1
|
Liu F, Li Z, Jing J, Zhang X. A Golgi-targeted fluorescent probe for monitoring polarity dynamic during programmed cell death. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124810. [PMID: 39002471 DOI: 10.1016/j.saa.2024.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Programmed cell death (PCD) is a controlled form of cell death and it plays an essential role in maintaining homeostasis. Golgi apparatus works as the hotspot during the early event of PCD and Golgi polarity, a vital microenvironment factor, can be regarded as an indicator of physiological status. Combined Golgi-targeted group phenylsulfonamide as electron acceptor group and triphenylamine as electron donor group, a novel Golgi-targeted fluorescent probe GTO had been developed. GTO showed good sensitivity and selectivity to polarity and its remarkable photostability makes it potentially useful for long-term cellular monitoring. In practice, GTO demonstrated good cell permeability and Golgi targeting capabilities. According to our results, GTO was applied to reveal the polarity increase during the early event of PCD and the encouraging results illustrated that GTO was an imaging tool for monitoring polarity in Golgi apparatus and the exploration in early diagnosis and drug discovery.
Collapse
Affiliation(s)
- Feiran Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zichun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
2
|
Ahuja N, Gupta S, Arora R, Bhagyaraj E, Tiwari D, Kumar S, Gupta P. Nr1h4 and Thrb ameliorate ER stress and provide protection in the MPTP mouse model of Parkinson's. Life Sci Alliance 2024; 7:e202302416. [PMID: 38609183 PMCID: PMC11015051 DOI: 10.26508/lsa.202302416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Elevated ER stress has been linked to the pathogenesis of several disease conditions including neurodegeneration. In this study, we have holistically determined the differential expression of all the nuclear receptors (NRs) in the presence of classical ER stress inducers. Activation of Nr1h4 and Thrb by their cognate ligands (GW4064 and T3) ameliorates the tunicamycin (TM)-induced expression of ER stress genes. A combination of both ligands is effective in mitigating cell death induced by TM. Further exploration of their protective effects in the Parkinson's disease (PD) model shows that they reduce MPP+-induced dissipation of mitochondrial membrane potential and ROS generation in an in vitro PD model in neuronal cells. Furthermore, the generation of an experimental murine PD model reveals that simultaneous treatment of GW4064 and T3 protects mice from ER stress, dopaminergic cell death, and functional deficits in the MPTP mouse model of PD. Thus, activation of Nr1h4 and Thrb by their respective ligands plays an indispensable role in ER stress amelioration and mounts protective effects in the MPTP mouse model of PD.
Collapse
Affiliation(s)
- Nancy Ahuja
- https://ror.org/055rjs771 Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Shalini Gupta
- https://ror.org/055rjs771 Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Rashmi Arora
- https://ror.org/055rjs771 Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
- https://ror.org/053rcsq61 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ella Bhagyaraj
- https://ror.org/055rjs771 Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Drishti Tiwari
- https://ror.org/055rjs771 Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Sumit Kumar
- https://ror.org/055rjs771 Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Pawan Gupta
- https://ror.org/055rjs771 Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
- https://ror.org/053rcsq61 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Miquel-Rio L, Sarriés-Serrano U, Sancho-Alonso M, Florensa-Zanuy E, Paz V, Ruiz-Bronchal E, Manashirov S, Campa L, Pilar-Cuéllar F, Bortolozzi A. ER stress in mouse serotonin neurons triggers a depressive phenotype alleviated by ketamine targeting eIF2α signaling. iScience 2024; 27:109787. [PMID: 38711453 PMCID: PMC11070602 DOI: 10.1016/j.isci.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.
Collapse
Affiliation(s)
- Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eva Florensa-Zanuy
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sharon Manashirov
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- miCure Therapeutics LTD., Tel-Aviv 6423902, Israel
| | - Leticia Campa
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
5
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
6
|
Hatokova Z, Evinova A, Racay P. STF-083010 an inhibitor of IRE1α endonuclease activity affects mitochondrial respiration and generation of mitochondrial membrane potential. Toxicol In Vitro 2023; 92:105652. [PMID: 37482139 DOI: 10.1016/j.tiv.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/18/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
STF-083010 is an inhibitor of endonuclease activity of inositol requiring-enzyme 1α (IRE1α) that is involved in activation of IRE1α-XBP1 axis of the unfolded protein response after ER stress. STF-083010 was tested as a possible antitumor agent in some previous studies exhibiting the ability either to induce death of tumour cells or to increase sensitivity of tumours cells to other neoplastic agents. STF-083010 exhibits also hepatoprotective effects in different models of liver injury and hepatic steatohepatitis. We have shown that STF-083010 has significant impact on mitochondrial functions that is not dependent on the way of STF-083010 application. We have observed that STF-083010 decrease of both maximal respiration (representing maximal electron transfer capacity of mitochondrial respiratory chain) and spare respiratory capacity after either incubation of the SH-SY5Y cells with STF-083010 or direct addition of STF-083010 to the respiration medium. In addition, we have documented impact of STF-083010 on generation of mitochondrial membrane potential (ΔΨm) that could be a result of decreased mitochondrial substrate level phosphorylation. Finally, increased sensitivity of ΔΨm to uncoupler in the presence of STF-083010 was documented. Our results indicate that STF-083010 has important impact on mitochondrial functions independently of its ability to inhibit endonuclease activity of IRE1α that is involved in activation of IRE1α-XBP1 axis of the unfolded protein response after ER stress. The impact of STF-083010 on mitochondrial functions could be associated with its possible off-target effect.
Collapse
Affiliation(s)
- Zuzana Hatokova
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Slovak Republic
| | - Andrea Evinova
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Slovak Republic
| | - Peter Racay
- Department of Medical Biochemistry JFM CU, JFM CU Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Slovak Republic.
| |
Collapse
|
7
|
Chiu CC, Weng YH, Yeh TH, Lu JC, Chen WS, Li AHR, Chen YL, Wei KC, Wang HL. Deficiency of RAB39B Activates ER Stress-Induced Pro-apoptotic Pathway and Causes Mitochondrial Dysfunction and Oxidative Stress in Dopaminergic Neurons by Impairing Autophagy and Upregulating α-Synuclein. Mol Neurobiol 2023; 60:2706-2728. [PMID: 36715921 DOI: 10.1007/s12035-023-03238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Deletion and missense or nonsense mutation of RAB39B gene cause familial Parkinson's disease (PD). We hypothesized that deletion and mutation of RAB39B gene induce degeneration of dopaminergic neurons by decreasing protein level of functional RAB39B and causing RAB39B deficiency. Cellular model of deletion or mutation of RAB39B gene-induced PD was prepared by knocking down endogenous RAB39B in human SH-SY5Y dopaminergic cells. Transfection of shRNA-induced 90% reduction in RAB39B level significantly decreased viability of SH-SY5Y dopaminergic neurons. Deficiency of RAB39B caused impairment of macroautophagy/autophagy, which led to increased protein levels of α-synuclein and phospho-α-synucleinSer129 within endoplasmic reticulum (ER) and mitochondria. RAB39B deficiency-induced increase of ER α-synuclein and phospho-α-synucleinSer129 caused activation of ER stress, unfolded protein response, and ER stress-induced pro-apoptotic cascade. Deficiency of RAB39B-induced increase of mitochondrial α-synuclein decreased mitochondrial membrane potential and increased mitochondrial superoxide. RAB39B deficiency-induced activation of ER stress pro-apoptotic pathway, mitochondrial dysfunction, and oxidative stress caused apoptotic death of SH-SY5Y dopaminergic cells by activating mitochondrial apoptotic cascade. In contrast to neuroprotective effect of wild-type RAB39B, PD mutant (T168K), (W186X), or (G192R) RAB39B did not prevent tunicamycin- or rotenone-induced increase of neurotoxic α-synuclein and activation of pro-apoptotic pathway. Our results suggest that RAB39B is required for survival and macroautophagy function of dopaminergic neurons and that deletion or PD mutation of RAB39B gene-induced RAB39B deficiency induces apoptotic death of dopaminergic neurons via impairing autophagy function and upregulating α-synuclein.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1St Road, Kweishan, Taoyuan, 333, Taiwan
| | - Wan-Shia Chen
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1St Road, Kweishan, Taoyuan, 333, Taiwan
| | - Allen Han-Ren Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1St Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
8
|
Kang H, Shu W, Yu J, Wang Y, Zhang X, Zhang R, Jing J, Zhang X. Endoplasmic Reticulum-Targeted Two-Photon Fluorescent Probe for the Detection of Nitroxyl in a Parkinson's Disease Model. Anal Chem 2023; 95:6295-6302. [PMID: 37011139 DOI: 10.1021/acs.analchem.2c05127] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Nitroxyl (HNO) and endoplasmic reticulum (ER) stress are considered to play important effects in the administration of many pathological processes of Parkinson's disease (PD). However, the intricate relationship between the neurotoxicity of HNO and ER stress in the processes of PD is still unknown. To completely comprehend the pathogenic activity of HNO during ER stress and achieve early diagnosis of PD, developing sensitive tools for HNO sensing in vivo is essential. In this work, a two-photon fluorescent probe (KD-HNO) was developed with highly selective and sensitive (7.93 nM) response for HNO in vitro. Then, utilizing KD-HNO, we found that HNO levels were distinctly increased in tunicamycin-stimulated PC12 cells, which are characterized by ER stress and PD features. Most importantly, we detected a considerable increase in HNO levels in the brains of PD-model mice, indicating a positive correlation between PD and HNO levels for the first time. Collectively, these findings revealed that KD-HNO is an excellent tool not only for understanding the biological effects of HNO in pathological processes of PD but also for early PD diagnosis.
