1
|
Wu ZJ, Zhao YY, Hao SJ, Dong BB, Zheng YX, Liu B, Li J. Combining fecal 16 S rRNA sequencing and spinal cord metabolomics analysis to explain the modulatory effect of PPARα on neuropathic pain. Brain Res Bull 2024; 211:110943. [PMID: 38614408 DOI: 10.1016/j.brainresbull.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shu-Jing Hao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bei-Bei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
2
|
Pan HC, Yang CN, Lee WJ, Sheehan J, Wu SM, Chen HS, Lin MH, Shen LW, Lee SH, Shen CC, Pan LY, Liu SH, Sheu ML. Melatonin Enhanced Microglia M2 Polarization in Rat Model of Neuro-inflammation Via Regulating ER Stress/PPARδ/SIRT1 Signaling Axis. J Neuroimmune Pharmacol 2024; 19:11. [PMID: 38530514 DOI: 10.1007/s11481-024-10108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER-stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The functional neurobehavioral evaluations were used for investigation of Melatonin on the neuroinflammation in vivo. Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARδ) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFκB-IKKβ activation in primary microglia. The PPARδ agonist L-165,041 or over-expression of PPARδ plasmid (ov-PPARδ) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of Melatonin showed that the activated site was located at PPARδ (phospho-Thr256-PPARδ). Activated microglia had lowered PPARδ activity as well as the downstream SIRT1 formation via enhancing ER-stress. Melatonin, PPARδ agonist and ov-PPARδ all effectively reversed the above-mentioned effects. Melatonin blocked ER-stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, Melatonin or L-165,041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER-stress-dependent PPARδ/SIRT1 signaling cascade. This treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.
Collapse
Affiliation(s)
- Hung-Chuan Pan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Biotechnology Industrial Management and Innovation, National Chung Hsing University, Taichung, Taiwan
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Sheng-Mao Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Shiu Chen
- Department of Neurosurgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Mao-Hsun Lin
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Li-Wei Shen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Hua Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chang Shen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Liang-Yi Pan
- School of Medicine, Kaohsiung Medical University, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, 250, Kuo Kuang Road, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Böhm A, Lauko V, Dostalova K, Balanova I, Varga I, Bezak B, Jajcay N, Moravcik R, Lazurova L, Slezak P, Mojto V, Kollarova M, Petrikova K, Danova K, Zeman M. In-vitro antiplatelet effect of melatonin in healthy individuals and patients with type 2 diabetes mellitus. J Endocrinol Invest 2023; 46:2493-2500. [PMID: 37148530 PMCID: PMC10632203 DOI: 10.1007/s40618-023-02102-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE The incidence of acute myocardial infarctions (AMI) shows circadian variation typically peaking during morning hours with a decline at night. However, this variation does not occur in patients with diabetes mellitus (DM). The night's decline of AMI may be partially explained by melatonin-related platelet inhibition. Whether this effect is absent in diabetic patients is unknown. The aim was to study the effect of melatonin on in-vitro platelet aggregation in healthy individuals and patients with type 2 DM. METHODS Platelet aggregation was measured in blood samples from healthy individuals (n = 15) and type 2 DM patients (n = 15) using multiple electrode aggregometry. Adenosine diphosphate (ADP), arachidonic acid (ASPI) and thrombin (TRAP) were used as agonists. Aggregability for each subject was tested after adding melatonin in two concentrations. RESULTS In healthy individuals, melatonin inhibited platelet aggregation in both higher (10-5 M) and lower concentrations (10-9 M) induced by ADP, ASPI, and TRAP (p < 0.001, p = 0.002, p = 0.029, respectively). In DM patients, melatonin did not affect platelet aggregation in both concentrations induced by ADP, ASPI, and TRAP. Melatonin decreased platelet aggregation induced by ADP, ASPI, and TRAP significantly more in healthy individuals compared to patients with DM. (p = 0.005, p = 0.045 and p = 0.048, respectively). CONCLUSION Platelet aggregation was inhibited by melatonin in healthy individuals. In-vitro antiplatelet effect of melatonin in type 2 DM patients is significantly attenuated.
Collapse
Affiliation(s)
- A Böhm
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia.
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovakia.
