloses a pharmaceutical strategy to design drugs based on their particle size efficiency.
Collapse
Affiliation(s)
- Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Xue J, Pisignano D, Xia Y. Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000735. [PMID: 32775158 PMCID: PMC7404157 DOI: 10.1002/advs.202000735] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Indexed: 05/21/2023]
Abstract
Electrospun nanofibers have been extensively explored as a class of scaffolding materials for tissue regeneration, because of their unique capability to mimic some features and functions of the extracellular matrix, including the fibrous morphology and mechanical properties, and to a certain extent the chemical/biological cues. This work reviews recent progress in applying electrospun nanofibers to direct the migration of stem cells and control their differentiation into specific phenotypes. First, the physicochemical properties that make electrospun nanofibers well-suited as a supporting material to expand stem cells by controlling their migration and differentiation are introduced. Then various systems are analyzed in conjunction with mesenchymal, neuronal, and embryonic stem cells, as well as induced pluripotent stem cells. Finally, some perspectives on the challenges and future opportunities in combining electrospun nanofibers with stem cells are offered to address clinical issues.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Dario Pisignano
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- School of Chemistry and BiochemistrySchool of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
12
|
Application of Nanotechnology in Stem-Cell-Based Therapy of Neurodegenerative Diseases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.
Collapse
|
13
|
Saeedi Garakani S, Khanmohammadi M, Atoufi Z, Kamrava SK, Setayeshmehr M, Alizadeh R, Faghihi F, Bagher Z, Davachi SM, Abbaspourrad A. Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications. Int J Biol Macromol 2019; 143:533-545. [PMID: 31816374 DOI: 10.1016/j.ijbiomac.2019.12.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023]
Abstract
One of the most effective approaches for treatment of cartilage involves the use of porous three-dimensional scaffolds, which are useful for improving not only cellular adhesion but also mechanical properties of the treated tissues. In this study, we manufactured a composite scaffold with optimum properties to imitate nasal cartilage attributes. Cartilage extracellular matrix (ECM) was used in order to improve the cellular properties of the scaffolds; while, chitosan and agarose were main materials that are used to boost the mechanical and rheological properties of the scaffolds. Furthermore, we explored the effect of the various weight ratios of chitosan, agarose, and ECM on the mechanical and biomedical properties of the composite scaffolds using the Taguchi method. The resulting composites display a range of advantages, including good mechanical strength, porous morphology, partial crystallinity, high swelling ratio, controlled biodegradability rate, and rheological characteristics. Additionally, we performed the cytotoxicity tests to confirm the improvement of the structure and better cell attachments on the scaffolds. Our findings illustrate that the presence of the ECM in chitosan/agarose structure improves the biomedical characteristics of the final scaffold. In addition, we were able to control the mechanical properties and microstructure of the scaffolds by optimizing the polymers' concentration and their resulting interactions. These results present a novel scaffold with simultaneously enhanced mechanical and cellular attributes comparing to the scaffolds without ECM for nasal cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Sadaf Saeedi Garakani
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Khanmohammadi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Zhaleh Atoufi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Setayeshmehr
- Biomaterials, Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Kargozar S, Lotfibakhshaeish N, Ebrahimi-Barough S, Nazari B, Hill RG. Stimulation of Osteogenic Differentiation of Induced Pluripotent Stem Cells (iPSCs) Using Bioactive Glasses: An in vitro Study. Front Bioeng Biotechnol 2019; 7:355. [PMID: 31850324 PMCID: PMC6901961 DOI: 10.3389/fbioe.2019.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Selection and use of an optimal cell source for bone tissue engineering (BTE) remain a challenging issue; the invention of induced pluripotent stem cells (iPSCs) have created new hopes on this regard. At the present study, we attempted to show the usability of iPSCs in combination with bioactive glasses (BGs) for bone regeneration applications. For this aim, iPSCs were cultured and incubated with the strontium and cobalt-containing BGs for different intervals (1, 5, and 7 days). The cell cytotoxicity and attachment were assessed using MTT assay and scanning electron microscopy (SEM), respectively. Moreover, the osteogenic differentiation of iPSCs seeded onto the glasses was evaluated using alkaline phosphatase (ALP) activity assay and real-time PCR. The obtained results clarified that although the cell viability is decreased during a 7 day period, the iPSCs could adhere and expand onto the BGs particles and over-express the osteogenic markers, including osteocalcin, osteonectin, and Runx2. Based on the data, we conclude that iPSCs in a combination of BGs can be considered as a potential candidate for BTE strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Lotfibakhshaeish