Collapse
Affiliation(s)
- Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Jin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunpeng Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoli Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Rubo Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Lin JW, Fu SC, Liu JM, Liu SH, Lee KI, Fang KM, Hsu RJ, Huang CF, Liu KM, Chang KC, Su CC, Chen YW. Chlorpyrifos induces neuronal cell death via both oxidative stress and Akt activation downstream-regulated CHOP-triggered apoptotic pathways. Toxicol In Vitro 2023; 86:105483. [DOI: 10.1016/j.tiv.2022.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
10
|
Endoplasmic Reticulum Stress-Regulated Chaperones as a Serum Biomarker Panel for Parkinson's Disease. Mol Neurobiol 2023; 60:1476-1485. [PMID: 36478320 PMCID: PMC9899193 DOI: 10.1007/s12035-022-03139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Examination of post-mortem brain tissues has previously revealed a strong association between Parkinson's disease (PD) pathophysiology and endoplasmic reticulum (ER) stress. Evidence in the literature regarding the circulation of ER stress-regulated factors released from neurons provides a rationale for investigating ER stress biomarkers in the blood to aid diagnosis of PD. The levels of ER stress-regulated proteins in serum collected from 29 PD patients and 24 non-PD controls were measured using enzyme-linked immunosorbent assays. A panel of four biomarkers, protein disulfide-isomerase A1, protein disulfide-isomerase A3, mesencephalic astrocyte-derived neurotrophic factor, and clusterin, together with age and gender had higher ability (area under the curve 0.64, sensitivity 66%, specificity 57%) and net benefit to discriminate PD patients from the non-PD group compared with other analyzed models. Addition of oligomeric and total α-synuclein to the model did not improve the diagnostic power of the biomarker panel. We provide evidence that ER stress-regulated proteins merit further investigation for their potential as diagnostic biomarkers of PD.
Collapse
|
11
|
Wood SA, Hains PG, Muller A, Hill M, Premarathne S, Murtaza M, Robinson PJ, Mellick GD, Sykes AM. Proteomic profiling of idiopathic Parkinson's disease primary patient cells by SWATH-MS. Proteomics Clin Appl 2022; 16:e2200015. [PMID: 35579911 PMCID: PMC9787017 DOI: 10.1002/prca.202200015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. It is generally diagnosed clinically after the irreversible loss of dopaminergic neurons and no general biomarkers currently exist. To gain insight into the underlying cellular causes of PD we aimed to quantify the proteomic differences between healthy control and PD patient cells. EXPERIMENTAL DESIGN Sequential Window Acquisition of all THeoretical Mass Spectra was performed on primary cells from healthy controls and PD patients. RESULTS In total, 1948 proteins were quantified and 228 proteins were significantly differentially expressed in PD patient cells. In PD patient cells, we identified seven significantly increased proteins involved in the unfolded protein response (UPR) and focused on cells with high and low amounts of PDIA6 and HYOU1. We discovered that PD patients with high amounts of PDIA6 and HYOU1 proteins were more sensitive to endoplasmic reticulum stress, in particular to tunicamycin. Data is available via ProteomeXchange with identifier PXD030723. CONCLUSIONS AND CLINICAL RELEVANCE This data from primary patient cells has uncovered a critical role of the UPR in patients with PD and may provide insight to the underlying cellular dysfunctions in these patients.
Collapse
Affiliation(s)
- Stephen A. Wood
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Peter G. Hains
- Cell Signalling UnitChildren's Medical Research InstituteThe University of SydneyWestmeadNSWAustralia
| | | | - Melissa Hill
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Susitha Premarathne
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Mariyam Murtaza
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Phillip J. Robinson
- Cell Signalling UnitChildren's Medical Research InstituteThe University of SydneyWestmeadNSWAustralia
| | - George D. Mellick
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Alex M. Sykes
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| |
Collapse
|
12
|
Kukharsky MS, Everett MW, Lytkina OA, Raspopova MA, Kovrazhkina EA, Ovchinnikov RK, Antohin AI, Moskovtsev AA. Protein Homeostasis Dysregulation in Pathogenesis of Neurodegenerative Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893322060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
NMDA and AMPA Receptors at Synapses: Novel Targets for Tau and α-Synuclein Proteinopathies. Biomedicines 2022; 10:biomedicines10071550. [PMID: 35884851 PMCID: PMC9313101 DOI: 10.3390/biomedicines10071550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
A prominent feature of neurodegenerative diseases is synaptic dysfunction and spine loss as early signs of neurodegeneration. In this context, accumulation of misfolded proteins has been identified as one of the most common causes driving synaptic toxicity at excitatory glutamatergic synapses. In particular, a great effort has been placed on dissecting the interplay between the toxic deposition of misfolded proteins and synaptic defects, looking for a possible causal relationship between them. Several studies have demonstrated that misfolded proteins could directly exert negative effects on synaptic compartments, altering either the function or the composition of pre- and post-synaptic receptors. In this review, we focused on the physiopathological role of tau and α-synuclein at the level of postsynaptic glutamate receptors. Tau is a microtubule-associated protein mainly expressed by central nervous system neurons where it exerts several physiological functions. In some cases, it undergoes aberrant post-translational modifications, including hyperphosphorylation, leading to loss of function and toxic aggregate formation. Similarly, aggregated species of the presynaptic protein α-synuclein play a key role in synucleinopathies, a group of neurological conditions that includes Parkinson’s disease. Here, we discussed how tau and α-synuclein target the postsynaptic compartment of excitatory synapses and, specifically, AMPA- and NMDA-type glutamate receptors. Notably, recent studies have reported their direct functional interactions with these receptors, which in turn could contribute to the impaired glutamatergic transmission observed in many neurodegenerative diseases.
Collapse
|
14
|
Plasma-derived extracellular vesicles transfer microRNA-130a-3p to alleviate myocardial ischemia/reperfusion injury by targeting ATG16L1. Cell Tissue Res 2022; 389:99-114. [PMID: 35503135 DOI: 10.1007/s00441-022-03605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles (EVs) are implicated in myocardial ischemia/reperfusion (I/R) injury as modulators by shuttling diverse cargoes, including microRNAs (miRNAs). The current study was initiated to unravel the potential involvement of plasma-derived EVs carrying miR-130a-3p on myocardial I/R injury. Rats were induced with moderate endoplasmic reticulum stress, followed by isolation of plasma-derived EVs. Then, an I/R rat model and hypoxia/reoxygenation (H/R) cardiomyoblast model were established to simulate a myocardial I/R injury environment where miR-130a-3p was found to be abundantly expressed. miR-130a-3p was confirmed to target and negatively regulate autophagy-related 16-like 1 (ATG16L1) in cardiomyoblasts. Based on a co-culture system, miR-130a-3p delivered by EVs derived from plasma protected H/R-exposed cardiomyoblasts against H/R-induced excessive cardiomyoblast autophagy, inflammation, and damage, improving cardiac dysfunction as well as myocardial I/R-induced cardiac dysfunction and tissue injury. The mechanism underlying the functional role of EVs-loaded miR-130a-3p was found to be dependent on its targeting relation with ATG16L1. The protective action of EV-carried miR-130a-3p was further re-produced in a rat model serving as in vivo validation as evidenced by improved cardiac function, tissue injury, myocardial fibrosis, and myocardial infarction. Collectively, miR-130a-3p shuttled by plasma-derived EVs was demonstrated to alleviate excessive cardiomyoblast autophagy and improve myocardial I/R injury.
Collapse
|
15
|
Li YY, Zhou TT, Zhang Y, Chen NH, Yuan YH. Distribution of α-Synuclein Aggregation in the Peripheral Tissues. Neurochem Res 2022; 47:3627-3634. [PMID: 35348944 DOI: 10.1007/s11064-022-03586-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease mainly characterized by movement disorders and other non-motor symptoms, including the loss of dopaminergic neurons in the substantia nigra parts. Abnormal α-synuclein aggregation in the brain is closely associated with the loss of dopaminergic neurons. α-synuclein can propagate in the central nervous system (CNS) and periphery under pathological conditions. Many researches have focused on its aggregation and distribution in the CNS and explored its relationship with PD. But in recent years, the distribution of α-synuclein in peripheral tissues have been paid much attention. This review summarized the distribution of α-synuclein in the choroid plexus, blood, saliva, gastrointestine and other tissues, and discussed the potential mechanism of α-synuclein aggregation, providing a basis for the early diagnosis and intervention of PD.