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia.
| | - V Lauko
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - K Dostalova
- Slovak Medical University, Bratislava, Slovakia
| | - I Balanova
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - I Varga
- Cardio-Integra s.r.o., Bratislava, Slovakia
| | - B Bezak
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - N Jajcay
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague 8, Czech Republic
| | - R Moravcik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - L Lazurova
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - P Slezak
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - V Mojto
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - M Kollarova
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - K Petrikova
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
| | - K Danova
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - M Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Xie L, Wu H, Huang X, Yu T. Melatonin, a natural antioxidant therapy in spinal cord injury. Front Cell Dev Biol 2023; 11:1218553. [PMID: 37691830 PMCID: PMC10485268 DOI: 10.3389/fcell.2023.1218553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) is a sudden onset of disruption to the spinal neural tissue, leading to loss of motor control and sensory function of the body. Oxidative stress is considered a hallmark in SCI followed by a series of events, including inflammation and cellular apoptosis. Melatonin was originally discovered as a hormone produced by the pineal gland. The subcellular localization of melatonin has been identified in mitochondria, exhibiting specific onsite protection to excess mitochondrial reactive oxygen species and working as an antioxidant in diseases. The recent discovery regarding the molecular basis of ligand selectivity for melatonin receptors and the constant efforts on finding synthetic melatonin alternatives have drawn researchers' attention back to melatonin. This review outlines the application of melatonin in SCI, including 1) the relationship between the melatonin rhythm and SCI in clinic; 2) the neuroprotective role of melatonin in experimental traumatic and ischemia/reperfusion SCI, i.e., exhibiting anti-oxidative, anti-inflammatory, and anti-apoptosis effects, facilitating the integrity of the blood-spinal cord barrier, ameliorating edema, preventing neural death, reducing scar formation, and promoting axon regeneration and neuroplasticity; 3) protecting gut microbiota and peripheral organs; 4) synergizing with drugs, rehabilitation training, stem cell therapy, and biomedical material engineering; and 5) the potential side effects. This comprehensive review provides new insights on melatonin as a natural antioxidant therapy in facilitating rehabilitation in SCI.
Collapse
Affiliation(s)
- Lei Xie
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Hang Wu
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaohong Huang
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
5
|
Dai Y, Lv Z, You M, Sun L, Li C. PPARα alleviates inflammation via inhibiting NF-κB/Rel pathway in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108701. [PMID: 36948368 DOI: 10.1016/j.fsi.2023.108701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Organisms trigger pro-inflammatory responses to resist the invasion of foreign pathogens in the early infection stage. However, excessive or chronic inflammation can also cause several diseases. We previously validated IL-17 from sea cucumbers mediated inflammatory response by the IL-17R-TRAF6 axis. But the anti-inflammatory effect was largely unknown in the species. In this study, the conserved PPARα gene was obtained from Apostichopus japonicus by RNA-seq and RACE approaches. The expression of AjPPARα was found to be significantly induced at the late stage of infection not only in Vibrio splendidus-challenged sea cucumbers, but also in LPS-exposed coelomocytes, which was negative correlation to that of AjIL-17 and AjNLRP3. Both silencing AjPPARα by specific siRNA and treatment with AjPAPRα inhibitor MK-886 could significantly upregulate the transcriptional levels of pro-inflammatory factors the AjIL-17 and AjNLRP3. The infiltration of inflammatory cells and tissues damage were also detected in the body walls in the same condition. In contrast, AjPAPRα agonist of WY14643 treatment could alleviate the V. splendidus-induced tissue injury. To further explore the molecular mechanism of AjPPARα-mediated anti-inflammatory in A. japonicus, the expression of the transcriptional factors of AjStat5 and AjRel (subunit of NF-κB) were investigated under AjPPARα aberrant expression conditions and found that AjRel exhibited a negative regulatory relationship to AjPPARα. Furthermore, silencing AjRel was led to down-regulation of AjIL-17 and AjNLRP3. Taken together, our results supported that AjPPARα exerted anti-inflammatory effects through inhibiting AjRel in response to V. splendidus infection.