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert G. Hill
- Unit of Dental Physical Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Hoveizi E, Mohammadi T. Differentiation of endometrial stem cells into insulin-producing cells using signaling molecules and zinc oxide nanoparticles, and three-dimensional culture on nanofibrous scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:101. [PMID: 31473826 DOI: 10.1007/s10856-019-6301-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Diabetes mellitus is the most common metabolic disorder with a high mortality and morbidity rate. A new promising strategy to treat DM is pancreatic tissue engineering. We described a 3D culture system accompanied by signaling factors to differentiate hEnSCs into IPCs in the presence of nZnO. We isolated EnSCs and cultured it in DMEM/F12 medium. Nanofibrous PLA/Cs scaffold was prepared through the electrospinning method. The morphological properties of the scaffolds and cells were evaluated by SEM. MTT assay was used to investigate the metabolic activity of the hEnSCs cultured on the scaffolds and a four-stage protocol was applied to differentiate hEnSCs. The differentiated cells were tested for pancreatic markers by immunocytochemistry, qRT-PCR and DTZ staining. The results of this study revealed that hEnSCs cultured on PLA/Cs scaffold and treated with nZnO can efficiently differentiate into IPCs. The examination of differentiated cell morphology showed their near similarity with pancreatic islet cells, and DTZ staining emphasized the presence of insulin granules inside their cytoplasm. Moreover, qRT-PCR and immunofluorescent staining results showed the efficient expression of specific gene markers of IPCs in resultant differentiated cells. Moreover, PLA/CS and nZnO were able to provide a good nanoenvironment for the differentiation of hEnSCs into IPCS the in presence of other molecules.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Tayebeh Mohammadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
16
|
Hoveizi E, Ebrahimi‐Barough S. Embryonic stem cells differentiated into neuron‐like cells using SB431542 small molecule on nanofibrous PLA/CS/Wax scaffold. J Cell Physiol 2019; 234:19565-19573. [DOI: 10.1002/jcp.28554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
18
|
The impact of the particle size of curcumin nanocarriers and the ethanol on beta_1-integrin overexpression in fibroblasts: A regenerative pharmaceutical approach in skin repair and anti-aging formulations. ACTA ACUST UNITED AC 2019; 27:159-168. [PMID: 30875026 DOI: 10.1007/s40199-019-00258-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Since women pay more attention to their skin's health, pharmaceutical companies invest heavily on skin care product development. Further, the success of drug nano-carriers in passing through the skin justifies the need to conduct studies at the nano-scale. β1-integrin down regulation has been proposed as a sign of skin aging. METHODS Six drug nano-carriers (50 and 75 nm) were prepared at three ethanol concentrations (0, 3,and 5%) and different temperatures. Then, the impact of Nanocarriers on fibroblasts were investigated. RESULTS DLS showed that increasing ethanol concentration decreased the surface tension that caused a decrease in the particle size in non-temperature formulations while increasing the temperature to 60 °C to lower Gibbs free energy increased the particle size. Ethanol addition decreased β1-integrin over-expression, whereas larger nano-carriers induced an over-expression of β1-integrin, Bcl2/Bax ratio, and an increase in live cell number. β1-integrin over-expression did not correlate with the rate of fibroblast proliferation and NFκB expression. An increase in fibroblast mortality in relation to smaller nano-carriers was not only due to the increase in Bax ratio, but was related to NFκB over-expression. CONCLUSION The development of a regenerative pharmaceutical approach in skin repair was based on the effect of particle size and ethanol concentration of the drug nano-carriers on the expression of β1-integrin in fibroblasts. A curcumin nanoformulation sized 77 nm and containing of 3% ethanol was more effective in increasing β1-integrin gene over-expression, anti-apoptosis of fibroblast cells (Bcl2/Bax ratio), and in decreasing Bax and NFκB gene expression than that with a particle size of 50 nm. Such a formulation may be considered a valuable candidate in anti-aging and wound-healing formulations. Graphical abstract The effect of particle size on Bcl2/Bax ratio and NFκ-B gene expression through the cell surface receptor of ß1- integrin. Bigger nanocarriers induce over-expression of integrin ß1 gene and also lead to an increase in Bcl2/Bax ratio along with a decrease in NFκ-B, unlike the smaller nanocarriers.