Collapse
Affiliation(s)
- Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tian-Tian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, I Xiannongtan Street, Xicheng District, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, I Xiannongtan Street, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
16
|
Evinova A, Hatokova Z, Tatarkova Z, Brodnanova M, Dibdiakova K, Racay P. Endoplasmic reticulum stress induces mitochondrial dysfunction but not mitochondrial unfolded protein response in SH-SY5Y cells. Mol Cell Biochem 2022; 477:965-975. [DOI: 10.1007/s11010-021-04344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 12/06/2022]
|
17
|
Kang S, Piao Y, Kang YC, Lim S, Pak YK. DA-9805 protects dopaminergic neurons from endoplasmic reticulum stress and inflammation. Biomed Pharmacother 2022; 145:112389. [PMID: 34775235 DOI: 10.1016/j.biopha.2021.112389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disease with damages to mitochondria and endoplasmic reticulum (ER), followed by neuroinflammation. We previously reported that a triple herbal extract DA-9805 in experimental PD toxin-models had neuroprotective effects by alleviating mitochondrial damage and oxidative stress. In the present study, we investigated whether DA-9805 could suppress ER stress and neuroinflammation in vitro and/or in vivo. Pre-treatment with DA-9805 (1 μg/ml) attenuated upregulation of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase-3 in SH-SY5Y neuroblastoma cells treated with thapsigargin (1 µg/ml) or tunicamycin (2 µg/ml). In addition, DA-9805 prevented the production of IL-1β, IL-6, TNF-α and nitric oxide through inhibition of NF-κB activation in BV2 microglial cells stimulated with lipopolysaccharides (LPS). Intraperitoneal injection of LPS (10 mg/kg) into mice can induce acute neuroinflammation and dopaminergic neuronal cell death. Oral administration of DA-9805 (10 or 30 mg/kg/day for 3 days before LPS injection) prevented loss of dopaminergic neurons and activation of microglia and astrocytes in the substantia nigra in LPS-injected mouse models. Taken together, these results indicate that DA-9805 can effectively prevent ER stress and neuroinflammation, suggesting that DA-9805 is a multitargeting and disease-modifying therapeutic candidate for PD.
Collapse
Affiliation(s)
- Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ying Piao
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Young Cheol Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Suyeol Lim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
18
|
Santiago-Lopez AJ, Berglund K, Gross RE, Gutekunst CAN. Kinetic monitoring of neuronal stress response to proteostasis dysfunction. Mol Cell Neurosci 2022; 118:103682. [PMID: 34800621 PMCID: PMC8770608 DOI: 10.1016/j.mcn.2021.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023] Open
Abstract
Proteostasis dysfunction and activation of the unfolded protein response (UPR) are characteristic of all major neurodegenerative diseases. Nevertheless, although the UPR and proteostasis dysfunction has been studied in great detail in model organisms like yeast and mammalian cell lines, it has not yet been examined in neurons. In this study, we applied a viral vector-mediated expression of a reporter protein based on a UPR transcription factor, ATF4, and time-lapse fluorescent microscopy to elucidate how mouse primary neurons respond to pharmacological and genetic perturbations to neuronal proteostasis. In in vitro models of endoplasmic reticulum (ER) stress and proteasome inhibition, we used the ATF4 reporter to reveal the time course of the neuronal stress response relative to neurite degeneration and asynchronous cell death. We showed how potential neurodegenerative disease co-factors, ER stress and mutant α-synuclein overexpression, impacted neuronal stress response and overall cellular health. This work therefore introduces a viral vector-based reporter that yields a quantifiable readout suitable for non-cell destructive kinetic monitoring of proteostasis dysfunction in neurons by harnessing ATF4 signaling as part of the UPR activation.
Collapse
Affiliation(s)
- Angel J Santiago-Lopez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America; Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, United States of America; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Claire-Anne N Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
19
|
Wang P, Ye Y. Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life (Basel) 2021; 11:life11090938. [PMID: 34575087 PMCID: PMC8471224 DOI: 10.3390/life11090938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are aging-associated chronic pathological conditions affecting primarily neurons in humans. Inclusion bodies containing misfolded proteins have emerged as a common pathologic feature for these diseases. In many cases, misfolded proteins produced by a neuron can be transmitted to another neuron or a non-neuronal cell, leading to the propagation of disease-associated pathology. While undergoing intercellular transmission, misfolded proteins released from donor cells can often change the physiological state of recipient cells. Accumulating evidence suggests that astrocytes are highly sensitive to neuron-originated proteotoxic insults, which convert them into an active inflammatory state. Conversely, activated astrocytes can release a plethora of factors to impact neuronal functions. This review summarizes our current understanding of the complex molecular interplays between astrocyte and neuron, emphasizing on Tau and α-synuclein (α-syn), the disease-driving proteins for Alzheimer's and Parkinson's diseases, respectively.
Collapse
Affiliation(s)
| | - Yihong Ye
- Correspondence: ; Tel.: +1-301-594-0845; Fax: +1-301-496-0201
| |
Collapse
|
20
|
Lebedeva IV, Wagner MV, Sahdeo S, Lu YF, Anyanwu-Ofili A, Harms MB, Wadia JS, Rajagopal G, Boland MJ, Goldstein DB. Precision genetic cellular models identify therapies protective against ER stress. Cell Death Dis 2021; 12:770. [PMID: 34354042 PMCID: PMC8342410 DOI: 10.1038/s41419-021-04045-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022]
Abstract
Rare monogenic disorders often share molecular etiologies involved in the pathogenesis of common diseases. Congenital disorders of glycosylation (CDG) and deglycosylation (CDDG) are rare pediatric disorders with symptoms that range from mild to life threatening. A biological mechanism shared among CDG and CDDG as well as more common neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, is endoplasmic reticulum (ER) stress. We developed isogenic human cellular models of two types of CDG and the only known CDDG to discover drugs that can alleviate ER stress. Systematic phenotyping confirmed ER stress and identified elevated autophagy among other phenotypes in each model. We screened 1049 compounds and scored their ability to correct aberrant morphology in each model using an agnostic cell-painting assay based on >300 cellular features. This primary screen identified multiple compounds able to correct morphological phenotypes. Independent validation shows they also correct cellular phenotypes and alleviate each of the ER stress markers identified in each model. Many of the active compounds are associated with microtubule dynamics, which points to new therapeutic opportunities for both rare and more common disorders presenting with ER stress, such as Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle V Wagner
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Sunil Sahdeo
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Matthew B Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jehangir S Wadia
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | | | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Ham S, Yun SP, Kim H, Kim D, Seo BA, Kim H, Shin JY, Dar MA, Lee GH, Lee YI, Kim D, Kim S, Kweon HS, Shin JH, Ko HS, Lee Y. Amyloid-like oligomerization of AIMP2 contributes to α-synuclein interaction and Lewy-like inclusion. Sci Transl Med 2021; 12:12/569/eaax0091. [PMID: 33177178 DOI: 10.1126/scitranslmed.aax0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Lewy bodies are pathological protein inclusions present in the brain of patients with Parkinson's disease (PD). These inclusions consist mainly of α-synuclein with associated proteins, such as parkin and its substrate aminoacyl transfer RNA synthetase complex-interacting multifunctional protein-2 (AIMP2). Although AIMP2 has been suggested to be toxic to dopamine neurons, its roles in α-synuclein aggregation and PD pathogenesis are largely unknown. Here, we found that AIMP2 exhibits a self-aggregating property. The AIMP2 aggregate serves as a seed to increase α-synuclein aggregation via specific and direct binding to the α-synuclein monomer. The coexpression of AIMP2 and α-synuclein in cell cultures and in vivo resulted in the rapid formation of α-synuclein aggregates with a corresponding increase in toxicity. Moreover, accumulated AIMP2 in mouse brain was largely redistributed to insoluble fractions, correlating with the α-synuclein pathology. Last, we found that α-synuclein preformed fibril (PFF) seeding, adult Parkin deletion, or oxidative stress triggered a redistribution of both AIMP2 and α-synuclein into insoluble fraction in cells and in vivo. Supporting the pathogenic role of AIMP2, AIMP2 knockdown ameliorated the α-synuclein aggregation and dopaminergic cell death in response to PFF or 6-hydroxydopamine treatment. Together, our results suggest that AIMP2 plays a pathological role in the aggregation of α-synuclein in mice. Because AIMP2 insolubility and coaggregation with α-synuclein have been seen in the PD Lewy body, targeting pathologic AIMP2 aggregation might be useful as a therapeutic strategy for neurodegenerative α-synucleinopathies.