Collapse
Affiliation(s)
- Yingfen Dai
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Meixiang You
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Lianlian Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
6
|
Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother 2023; 161:114420. [PMID: 36812713 DOI: 10.1016/j.biopha.2023.114420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer has been confirmed to have lipid disorders in the tumour microenvironment. Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPARα regulates the expression of genes involved in fatty acid homeostasis and is a major regulator of lipid metabolism. Because of its effects on lipid metabolism, an increasing number of studies have investigated the relationship of PPARα with breast cancer. PPARα has been shown to impact the cell cycle and apoptosis in normal cells and tumoral cells through regulating genes of the lipogenic pathway, fatty acid oxidation, fatty acid activation, and uptake of exogenous fatty acids. Besides, PPARα is involved in the regulation of the tumour microenvironment (anti-inflammation and inhibition of angiogenesis) by modulating different signal pathways such as NF-κB and PI3K/AKT/mTOR. Some synthetic PPARα ligands are used in adjuvant therapy for breast cancer. PPARα agonists are reported to reduce the side effects of chemotherapy and endocrine therapy. In addition, PPARα agonists enhance the curative effects of targeted therapy and radiation therapy. Interestingly, with the emerging role of immunotherapy, attention has been focused on the tumour microenvironment. The dual functions of PPARα agonists in immunotherapy need further research. This review aims to consolidate the operations of PPARα in lipid-related and other ways, as well as discuss the current and potential applications of PPARα agonists in tackling breast cancer.
Collapse
Affiliation(s)
- Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Jiayu Liu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Ying Jiang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
7
|
Cammarota M, Ferlenghi F, Vacondio F, Vincenzi F, Varani K, Bedini A, Rivara S, Mor M, Boscia F. Combined targeting of fatty acid amide hydrolase and melatonin receptors promotes neuroprotection and stimulates inflammation resolution in rats. Br J Pharmacol 2022; 180:1316-1338. [PMID: 36526591 DOI: 10.1111/bph.16014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | | | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
8
|
Zhang Y, Lang R, Guo S, Luo X, Li H, Liu C, Dong W, Bao C, Yu Y. Intestinal microbiota and melatonin in the treatment of secondary injury and complications after spinal cord injury. Front Neurosci 2022; 16:981772. [PMID: 36440294 PMCID: PMC9682189 DOI: 10.3389/fnins.2022.981772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) disease that can cause sensory and motor impairment below the level of injury. Currently, the treatment scheme for SCI mainly focuses on secondary injury and complications. Recent studies have shown that SCI leads to an imbalance of intestinal microbiota and the imbalance is also associated with complications after SCI, possibly through the microbial-brain-gut axis. Melatonin is secreted in many parts of the body including pineal gland and gut, effectively protecting the spinal cord from secondary damage. The secretion of melatonin is affected by circadian rhythms, known as the dark light cycle, and SCI would also cause dysregulation of melatonin secretion. In addition, melatonin is closely related to the intestinal microbiota, which protects the barrier function of the gut through its antioxidant and anti-inflammatory effects, and increases the abundance of intestinal microbiota by influencing the metabolism of the intestinal microbiota. Furthermore, the intestinal microbiota can influence melatonin formation by regulating tryptophan and serotonin metabolism. This paper summarizes and reviews the knowledge on the relationship among intestinal microbiota, melatonin, and SCI in recent years, to provide new theories and ideas for clinical research related to SCI treatment.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Lang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shunyu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, Deyang, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Hu S, Liu X, Wang Y, Zhang R, Wei S. Melatonin protects against body weight gain induced by sleep deprivation in mice. Physiol Behav 2022; 257:113975. [PMID: 36183851 DOI: 10.1016/j.physbeh.2022.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/10/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Sleep deprivation is an epidemic phenomenon in modern society. Lack of sleep has been shown to result in metabolic and endocrine disorders that predispose to obesity and other chronic metabolic diseases. Melatonin is a sleep-related neurohormone and affected by the circadian rhythm and light/dark cycles. Melatonin has recently been used to ameliorate diet-induced or night light-induced energy metabolic imbalance. However, the effect of melatonin on sleep deprivation-induced obesity has been poorly characterized. This study focuses on the protective effects of melatonin on lipid metabolism and body weight homeostasis in sleep-deprived mice. Mice subjected to sleep deprivation had significantly decreased plasma melatonin content and increased food intake and body weight gain compared to that of control. Meanwhile, the transcription factor PPARγ protein in liver increased, but there were no significant changes in hepatic circadian proteins BMAL1 and REV-ERBα after 10 consecutive days of sleep deprivation. Moreover, melatonin supplementation increased liver AMPKα/PPARα signaling pathway activity, which leads to lipid catabolism and reduced fat accumulation. These findings suggested that melatonin may be a potential agent for protecting against sleep deprivation-induced obesity.