Collapse
|
19
|
Hoveizi E, Tavakol S. Therapeutic potential of human mesenchymal stem cells derived beta cell precursors on a nanofibrous scaffold: An approach to treat diabetes mellitus. J Cell Physiol 2018; 234:10196-10204. [PMID: 30387142 DOI: 10.1002/jcp.27689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is an autoimmune and chronic disorder that is rapidly expanding worldwide due to increasing obesity. In the current study, we were able to design a reliable 3-dimensional differentiation process of human Wharton's jelly mesenchymal stem cells into pancreatic beta cell precursors (PBCPs) and detected that transplanted PBCPs could improve hyperglycemia in a diabetes-induced model in mice. Polylactic acid/chitosan nanofibrous scaffold was prepared using an electrospinning method. Quantitative real-time reverse transcription-polymerase chain reaction and immunocytochemistry analysis were carried out to assess pancreatic marker expression in the differentiated cells. PBCPs were transplanted under the kidney capsule of diabetic mice that induced streptozotocin injection 14 days before the transplantation. Moreover, an intraperitoneal glucose tolerance test (ipGTT) was carried out 2 and 4 weeks after the transplantation to measure the reaction to a sudden increase of the blood glucose level in the transplanted animals. The results indicated that the expression of SRY (sex determining region Y)-box (Sox17), forkhead box A2 (FoxA2), pancreatic and duodenal homeobox 1 (Pdx1), neurogenin 3 (Ngn3), hepatic nuclear factor 4, alpha (Hnf4α), and NK2 homeobox 2 (Nkx2.2) were increased significantly in the differentiated cells compared with that of the control group. In the current study, the diabetic disease was confirmed by measuring blood glucose and proved by conducting some other behavioral tests. After the PBCPs transplantation in a diabetic model, the ipGTT and hyperglycemia investigation during the determinant times confirmed the disease's significant improvement in the experimental models. In this study, some preclinical data suggested that the transplantation of PBCPs associated with appropriate nanofiber scaffold can be utilized for the treatment of diabetes models. In addition, studies are required to elucidate the molecular mechanism of PBCPs acting in diabetes models before being used for patients with diabetes.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Shen X, Yeung HT, Lai KO. Application of Human-Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Dev Neurobiol 2018; 79:20-35. [PMID: 30304570 DOI: 10.1002/dneu.22644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Synapses are the basic structural and functional units for information processing and storage in the brain. Their diverse properties and functions ultimately underlie the complexity of human behavior. Proper development and maintenance of synapses are essential for normal functioning of the nervous system. Disruption in synaptogenesis and the consequent alteration in synaptic function have been strongly implicated to cause neurodevelopmental disorders such as autism spectrum disorders (ASDs) and schizophrenia (SCZ). The introduction of human-induced pluripotent stem cells (hiPSCs) provides a new path to elucidate disease mechanisms and potential therapies. In this review, we will discuss the advantages and limitations of using hiPSC-derived neurons to study synaptic disorders. Many mutations in genes encoding for proteins that regulate synaptogenesis have been identified in patients with ASDs and SCZ. We use Methyl-CpG binding protein 2 (MECP2), SH3 and multiple ankyrin repeat domains 3 (SHANK3) and Disrupted in schizophrenia 1 (DISC1) as examples to illustrate the promise of using hiPSCs as cellular models to elucidate the mechanisms underlying disease-related synaptopathy.