Collapse
Affiliation(s)
- Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.,ToolGen Inc., Seoul 08501, Republic of Korea
| | - Seung Pil Yun
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Donghoon Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Am Seo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heejeong Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Jeong-Yong Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Mohamad Aasif Dar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Yun Il Lee
- Well Aging Research Center, DGIST, Daegu 42988, Republic of Korea.,Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu 42988, Republic of Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Han Seok Ko
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.
| |
Collapse
|
22
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Minaei A, Sarookhani MR, Haghdoost-Yazdi H, Rajaei F. Hydrogen sulfide attenuates induction and prevents progress of the 6-hydroxydopamine-induced Parkinsonism in rat through activation of ATP-sensitive potassium channels and suppression of ER stress. Toxicol Appl Pharmacol 2021; 423:115558. [PMID: 33961902 DOI: 10.1016/j.taap.2021.115558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Studies argue in favor of hydrogen sulfide (H2S) as the next potent therapeutic agent for neurodegenerative diseases. In present study, we investigated the effect of long term treatment with NaHS (as donor of H2S) on induction and progress of the 6-hydroxydopamine (6-OHDA) -induced Parkinsonism in rat. METHODS The 6-OHDA was injected into medial forebrain bundle of right hemisphere by stereotaxic surgery. Behavioral tests and treatments were carried out to eight weeks after the toxin. Immunohistochemistry and western blotting were carried out to evaluate the survival of tyrosine hydroxylase (TH) -positive neurons in substantia nigra (SN) and also expression of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP), the markers of endoplasmic reticulum (ER) stress, in striatum and SN. RESULTS Eight weeks assessment of the behavioral symptoms showed that NaHS especially at dose of 100 μmol/kg attenuates remarkably induction of the Parkinsonism and prevents its progress. NaHS also increased the survival of TH- positive neurons and suppressed 6-OHDA- induced overexpression of GRP78 and CHOP. Blockade of ATP-sensitive potassium (K-ATP) channels with glibenclamide (Glib) prevented markedly the effect of NaHS on both the induction phase and survival of TH- positive neurons. But Glib did not affect the preventing effect of NaHS on the progress phase and its suppressing effect on the overexpression of ER stress markers. CONCLUSION H2S attenuates induction of the 6-OHDA- induced Parkinsonism and also increases the survival of dopaminergic neurons through activation of K-ATP channels. H2S also prevents progress of the Parkinsonism probably through suppression of ER stress.
Collapse
Affiliation(s)
- Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Reza Sarookhani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
24
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
25
|
Zhang C, Hu J, Wang X, Wang Y, Guo M, Zhang X, Wu Y. Avian reovirus infection activate the cellular unfold protein response and induced apoptosis via ATF6-dependent mechanism. Virus Res 2021; 297:198346. [PMID: 33741393 DOI: 10.1016/j.virusres.2021.198346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/10/2021] [Accepted: 02/12/2021] [Indexed: 11/18/2022]
Abstract
Avian reovirus (ARV) infection induced apoptosis in vitro and vivo; nevertheless, the intracellular molecular mechanisms have not been sufficiently revealed. In the previous studies, there have been shown that cellular apoptosis caused by ARV were related with GRP78/IRE1/XBP1 pathway. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) are core molecules in unfold protein response (UPR) and play critical role in ER stress related apoptosis, as well as downstream regulation factors, as Caspase-12 and C/EBP homologous protein (CHOP). In this study, we investigated with a focus on the contribution of UPR related signal pathways in the mechanism of ARV mediated apoptosis. Our results showed that the key molecules of UPR pathways proteins, ATF6, PERK and IRE1 as well as Caspase-12 and cleaved-Caspase-3 expression significant increased both in transcript and protein level in ARV infected cultured Vero cells. In the same time, the ARV induces apoptosis was observed by flow cytometric analysis. Further study revealed that when inhibit the UPR effect by 4PBA pretreated or knockdown of ATF6 by lentivirus mediated shRNA abolished the activation effect of UPR, Caspase-12, cleaved-Caspase-3 activation, as well as the apoptosis induction by ARV infection. The present study provides mechanistic insights into that UPR particular ATF6 played critical roles and works upstream of caspase in the process of cellular apoptosis induced by ARV infection.
Collapse
Affiliation(s)
- Chengcheng Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jiashu Hu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Xiuling Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yuyang Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Mengjiao Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Xiaorong Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yantao Wu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
26
|
Wang X, Ding D, Wu L, Jiang T, Wu C, Ge Y, Guo X. PHB blocks endoplasmic reticulum stress and apoptosis induced by MPTP/MPP + in PD models. J Chem Neuroanat 2021; 113:101922. [PMID: 33581266 DOI: 10.1016/j.jchemneu.2021.101922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/27/2023]
Abstract
Ample empirical evidence suggests that mitochondrial dysfunction and endoplasmic reticulum (ER) stress play a crucial role in the pathogenesis of Parkinson's disease (PD). Prohibitin (PHB), a mitochondrial inner-membrane protein involved in mitochondrial homeostasis and function, may be involved in the pathogenesis of PD. We investigated the functional role of PHB in mitochondrial biogenesis and ER stress in methyl-4-phenylpyridinium (MPP +)-induced in vivo and in vitro models of PD. The overexpression of PHB in SH-SY5Y cells block ed cell death and the apoptosis induced by MPP + incubation. PHB also block ed the activation of ER stress markers, including glucose-regulated protein 78, while increasing the expression of Xbox- binding protein 1 and caspase-12. Moreover, the intracerebroventricular administration of the PHB overexpression vector greatly block ed motor dysfunction and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurodegeneration in the mouse model of PD. The production of reactive oxygen species, ER stress, and autophagic stress induced by MPTP were also significantly block ed in PD mice overexpressing PHB. Our results suggest that PHB blocks the dopaminergic-neuron depletion by preserving mitochondrial function and inhibiting ER stress. The genetic manipulation of PHB may feature potential as a treatment for PD.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Medicine, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, YangZhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Dongyi Ding
- School of Medicine, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, YangZhou 225001, China
| | - Lei Wu
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Tianlin Jiang
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Chenghao Wu
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Yue Ge
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | | |
Collapse
|
27
|
Lee SH, Han YT, Cha DS. Neuroprotective effect of damaurone D in a C. elegans model of Parkinson's disease. Neurosci Lett 2021; 747:135623. [PMID: 33482307 DOI: 10.1016/j.neulet.2021.135623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 01/03/2023]
Abstract
In this study, we evaluated the protective effects of damaurone D (DaD), a dihydropyranoaurone compound, on dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. The results showed that DaD treatment could successfully increase the survival rate of the worms under MPP+ exposure. Additionally, DaD protected against the MPP+-induced neurodegeneration in all eight DA neurons of the worms. Similarly, diminished DA neuronal damage was observed in the DaD-fed transgenic mutant overexpressing tyrosine hydroxylase. In addition, the corresponding behavioral impairment induced by MPP+ was strongly improved in the DaD treated worms, implying DaD has protective properties for DA neuronal function. Then, we further investigated the effect of DaD on α-synuclein aggregation, a key pathogenesis of Parkinson's disease (PD). In this study, DaD reduced the fluorescence signals of transgenic mutants that carried YFP-fused α-synuclein. A similar reduction in expressions of α-synuclein was observed by Western blot. Interestingly, our result from the dot-blot assay demonstrated that the formation of oligomers was significantly attenuated by the DaD treatment. Furthermore, DaD improved the abnormal fat storage and shortened lifespan of the animals with the same genetic background which supports the beneficial action of DaD on the α-synuclein-induced DA neurodegeneration. These results demonstrate that DaD could protect against both chemical- and genetic-induced DA neurodegeneration possibly through the modulation of oxidative stress, DA metabolism, and α-synuclein toxicity. Based on our present findings, we suggest that DaD might have a potential therapeutic role in Parkinson's disease.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Food Engineering, Woosuk University, Jeonbuk, 55338, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, 55338, Republic of Korea.