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Xuan Liu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yuefan Wang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Zhang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Shougang Wei
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Saidi AO, Akintayo CO, Atuma CL, Mahmud H, Sabinari IW, Oniyide AA, Aturamu A, Agunbiade TB, Olaniyi KS. Melatonin supplementation preserves testicular function by attenuating lactate production and oxidative stress in high fat diet-induced obese rat model. Theriogenology 2022; 187:19-26. [PMID: 35500423 DOI: 10.1016/j.theriogenology.2022.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Metabolic syndrome, including obesity has been documented as a critical factor in male reproductive dysfunction with subsequent reduction in male fertility. The therapeutic potential of melatonin has been demonstrated against oxidative stress-induced pathologies. Therefore, the present study investigated the effects of melatonin on testicular dysfunction associated with high fat diet (FD)-induced obese rat model, and the possible involvement of peroxisome proliferator-activated receptor-γ (PPAR-γ). Adult male Wistar rats (n = 6/group) were used: control group received vehicle (normal saline), obese group received 40% FD, melatonin-treated group received melatonin (4 mg/kg), and obese plus melatonin group received melatonin and 40% FD and the treatment lasted for 12 weeks. High fat diet caused increased body weight and testicular triglyceride, total cholesterol, malondialdehyde, γ-glutamyl transferase, lactate production and lactate/pyruvate ratio as well as decreased glutathione/glutathione peroxidase, nitric oxide and PPAR-γ and circulating testosterone. Nevertheless, all these alterations were attenuated when supplemented with melatonin. Taken together, these results demonstrates that FD-induced obesity causes testicular dysfunction. In addition, the results suggest that melatonin supplementation protects against obesity-associated testicular dysfunction and this effect is accompanied by upregulation of PPAR-γ.
Collapse
Affiliation(s)
- Azeezat O Saidi
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Christopher O Akintayo
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Chukwubueze L Atuma
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Hadiza Mahmud
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Isaiah W Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria
| | - Adesola A Oniyide
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Ayodeji Aturamu
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Toluwani B Agunbiade
- Department of Medical Microbiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Kehinde S Olaniyi
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria; HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| |
Collapse
|
11
|
Effect of Melatonin on Psoriatic Phenotype in Human Reconstructed Skin Model. Biomedicines 2022; 10:biomedicines10040752. [PMID: 35453501 PMCID: PMC9032986 DOI: 10.3390/biomedicines10040752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is an inflammatory and auto-immune skin-disease characterized by uncontrolled keratinocyte proliferation. Its pathogenesis is not still fully understood; however, an aberrant and excessive inflammatory and immune response can contribute to its progression. Recently, more attention has been given to the anti-inflammatory and immunomodulators effects of melatonin in inflammatory diseases. The aim of this paper was to investigate the effect of melatonin on psoriatic phenotype and also in S. aureus infection-associated psoriasis, with an in vitro model using Skinethic Reconstructed Human Epidermis (RHE). An in vitro model was constructed using the RHE, a three-dimensional-model obtained from human primary-keratinocytes. RHE-cells were exposed to a mix of pro-inflammatory cytokines, to induce a psoriatic phenotype; cells were also infected with S. aureus to aggravate psoriasis disease, and then were treated with melatonin at the concentrations of 1 nM, 10 nM, and 50 nM. Our results demonstrated that melatonin at higher concentrations significantly reduced histological damage, compared to the cytokine and S. aureus groups. Additionally, the treatment with melatonin restored tight-junction expression and reduced pro-inflammatory cytokine levels, such as interleukin-1β and interleukin-12. Our results suggest that melatonin could be considered a promising strategy for psoriasis-like skin inflammation, as well as complications of psoriasis, such as S. aureus infection.