Collapse
Affiliation(s)
- Xuting Shen
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Hoi Ting Yeung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kwok-On Lai
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
21
|
Hoveizi E, Mohammadi T, Moazedi AA, Zamani N, Eskandary A. Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy 2018; 20:964-973. [PMID: 30025963 DOI: 10.1016/j.jcyt.2018.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/18/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND AIMS Degeneration of the central nerve system, particularly in Alzheimer's disease, is a burden on society, and despite years of research, there is no effective treatment. Cell therapy appears to be an option that is of growing interest in neural studies. The main aim of this study was to investigate the histological and physiological effects of transplantation the neuron-like cell (NLC)-derived mouse embryonic stem cells (mESCs) on the repair of brain lesions in an Alzheimer's animal model (AM) in rats. METHODS Behavioral experiments were conducted in the light hours in a Y-shaped maze device. Animals were randomly divided into five groups, with seven rats per group. The nucleus basalis of Meynert (NBM) was destroyed bilaterally with an electrical lesion (0.5 mA for 3 s). One week after the bilateral lesion of the NBM, the differentiated NLCs (0.1 mL) were injected with stereotaxic surgery using a Hamilton syringe at NBM coordinates, and behavioral and histological tests were performed by the Y-maze task and hematoxylin and eosin staining after five weeks of the lesion. Also, differentiated cells detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis and fluorescent immunostaining. RESULTS The expression of neuronal markers including Nestin, Map2, NF-H, Tuj-1, GFAP and Olig-2 was surveyed by using the immunocytochemistry and qRT-PCR methods, and the results confirmed that the genes in question were expressed significantly more compared than the control sample. Five weeks after the cell transplantation in the AM, morphological and physiological investigation during the determination period confirmed improved disease state in the tested models. CONCLUSIONS It should be noted that by improving the neuronal connectivity in AM rat brains, the transplanted NLCs rescue Alzheimer's cognition. This research has presented some preclinical evidence that showed NLCs transplantation can be used for AM treatment.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Tayebeh Mohammadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ahmad Ali Moazedi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Azade Eskandary
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
22
|
Lin C, Liu C, Zhang L, Huang Z, Zhao P, Chen R, Pang M, Chen Z, He L, Luo C, Rong L, Liu B. Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering. Int J Mol Med 2017; 41:697-708. [PMID: 29207038 PMCID: PMC5752187 DOI: 10.3892/ijmm.2017.3299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering is a rapidly growing technological area for the regeneration and reconstruction of damage to the central nervous system. By combining seed cells with appropriate biomaterial scaffolds, tissue engineering has the ability to improve nerve regeneration and functional recovery. In the present study, mouse induced pluripotent stem cells (iPSCs) were generated from mouse embryonic fibroblasts (MEFs) with the non-integrating episomal vectors pCEP4-EO2S-ET2K and pCEP4-miR-302-367 cluster, and differentiated into neural stem cells (NSCs) as transplanting cells. Electrospinning was then used to fabricate randomly oriented poly(L-lactic acid) (PLLA) nanofibers and aligned PLLA nanofibers and assessed their cytocompatibility and neurite guidance effect with iPSC-derived NSCs (iNSCs). The results demonstrated that non-integrated iPSCs were effectively generated and differentiated into iNSCs. PLLA nanofiber scaffolds were able to promote the adhesion, growth, survival and proliferation of the iNSCs. Furthermore, compared with randomly oriented PLLA nanofibers, the aligned PLLA nanofibers greatly directed neurite outgrowth from the iNSCs and significantly promoted neurite growth along the nanofibrous alignment. Overall, these findings indicate the feasibility of using PLLA nanofiber scaffolds in combination with iNSCs in vitro and support their potential for use in nerve tissue engineering.
Collapse
Affiliation(s)
- Chengkai Lin
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chang Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi Huang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Peipei Zhao
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ruiqiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhenxiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liumin He
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chunxiao Luo
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
23
|
Wang S, Guan S, Xu J, Li W, Ge D, Sun C, Liu T, Ma X. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering. Biomater Sci 2017; 5:2024-2034. [DOI: 10.1039/c7bm00633k] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shuping Wang
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Shui Guan
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Jianqiang Xu
- School of Life Science and Medicine
- Dalian University of Technology
- Panjin 124221
- People's Republic of China
| | - Wenfang Li
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Dan Ge
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Changkai Sun
- Department of Biomedical Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Xuehu Ma
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| |
Collapse
|
24
|
The Role of Stem Cells in the Treatment of Cerebral Palsy: a Review. Mol Neurobiol 2016; 54:4963-4972. [PMID: 27520277 DOI: 10.1007/s12035-016-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Cerebral palsy (CP) is a neuromuscular disease due to injury in the infant's brain. The CP disorder causes many neurologic dysfunctions in the patient. Various treatment methods have been used for the management of CP disorder. However, there has been no absolute cure for this condition. Furthermore, some of the procedures which are currently used for relief of symptoms in CP cause discomfort or side effects in the patient. Recently, stem cell therapy has attracted a huge interest as a new therapeutic method for treatment of CP. Several investigations in animal and human with CP have demonstrated positive potential of stem cell transplantation for the treatment of CP disorder. The ultimate goal of this therapeutic method is to harness the regenerative capacity of the stem cells causing a formation of new tissues to replace the damaged tissue. During the recent years, there have been many investigations on stem cell therapy. However, there are still many unclear issues regarding this method and high effort is needed to create a technology as a perfect treatment. This review will discuss the scientific background of stem cell therapy for cerebral palsy including evidences from current clinical trials.
Collapse
|