| |
Collapse
|
28
|
Zarate SM, Pandey G, Chilukuri S, Garcia JA, Cude B, Storey S, Salem NA, Bancroft EA, Hook M, Srinivasan R. Cytisine is neuroprotective in female but not male 6-hydroxydopamine lesioned parkinsonian mice and acts in combination with 17-β-estradiol to inhibit apoptotic endoplasmic reticulum stress in dopaminergic neurons. J Neurochem 2021; 157:710-726. [PMID: 33354763 DOI: 10.1111/jnc.15282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Apoptotic endoplasmic reticulum (ER) stress is a major mechanism for dopaminergic (DA) loss in Parkinson's disease (PD). We assessed if low doses of the partial α4β2 nicotinic acetylcholine receptor agonist, cytisine attenuates apoptotic ER stress and exerts neuroprotection in substantia nigra pars compacta (SNc) DA neurons. Alternate day intraperitoneal injections of 0.2 mg/kg cytisine were administered to female and male mice with 6-hydroxydopamine (6-OHDA) lesions in the dorsolateral striatum, which caused unilateral degeneration of SNc DA neurons. Cytisine attenuated 6-OHDA-induced PD-related behaviors in female, but not in male mice. We also found significant reductions in tyrosine hydroxylase (TH) loss within the lesioned SNc of female, but not male mice. In contrast to female mice, DA neurons within the lesioned SNc of male mice showed a cytisine-induced pathological increase in the nuclear translocation of the pro-apoptotic ER stress protein, C/EBP homologous protein (CHOP). To assess the role of estrogen in cytisine neuroprotection in female mice, we exposed primary mouse DA cultures to either 10 nM 17-β-estradiol and 200 nM cytisine or 10 nM 17-β-estradiol alone. 17-β-estradiol reduced expression of CHOP, whereas cytisine exposure reduced 6-OHDA-mediated nuclear translocation of two other ER stress proteins, activating transcription factor 6 and x-box-binding protein 1, but not CHOP. Taken together, these data show that cytisine and 17-β-estradiol work in combination to inhibit all three arms (activating transcription factor 6, x-box-binding protein 1, and CHOP) of apoptotic ER stress signaling in DA neurons, which can explain the neuroprotective effect of low-dose cytisine in female mice.
Collapse
Affiliation(s)
- Sara M Zarate
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Gauri Pandey
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sunanda Chilukuri
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Jose A Garcia
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Brittany Cude
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Shannon Storey
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Nihal A Salem
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Eric A Bancroft
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Michelle Hook
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| |
Collapse
|
29
|
da Costa CA, Manaa WE, Duplan E, Checler F. The Endoplasmic Reticulum Stress/Unfolded Protein Response and Their Contributions to Parkinson's Disease Physiopathology. Cells 2020; 9:cells9112495. [PMID: 33212954 PMCID: PMC7698446 DOI: 10.3390/cells9112495] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial age-related movement disorder in which defects of both mitochondria and the endoplasmic reticulum (ER) have been reported. The unfolded protein response (UPR) has emerged as a key cellular dysfunction associated with the etiology of the disease. The UPR involves a coordinated response initiated in the endoplasmic reticulum that grants the correct folding of proteins. This review gives insights on the ER and its functioning; the UPR signaling cascades; and the link between ER stress, UPR activation, and physiopathology of PD. Thus, post-mortem studies and data obtained by either in vitro and in vivo pharmacological approaches or by genetic modulation of PD causative genes are described. Further, we discuss the relevance and impact of the UPR to sporadic and genetic PD pathology.
Collapse
|
30
|
Kim H, Shin JY, Lee YS, Yun SP, Maeng HJ, Lee Y. Brain Endothelial P-Glycoprotein Level Is Reduced in Parkinson's Disease via a Vitamin D Receptor-Dependent Pathway. Int J Mol Sci 2020; 21:ijms21228538. [PMID: 33198348 PMCID: PMC7696047 DOI: 10.3390/ijms21228538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The progressive neurodegeneration in Parkinson's disease (PD) is accompanied by neuroinflammation and endothelial vascular impairment. Although the vitamin D receptor (VDR) is expressed in both dopamine neurons and brain endothelial cells, its role in the regulation of endothelial biology has not been explored in the context of PD. In a 6-hydroxydopamine (6-OHDA)-induced PD mouse model, we observed reduced transcription of the VDR and its downstream target genes, CYP24 and MDR1a. The 6-OHDA-induced transcriptional repression of these genes were recovered after the VDR ligand-1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment. Similarly, reduced vascular protein expression of P-glycoprotein (P-gp), encoded by MDR1a, after 6-OHDA administration was reversed by 1,25(OH)2D3. Moreover, marked reduction of endothelial P-gp expression with concomitant α-synuclein aggregation was found in a combinatorial AAV-αSyn/αSyn preformed fibril (PFF) injection mouse model and postmortem PD brains. Supporting the direct effect of α-synuclein aggregation on endothelial biology, PFF treatment of human umbilical vein endothelial cells (HUVECs) was sufficient to induce α-synuclein aggregation and repress transcription of the VDR. PFF-induced P-gp downregulation and impaired functional activity in HUVECs completely recovered after 1,25(OH)2D3 treatment. Taken together, our results suggest that a dysfunctional VDR-P-gp pathway could be a potential target for the maintenance of vascular homeostasis in PD pathological conditions.
Collapse
Affiliation(s)
- Hyojung Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
| | - Jeong-Yong Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
| | - Yun-Song Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
| | - Seung Pil Yun
- Department of Pharmacology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea
- Correspondence: (H.-J.M.); (Y.L.); Tel.: +82-32-820-4935 (H.-J.M.); +82-31-299-6194 (Y.L.)
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
- Correspondence: (H.-J.M.); (Y.L.); Tel.: +82-32-820-4935 (H.-J.M.); +82-31-299-6194 (Y.L.)
| |
Collapse
|
31
|
Cota-Coronado J, Sandoval-Ávila S, Gaytan-Dávila Y, Diaz N, Vega-Ruiz B, Padilla-Camberos E, Díaz-Martínez N. New transgenic models of Parkinson's disease using genome editing technology. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Huang J, Qin X, Cai X, Huang Y. Effectiveness of Acupuncture in the Treatment of Parkinson's Disease: An Overview of Systematic Reviews. Front Neurol 2020; 11:917. [PMID: 32973668 PMCID: PMC7482669 DOI: 10.3389/fneur.2020.00917] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background: The effects of acupuncture on Parkinson's disease (PD) outcomes remain unclear. The aim of this overview was to comprehensively evaluate the methodological quality and applicability of the results of systematic reviews (SRs)/meta-analyses (MAs) that examined the use of acupuncture to treat PD. Methods: Eight databases were searched to retrieve SRs/MAs on the use of acupuncture for the treatment of PD. Two reviewers independently screened and extracted the data using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2) checklist to evaluate the methodological quality and using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria to assess the evidence quality of the included reviews. Results: A total of 11 SRs/MAs were included. According to the AMSTAR-2 checklist results, all included SRs/MAs were rated as very-low-quality studies. The GRADE criteria revealed 20 studies with very-low-quality evidence, 9 with low-quality evidence, 3 with moderate-quality evidence, and 0 with high-quality evidence. Descriptive analysis showed that acupuncture appears to be a clinically effective and safe treatment for PD. Conclusions: The use of acupuncture for the treatment of PD may be clinically effective and safe. This conclusion must be interpreted cautiously due to the generally low methodological quality and low quality of evidence of the included studies.
Collapse
Affiliation(s)
- Jinke Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qin
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Newberry RW, Arhar T, Costello J, Hartoularos GC, Maxwell AM, Naing ZZC, Pittman M, Reddy NR, Schwarz DMC, Wassarman DR, Wu TS, Barrero D, Caggiano C, Catching A, Cavazos TB, Estes LS, Faust B, Fink EA, Goldman MA, Gomez YK, Gordon MG, Gunsalus LM, Hoppe N, Jaime-Garza M, Johnson MC, Jones MG, Kung AF, Lopez KE, Lumpe J, Martyn C, McCarthy EE, Miller-Vedam LE, Navarro EJ, Palar A, Pellegrino J, Saylor W, Stephens CA, Strickland J, Torosyan H, Wankowicz SA, Wong DR, Wong G, Redding S, Chow ED, DeGrado WF, Kampmann M. Robust Sequence Determinants of α-Synuclein Toxicity in Yeast Implicate Membrane Binding. ACS Chem Biol 2020; 15:2137-2153. [PMID: 32786289 DOI: 10.1021/acschembio.0c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.