Collapse
|
12
|
Abo El Gheit RE, Soliman NA, Nagla SA, El‐Sayed RM, Badawi GA, Emam MN, Abdel Ghafar MT, Ibrahim MAA, Elswaidy NRM, Radwan DA, Alshenawy HA, Khaled HE, Kamel S, El‐Saka MH, Madi NM, Younis RL. Melatonin epigenetic potential on testicular functions and fertility profile in varicocele rat model is mediated by Silent information regulator1. Br J Pharmacol 2022; 179:3363-3381. [PMID: 35064582 DOI: 10.1111/bph.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/10/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Varicocele is a leading cause of male infertility. Melatonin is a highly pleiotropic neurohormone. We aimed to characterize the melatonin epigenetic potential in varicocele and the involved molecular mechanisms. EXPERIMENTAL APPROACH Fifty-two male albino rats were randomly divided into four groups (13 rats each): control (I), melatonin (II), varicocele (III) and melatonin treated varicocele (IV) groups. Left varicocele was induced by partial left renal vein ligation. Reproductive hormones, epididymal sperm functional parameters, testicular 3/17 β-hydroxysteroid dehydrogenases, antioxidant enzymes, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase, 8-hydroxy-2'-deoxyguanosine and histopathological/Johnsen's score were evaluated. Flow cytometry and Comet were carried out to explore extent of sperm and testicular DNA damage. Testicular expression of silent information regulator 1 (SIRT1), forkhead transcription factors-class O (type1) (FOXO1), tumour suppressor gene, P53, cation channels of sperm (CatSper) and steroidogenic acute regulatory protein was evaluated by western blot technique. Testicular expression of Bcl-2 and its associated X protein and nuclear factor kappa-light-chain-enhancer of activated B cells were assayed by immunohistochemical staining. Testicular miR-34a expression was quantified by quantitative reverse transcription-polymerase chain reaction. KEY RESULTS The varicocele induced testicular histological injury, enhanced oxidative stress, P53-mediated apoptosis, DNA damage and increased testicular miR-34a expression paralleled with down-regulated SIRT1/FOXO axis. Melatonin treatment of varicocele rats displayed antioxidant/anti-apoptotic efficacy and improved reproductive hormones axis, CatSper expression and fertility parameters. MiR-34a/SIRT1/FOXO1 epigenetic axis integrates testicular melatonin mediated intracellular transduction cascades in varicocele. CONCLUSION AND IMPLICATIONS Melatonin can be used as an adjuvant therapy to improve varicocele and its complication.
Collapse
Affiliation(s)
- Rehab E. Abo El Gheit
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
- Department of Physiology, Faculty of Physical therapy Al Salam University Tanta Egypt
| | - Nema A. Soliman
- Medical Biochemistry Department, Faculty of Medicine Tanta University Egypt
| | - Salah A. Nagla
- Urology Department, Faculty of Medicine Tanta University Tanta Egypt
| | - Rehab M. El‐Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy Sinai University El‐Arish North Sinai Egypt
| | - Ghada A. Badawi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy Sinai University El‐Arish North Sinai Egypt
| | - Marwa N. Emam
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| | | | - Marwa A. A. Ibrahim
- Histology and Cell Biology Department, Faculty of Medicine Tanta University Tanta Egypt
| | - Noha R. M. Elswaidy
- Histology and Cell Biology Department, Faculty of Medicine Tanta University Tanta Egypt
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine Tanta University Tanta Egypt
| | | | - Howayda E. Khaled
- Zoology Department, Faculty of Science Suez Canal University Ismailia Egypt
| | - Samar Kamel
- Physiology Department, Faculty of Veterinary Medicine Suez Canal University Ismailia Egypt
| | - Mervat H. El‐Saka
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| | - Nermin M. Madi
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| | - Reham L. Younis
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| |
Collapse
|
13
|
PPARα agonist relieves spinal cord injury in rats by activating Nrf2/HO-1 via the Raf-1/MEK/ERK pathway. Aging (Albany NY) 2021; 13:24640-24654. [PMID: 34799468 PMCID: PMC8660597 DOI: 10.18632/aging.203699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
Objective: To observe the inhibitory effects of the peroxisome proliferator-activated receptor alpha (PPARα) agonist palmitoylethanolamide (PEA) on inflammatory responses and oxidative stress injury in rats with spinal cord injury (SCI). Methods: The SCI rat model was established using modified Allen's method and the changes in rats’ joint motion were observed by Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) at 1, 3 and 7 days after modeling, HE Staining and Nissl Staining has been carried out to evaluate the pathological lesion of spinal cords in rats. Besides, Immunohistochemical (IHC) was performed to detect the reactive oxygen species (ROS), expression levels of acrylamide (ACR) and manganese superoxide dismutase (MnSOD) in rat spinal cords, and Western Blotting was applied to measure protein expression levels of nuclear factor-kappa B (NF-κB), B cell lymphoma-2 (Bcl-2), BCL-2 associated X (BAX), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated (p)-Akt, HO-1, Nrf2, trithorax-1 (TRX-1), Raf-1, MEK, ERK, p-MEK and p-ERK. Results: The PPARα agonist PEA could alleviate SCI in rats, inhibit inflammatory responses, mitigate oxidative stress injury, reduce the apoptotic rate and promote SCI rats motor function recovery. In addition, the PPARα agonist PEA was able to activate the phosphorylation of MEK and ERK, stimulate Nrf-2 translocation into the nucleus and up-regulate the expressions of HO-1 and TRX-1. Conclusion: PPARα agonist PEA can relieve SCI in rats by inhibiting inflammatory responses and oxidative stress, which may involve a mechanism associated with the activation of Nrf2/HO-1 via the Raf-1/MEK/ERK pathway.