Collapse
Affiliation(s)
- Robert W. Newberry
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Taylor Arhar
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Jean Costello
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - George C. Hartoularos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Alison M. Maxwell
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Zun Zar Chi Naing
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maureen Pittman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nishith R. Reddy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel M. C. Schwarz
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Douglas R. Wassarman
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Taia S. Wu
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Daniel Barrero
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christa Caggiano
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Adam Catching
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Taylor B. Cavazos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laurel S. Estes
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Bryan Faust
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elissa A. Fink
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Miriam A. Goldman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Yessica K. Gomez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - M. Grace Gordon
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laura M. Gunsalus
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nick Hoppe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maru Jaime-Garza
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew C. Johnson
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew G. Jones
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Andrew F. Kung
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Kyle E. Lopez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jared Lumpe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Calla Martyn
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elizabeth E. McCarthy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Lakshmi E. Miller-Vedam
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Erik J. Navarro
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Aji Palar
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jenna Pellegrino
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Wren Saylor
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christina A. Stephens
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jack Strickland
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Hayarpi Torosyan
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Stephanie A. Wankowicz
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel R. Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Garrett Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - Eric D. Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
34
|
Zhao Y, Keshiya S, Perera G, Schramko L, Halliday GM, Dzamko N. LRRK2 kinase inhibitors reduce alpha-synuclein in human neuronal cell lines with the G2019S mutation. Neurobiol Dis 2020; 144:105049. [PMID: 32800998 DOI: 10.1016/j.nbd.2020.105049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022] Open
Abstract
Kinase activating missense mutations in leucine-rich repeat kinase 2 (LRRK2) predispose to Parkinson's disease. Consequently, there is much interest in delineating LRRK2 biology, both in terms of gaining further insight into disease causes, and also determining whether or not LRRK2 is a potential Parkinson's disease therapeutic target. Indeed, many potent and selective small molecule inhibitors of LRRK2 have been developed and are currently being used for pre-clinical testing in cell and animal models. In the current study, we have obtained fibroblasts from four subjects with the common LRRK2 mutation, G2019S. Fibroblasts were reprogrammed to induced pluripotent stem cells and then to neural stem cells and ultimately neurons. Two clones for each of the human neural cell lines were then chronically treated with and without either of two distinct inhibitors of LRRK2 and effects on toxicity and Parkinson's disease related phenotypes were assessed. Cells with the G2019S mutation had a propensity to accumulate the pathological Parkinson's disease protein α-synuclein. Moreover, α-synuclein accumulation in the G2019S cells was significantly reduced with both LRRK2 inhibitors in seven of the eight cell lines studied. LRRK2 inhibitors also improved the nuclear morphology of G2019S cells and impacted on measures of autophagy and endoplasmic reticulum stress. Lastly, we did not find evidence of inhibitor toxicity under the chronic treatment conditions. These results add to evidence that LRRK2 inhibitors may have utility in the treatment of Parkinson's disease via reducing α-synuclein.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Shikara Keshiya
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Gayathri Perera
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Lauren Schramko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Nicolas Dzamko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
35
|
Krammes L, Hart M, Rheinheimer S, Diener C, Menegatti J, Grässer F, Keller A, Meese E. Induction of the Endoplasmic-Reticulum-Stress Response: MicroRNA-34a Targeting of the IRE1α-Branch. Cells 2020; 9:cells9061442. [PMID: 32531952 PMCID: PMC7348704 DOI: 10.3390/cells9061442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are characterized by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and the unfolded protein response (UPR). Modulating the UPR is one of the major challenges to counteract the development of neurodegenerative disorders and other diseases with affected UPR. Here, we show that miR-34a-5p directly targets the IRE1α branch of the UPR, including the genes BIP, IRE1α, and XBP1. Upon induction of ER stress in neuronal cells, miR-34a-5p overexpression impacts the resulting UPR via a significant reduction in IRE1α and XBP1s that in turn leads to decreased viability, increased cytotoxicity and caspase activity. The possibility to modify the UPR signaling pathway by a single miRNA that targets central genes of the IRE1α branch offers new perspectives for future therapeutic approaches against neurodegeneration.
Collapse
Affiliation(s)
- Lena Krammes
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
- Correspondence: ; Tel.: +49-(0)-6841-1626602; Fax: +49-(0)-6841-1626185
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| | - Stefanie Rheinheimer
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| | - Caroline Diener
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| | - Jennifer Menegatti
- Institute of Virology, Saarland University, 66421 Homburg, Germany; (J.M.); (F.G.)
| | - Friedrich Grässer
- Institute of Virology, Saarland University, 66421 Homburg, Germany; (J.M.); (F.G.)
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany;
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| |
Collapse
|
36
|
Ho RXY, Amraei R, De La Cena KOC, Sutherland EG, Mortazavi F, Stein T, Chitalia V, Rahimi N. Loss of MINAR2 impairs motor function and causes Parkinson's disease-like symptoms in mice. Brain Commun 2020; 2:fcaa047. [PMID: 32954300 PMCID: PMC7425422 DOI: 10.1093/braincomms/fcaa047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease is the second most common human neurodegenerative disease. Motor control impairment represents a key clinical hallmark and primary clinical symptom of the disease, which is further characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of α-synuclein aggregations. We have identified major intrinsically disordered NOTCH2-associated receptor 2 encoded by KIAA1024L, a previously uncharacterized protein that is highly conserved in humans and other species. In this study, we demonstrate that major intrinsically disordered NOTCH2-associated receptor 2 expression is significantly down-regulated in the frontal lobe brain of patients with Lewy body dementia. Major intrinsically disordered NOTCH2-associated receptor 2 is predominantly expressed in brain tissue and is particularly prominent in the midbrain. Major intrinsically disordered NOTCH2-associated receptor 2 interacts with neurogenic locus notch homologue protein 2 and is localized at the endoplasmic reticulum compartments. We generated major intrinsically disordered NOTCH2-associated receptor 2 knockout mouse and demonstrated that the loss of major intrinsically disordered NOTCH2-associated receptor 2 in mouse results in severe motor deficits such as rigidity and bradykinesia, gait abnormalities, reduced spontaneous locomotor and exploratory behaviour, symptoms that are highly similar to those observed in human Parkinson’s spectrum disorders. Analysis of the major intrinsically disordered NOTCH2-associated receptor 2 knockout mice brain revealed significant anomalies in neuronal function and appearance including the loss of tyrosine hydroxylase-positive neurons in the pars compacta, which was accompanied by an up-regulation in α-synuclein protein expression. Taken together, these data demonstrate a previously unknown function for major intrinsically disordered NOTCH2-associated receptor 2 in the pathogenesis of Parkinson’s spectrum disorders.
Collapse
Affiliation(s)
- Rachel Xi-Yeen Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | | | - Evan G Sutherland
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Farzad Mortazavi
- Department of Anatomy and Neurobiology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Thor Stein
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA.,Boston University Alzheimer Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Vipul Chitalia
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
37
|
Wang DX, Chen AD, Wang QJ, Xin YY, Yin J, Jing YH. Protective effect of metformin against rotenone-induced parkinsonism in mice. Toxicol Mech Methods 2020; 30:350-357. [DOI: 10.1080/15376516.2020.1741053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dong-Xin Wang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - An-Di Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Qing-Jun Wang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Science, East China Normal University, Shanghai, PR China
| | - Yue-Yang Xin
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
- Key Laboratory of Preclinical Study for New Drugs of Gansu province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
38
|
Ko KR, Tam NW, Teixeira AG, Frampton JP. SH-SY5Y and LUHMES cells display differential sensitivity to MPP+, tunicamycin, and epoxomicin in 2D and 3D cell culture. Biotechnol Prog 2019; 36:e2942. [PMID: 31756288 DOI: 10.1002/btpr.2942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
Abstract
SH-SY5Y and LUHMES cell lines are widely used as model systems for studying neurotoxicity. Most of the existing data regarding the sensitivity of these cell lines to neurotoxicants have been recorded from cells growing as two-dimensional (2D) cultures on the surface of glass or plastic. With the emergence of 3D culture platforms designed to better represent native tissue, there is a growing need to compare the toxicology of neurons grown in 3D environments to those grown in 2D to better understand the impact that culture environment has on toxicant sensitivity. Here, a simple 3D culture method was used to assess the impact of growth environment on the sensitivity of SH-SY5Y cells and LUHMES cells to MPP+, tunicamycin, and epoxomicin, three neurotoxicants that have been previously used to generate experimental models for studying Parkinson's disease pathogenesis. SH-SY5Y cell viability following treatment with these three toxicants was significantly lower in 2D cultures as compared to 3D cultures. On the contrary, LUHMES cells did not show significant differences between growth conditions for any of the toxicants examined. However, LUHMES cells were more sensitive to MPP+, tunicamycin, and epoxomicin than SH-SY5Y cells. Thus, both the choice of cell line and the choice of growth environment must be considered when interpreting in vitro neurotoxicity data.
Collapse
Affiliation(s)
- Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicky W Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alyne G Teixeira
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
39
|
Liu H, Mei D, Xu P, Wang H, Wang Y. YAP promotes gastric cancer cell survival and migration/invasion via the ERK/endoplasmic reticulum stress pathway. Oncol Lett 2019; 18:6752-6758. [PMID: 31807184 PMCID: PMC6876304 DOI: 10.3892/ol.2019.11049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Yes-associated protein (YAP) has been reported to serve an important role in gastric cancer cell survival and migration. However, the underlying mechanism remains unclear. The aim of present study was to identify the underlying mechanism through which Yap sustains gastric cancer viability and migration. The results of the present study demonstrated that YAP expression was upregulated in gastric cancer MKN-28/74 cells compared with normal gastric GES-1 cells. Functional studies revealed that silencing of YAP inhibited gastric cancer MKN-28/74 cell viability and invasion. Mechanistically, YAP may promote gastric cancer cell survival and migration/invasion by inhibiting the endoplasmic reticulum (ER) stress pathway. In addition, YAP may regulate ER stress by activating the ERK signaling pathway. The results of the present study suggested that YAP may be a tumor promoter in gastric cancer and act through the ERK/ER stress pathway; therefore, YAP may have potential implications for new approaches to gastric cancer therapy.
Collapse
Affiliation(s)
- Haibin Liu
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dong Mei
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Pengcheng Xu
- Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Haisheng Wang
- Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Yan Wang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
40
|
Ham S, Kim H, Yoon JH, Kim H, Song BR, Choi JY, Lee YS, Paek SM, Maeng HJ, Lee Y. Therapeutic Evaluation of Synthetic Peucedanocoumarin III in an Animal Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20215481. [PMID: 31689937 PMCID: PMC6862101 DOI: 10.3390/ijms20215481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/02/2022] Open
Abstract
The motor and nonmotor symptoms of Parkinson’s disease (PD) correlate with the formation and propagation of aberrant α-synuclein aggregation. This protein accumulation is a pathological hallmark of the disease. Our group recently showed that peucedanocoumarin III (PCIII) possesses the ability to disaggregate β sheet aggregate structures, including α-synuclein fibrils. This finding suggests that PCIII could be a therapeutic lead compound in PD treatment. However, the translational value of PCIII and its safety information have never been explored in relevant animal models of PD. Therefore, we first designed and validated a sequence of chemical reactions for the large scale organic synthesis of pure PCIII in a racemic mixture. The synthetic PCIII racemate facilitated clearance of repeated β sheet aggregate (β23), and prevented β23-induced cell toxicity to a similar extent to that of purified PCIII. Given these properties, the synthetic PCIII’s neuroprotective function was assessed in 6-hydroxydopamine (6-OHDA)-induced PD mouse models. The PCIII treatment (1 mg/kg/day) in a 6-OHDA-induced PD mouse model markedly suppressed Lewy-like inclusions and prevented dopaminergic neuron loss. To evaluate the safety profiles of PCIII, high dose PCIII (10 mg/kg/day) was administered intraperitoneally to two-month-old mice. Following 7 days of PCIII treatment, PCIII distributed to various tissues, with substantial penetration into brains. The mice that were treated with high dose PCIII had no structural abnormalities in the major organs or neuroinflammation. In addition, high dose PCIII (10 mg/kg/day) in mice had no adverse impact on motor function. These findings suggest that PCIII has a relatively high therapeutic index. Given the favorable safety features of PCIII and neuroprotective function in the PD mouse model, it may become a promising disease-modifying therapy in PD to regulate pathogenic α-synuclein aggregation.
Collapse
Affiliation(s)
- Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Korea.
| | - Heejeong Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Korea.
| | - Jin-Ha Yoon
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Korea.
| | - Bo Reum Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju Daero 501, Jinju 52828, Gyeongnam, Korea.
| | - Jeong-Yun Choi
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Korea.
| | - Yun-Song Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Korea.
| | - Seung-Mann Paek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju Daero 501, Jinju 52828, Gyeongnam, Korea.
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Korea.
| |
Collapse
|
41
|
Wei C, Yang X, Liu N, Geng J, Tai Y, Sun Z, Mei G, Zhou P, Peng Y, Wang C, Zhang X, Zhang P, Geng Y, Wang Y, Zhang X, Liu X, Zhang Y, Wu F, He X, Zhong H. Tumor Microenvironment Regulation by the Endoplasmic Reticulum Stress Transmission Mediator Golgi Protein 73 in Mice. Hepatology 2019; 70:851-870. [PMID: 30723919 DOI: 10.1002/hep.30549] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) signal in tumor cells activates UPR signaling in neighboring macrophages, which leads to tumor-promoting inflammation by up-regulating UPR target genes and proinflammatory cytokines. However, the molecular basis of this endoplasmic reticulum (ER) stress transmission remains largely unclear. Here, we identified the secreted form of Golgi protein 73 (GP73), a Golgi-associated protein functional critical for hepatocellular carcinoma (HCC) growth and metastasis, is indispensable for ER stress transmission. Notably, ER stressors increased the cellular secretion of GP73. Through GRP78, the secreted GP73 stimulated ER stress activation in neighboring macrophages, which then released cytokines and chemokines involved in the tumor-associated macrophage (TAM) phenotype. Analysis of HCC patients revealed a positive correlation of GP73 with glucose-regulated protein 78 (GRP78) expression and TAM density. High GP73 and CD206 expression was associated with poor prognosis. Blockade of GP73 decreased the density of TAMs, inhibited tumor growth, and prolonged survival in two mouse HCC models. Conclusion: Our findings provide insight into the molecular mechanisms of extracellular GP73 in the amplification and transmission of ER stress signals.
Collapse
Affiliation(s)
- Congwen Wei
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xiaoli Yang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Ning Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China.,Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Jin Geng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, P.R. China
| | - Yanhong Tai
- Department of Pathology, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Zhenyu Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Gangwu Mei
- Wecyte Biotehnology Company, Beijing, P.R. China
| | - Pengyu Zhou
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yumeng Peng
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Chenbin Wang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xiaoli Zhang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Pingping Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yunqi Geng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yujie Wang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xiaotong Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xin Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China.,Department of Colorectal Surgery, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Yanhong Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Feixiang Wu
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Xiang He
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Hui Zhong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| |
Collapse
|
42
|
Baek JH, Mamula D, Tingstam B, Pereira M, He Y, Svenningsson P. GRP78 Level Is Altered in the Brain, but Not in Plasma or Cerebrospinal Fluid in Parkinson's Disease Patients. Front Neurosci 2019; 13:697. [PMID: 31333410 PMCID: PMC6624451 DOI: 10.3389/fnins.2019.00697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Accumulation of misfolded proteins results in cellular stress, and is detected by specific sensors in the endoplasmic reticulum, collectively known as the unfolded protein response (UPR). It has been prominently proposed that the UPR is involved in the pathophysiology of Parkinson's disease (PD). In the present study, the levels of the UPR proteins and mRNA transcripts were quantified in post mortem brain tissue from PD patients and matched controls. The level of a key mediator of the UPR pathway, glucose-regulated protein 78 (GRP78), was significantly decreased in temporal cortex and cingulate gyrus, whereas there were no significant changes in the caudate nucleus, prefrontal, or parietal cortex regions. On the other hand, GRP78 mRNA level was significantly increased in caudate nucleus, cingulate gyrus, prefrontal, and parietal cortex regions. GRP78 protein level was also measured in plasma and cerebrospinal fluid, but there were no differences in these levels between PD patients and control subjects. Furthermore, immunofluorescence labeling of the CD4+ T cells from PD patients showed that GRP78 protein is found in the cytoplasm. However, GRP78 level in PD patients was not significantly different from control subjects. Unlike the previous Lewy body dementia study, the present investigation reports reduced cortical protein, but increased transcript levels of GPR78 in PD. In summary, these data provide further evidence that GRP78 regulation is dysfunctional in the brains of PD patients.
Collapse
Affiliation(s)
- Jean-Ha Baek
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Dejan Mamula
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Beata Tingstam
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcela Pereira
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Yachao He
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
Lang W, Wang J, Ma X, Zhang N, Li H, Cui P, Hao J. Identification of Shared Genes Between Ischemic Stroke and Parkinson's Disease Using Genome-Wide Association Studies. Front Neurol 2019; 10:297. [PMID: 30984102 PMCID: PMC6447678 DOI: 10.3389/fneur.2019.00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/07/2019] [Indexed: 01/06/2023] Open
Abstract
Ischemic stroke (IS) and Parkinson's disease (PD) are two neurological diseases that often strike individuals of advanced age. Although thought of as a disease of old age, PD can occur in younger patients. In many of these cases, genetic mutations underlie the disease. As with PD, stroke can also have a genetic component. Although many of the risk factors for IS are considered to be modifiable, a significant portion is not, suggesting that some of stroke risk factors may have a genetic origin. Large-scale genome-wide association studies (GWAS) have identified several IS and PD gene variants recently. Converging epidemiologic and pathological evidence suggests that IS and PD may be linked. However, it is still unclear whether these two conditions share a common mechanism. Here, we sought to determine the genetic mechanism underlying the possible association between IS and PD. We conducted a multi-step systemic analysis comprising (1) identification of IS and PD variants validated by known GWAS, (2) two separate gene-based tests using Versatile Gene-based Association Study 2 (VEGAS2) and PLINK, (3) a transcriptome-wide association study (TWAS), and (4) analyses of gene expression using an online tool in Gene Expression Omnibus. Our investigation revealed that IS and PD have in common five shared genes: GPX7, LBH, ZCCHC10, DENND2A, and NUDT14, which pass gene-based tests. Functionally, these genes are expressed differentially in IS and PD patients compared to neurologically healthy control subjects. This genetic overlap may provide clues on how IS and PD are linked mechanistically. This new genetic insight into these two diseases may be very valuable for narrowing the focus of future studies on the genetic basis of IS and PD and for developing novel therapies.
Collapse
Affiliation(s)
- Wenjing Lang
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Junjie Wang
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Nong Zhang
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - He Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Pan Cui
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
44
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
45
|
Xu XN, Chen LY, Chen C, Tang YJ, Bai FW, Su C, Zhao XQ. Genome Mining of the Marine Actinomycete Streptomyces sp. DUT11 and Discovery of Tunicamycins as Anti-complement Agents. Front Microbiol 2018; 9:1318. [PMID: 29973921 PMCID: PMC6019454 DOI: 10.3389/fmicb.2018.01318] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Marine actinobacteria are potential producers of various secondary metabolites with diverse bioactivities. Among various bioactive compounds, anti-complement agents have received great interest for drug discovery to treat numerous diseases caused by inappropriate activation of the human complement system. However, marine streptomycetes producing anti-complement agents are still poorly explored. In this study, a marine-derived strain Streptomyces sp. DUT11 showing superior anti-complement activity was focused, and its genome sequence was analyzed. Gene clusters showing high similarities to that of tunicamycin and nonactin were identified, and their corresponding metabolites were also detected. Subsequently, tunicamycin I, V, and VII were isolated from Streptomyces sp. DUT11. Anti-complement assay showed that tunicamycin I, V, VII inhibited complement activation through the classic pathway, whereas no anti-complement activity of nonactin was detected. This is the first time that tunicamycins are reported to have such activity. In addition, genome analysis indicates that Streptomyces sp. DUT11 has the potential to produce novel lassopeptides and lantibiotics. These results suggest that marine Streptomyces are rich sources of anti-complement agents for drug discovery.
Collapse
Affiliation(s)
- Xiao-Na Xu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Liang-Yu Chen
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering, Ministry of Education – Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Videira PAQ, Castro-Caldas M. Linking Glycation and Glycosylation With Inflammation and Mitochondrial Dysfunction in Parkinson's Disease. Front Neurosci 2018; 12:381. [PMID: 29930494 PMCID: PMC5999786 DOI: 10.3389/fnins.2018.00381] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 6.3 million people worldwide. PD is characterized by the progressive degeneration of dopaminergic neurons in the Substantia nigra pars compacta, resulting into severe motor symptoms. The cellular mechanisms underlying dopaminergic cell death in PD are still not fully understood, but mitochondrial dysfunction, oxidative stress and inflammation are strongly implicated in the pathogenesis of both familial and sporadic PD cases. Aberrant post-translational modifications, namely glycation and glycosylation, together with age-dependent insufficient endogenous scavengers and quality control systems, lead to cellular overload of dysfunctional proteins. Such injuries accumulate with time and may lead to mitochondrial dysfunction and exacerbated inflammatory responses, culminating in neuronal cell death. Here, we will discuss how PD-linked protein mutations, aging, impaired quality control mechanisms and sugar metabolism lead to up-regulated abnormal post-translational modifications in proteins. Abnormal glycation and glycosylation seem to be more common than previously thought in PD and may underlie mitochondria-induced oxidative stress and inflammation in a feed-forward mechanism. Moreover, the stress-induced post-translational modifications that directly affect parkin and/or its substrates, deeply impairing its ability to regulate mitochondrial dynamics or to suppress inflammation will also be discussed. Together, these represent still unexplored deleterious mechanisms implicated in neurodegeneration in PD, which may be used for a more in-depth knowledge of the pathogenic mechanisms, or as biomarkers of the disease.
Collapse
Affiliation(s)
- Paula A Q Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Margarida Castro-Caldas
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
47
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 PMCID: PMC5913322 DOI: 10.3389/fnagi.2018.00109] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
48
|
Liu C, Yan DY, Tan X, Ma Z, Wang C, Deng Y, Liu W, Yang TY, Xu ZF, Xu B. Effect of the cross-talk between autophagy and endoplasmic reticulum stress on Mn-induced alpha-synuclein oligomerization. ENVIRONMENTAL TOXICOLOGY 2018; 33:315-324. [PMID: 29193611 DOI: 10.1002/tox.22518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Overexposure to manganese (Mn) has been known to induce alpha-synuclein (α-Syn) oligomerization, which is degraded mainly depending on endoplasmic reticulum stress (ER stress) and autophagy pathways. However, little data reported the cross-talk between ER stress and autophagy on Mn-induced α-Syn oligomerization. To explore the relationship between ER stress and autophagy, we used 4-phenylbutyric acid (4-PBA, the ER stress inhibitor), rapamycin (Rap, autophagy activator) and 3-methyladenine (3-MA, autophagy inhibitor) in mice model of manganism. After 4 weeks of treatment with Mn, both ER stress and autophagy were activated. Exposed to Mn also resulted in α-Syn oligomerization and neuronal cell damage in the brain tissue of mice, which could be relieved by 4-PBA pretreatment. Moreover, when the ER stress was inhibited, the activation of autophagy was also inhibited. Rap pretreatment significantly activated autophagy and decreased α-Syn oligomers. However, 3-MA pretreatment inhibited autophagy resulting in increase of α-Syn oligomers, and compensatorily activated PERK signaling pathway. Our results also demonstrated that the inhibition of autophagy by 3-MA aggravated neuronal cell damage. The findings clearly demonstrated that the cross-talking between autophagy and ER stress might play an important role in the α-Syn oligomerization and neurotoxicity by Mn.
Collapse
Affiliation(s)
- Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Dong-Ying Yan
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xuan Tan
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Tian-Yao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhao-Fa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| |
Collapse
|
49
|
Jiang P, Dickson DW. Parkinson's disease: experimental models and reality. Acta Neuropathol 2018; 135:13-32. [PMID: 29151169 PMCID: PMC5828522 DOI: 10.1007/s00401-017-1788-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive movement disorder of adults and the second most common neurodegenerative disease after Alzheimer's disease. Neuropathologic diagnosis of PD requires moderate-to-marked neuronal loss in the ventrolateral substantia nigra pars compacta and α-synuclein (αS) Lewy body pathology. Nigrostriatal dopaminergic neurodegeneration correlates with the Parkinsonian motor features, but involvement of other peripheral and central nervous system regions leads to a wide range of non-motor features. Nigrostriatal dopaminergic neurodegeneration is shared with other parkinsonian disorders, including some genetic forms of parkinsonism, but many of these disorders do not have Lewy bodies. An ideal animal model for PD, therefore, should exhibit age-dependent and progressive dopaminergic neurodegeneration, motor dysfunction, and abnormal αS pathology. Rodent models of PD using genetic or toxin based strategies have been widely used in the past several decades to investigate the pathogenesis and therapeutics of PD, but few recapitulate all the major clinical and pathologic features of PD. It is likely that new strategies or better understanding of fundamental disease processes may facilitate development of better animal models. In this review, we highlight progress in generating rodent models of PD based on impairments of four major cellular functions: mitochondrial oxidative phosphorylation, autophagy-lysosomal metabolism, ubiquitin-proteasome protein degradation, and endoplasmic reticulum stress/unfolded protein response. We attempt to evaluate how impairment of these major cellular systems contribute to PD and how they can be exploited in rodent models. In addition, we review recent cell biological studies suggesting a link between αS aggregation and impairment of nuclear membrane integrity, as observed during cellular models of apoptosis. We also briefly discuss the role of incompetent phagocytic clearance and how this may be a factor to consider in developing new rodent models of PD.
Collapse
Affiliation(s)
- Peizhou Jiang
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
50
|
Cota-Coronado JA, Sandoval-Ávila S, Gaytan-Dávila YP, Diaz NF, Vega-Ruiz B, Padilla-Camberos E, Díaz-Martínez NE. New transgenic models of Parkinson's disease using genome editing technology. Neurologia 2017; 35:486-499. [PMID: 29196142 DOI: 10.1016/j.nrl.2017.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/13/2017] [Accepted: 08/15/2017] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterised by selective loss of dopaminergic neurons in the substantia nigra pars compacta, which results in dopamine depletion, leading to a number of motor and non-motor symptoms. DEVELOPMENT In recent years, the development of new animal models using nuclease-based genome-editing technology (ZFN, TALEN, and CRISPR/Cas9 nucleases) has enabled the introduction of custom-made modifications into the genome to replicate key features of PD, leading to significant advances in our understanding of the pathophysiology of the disease. CONCLUSIONS We review the most recent studies on this new generation of in vitro and in vivo PD models, which replicate the most relevant symptoms of the disease and enable better understanding of the aetiology and mechanisms of PD. This may be helpful in the future development of effective treatments to halt or slow disease progression.
Collapse
Affiliation(s)
- J A Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - S Sandoval-Ávila
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Y P Gaytan-Dávila
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - N F Diaz
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Ciudad de México, México
| | - B Vega-Ruiz
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - E Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - N E Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México.
| |
Collapse
|