Collapse
|
14
|
Lee D, Tomita Y, Allen W, Tsubota K, Negishi K, Kurihara T. PPARα Modulation-Based Therapy in Central Nervous System Diseases. Life (Basel) 2021; 11:life11111168. [PMID: 34833044 PMCID: PMC8622664 DOI: 10.3390/life11111168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
The burden of neurodegenerative diseases in the central nervous system (CNS) is increasing globally. There are various risk factors for the development and progression of CNS diseases, such as inflammatory responses and metabolic derangements. Thus, curing CNS diseases requires the modulation of damaging signaling pathways through a multitude of mechanisms. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors (PPARα, PPARβ/δ, and PPARγ), and they work as master sensors and modulators of cellular metabolism. In this regard, PPARs have recently been suggested as promising therapeutic targets for suppressing the development of CNS diseases and their progressions. While the therapeutic role of PPARγ modulation in CNS diseases has been well reviewed, the role of PPARα modulation in these diseases has not been comprehensively summarized. The current review focuses on the therapeutic roles of PPARα modulation in CNS diseases, including those affecting the brain, spinal cord, and eye, with recent advances. Our review will enable more comprehensive therapeutic approaches to modulate PPARα for the prevention of and protection from various CNS diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (Y.T.); (T.K.); Tel.: +1-617-919-2533 (Y.T.); +81-3-5636-3204 (T.K.)
| | - William Allen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Correspondence: (Y.T.); (T.K.); Tel.: +1-617-919-2533 (Y.T.); +81-3-5636-3204 (T.K.)
| |
Collapse
|
15
|
Bie F, Wang K, Xu T, Yuan J, Ding H, Lv B, Liu Y, Lan M. The potential roles of circular RNAs as modulators in traumatic spinal cord injury. Biomed Pharmacother 2021; 141:111826. [PMID: 34328121 DOI: 10.1016/j.biopha.2021.111826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury (SCI) may cause long-term physical impairment and bring a substantial burden to both the individual patient and society. Existing therapeutic approaches for SCI have proven inadequate. This is mainly owing to the incomplete understanding of the cellular and molecular events post-injury. Circular RNAs (circRNAs) represent a new class of non-coding RNAs with a covalently closed annular structure that participates in regulating the transcription of certain genes and are linked to various biological processes and diseases. Mounting evidence is indicative that circRNAs are highly expressed in the spinal cord and they play key roles in multiple processes of neurological diseases. Recently, a role for circRNAs as effectors of SCI has emerged, leading to the continuity of relevant research. In this review, we presented current studies with regards to the abnormality of circRNAs mediating SCI by affecting mechanisms of autophagy, apoptosis, inflammation, and neural regeneration. Furthermore, the potential clinical value of circRNAs as therapeutic targets of SCI was also analyzed.
Collapse
Affiliation(s)
- Fan Bie
- Department of Rehabilitation Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Kaiyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Sixth People's Hospital, Shanghai 200233, China.
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Jishan Yuan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Hua Ding
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Bin Lv
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuwen Liu
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China.
| | - Min Lan
- Department of Rehabilitation Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| |
Collapse
|
16
|
Lin J, Sun-Waterhouse D, Cui C. The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr 2021; 62:8793-8811. [PMID: 34085885 DOI: 10.1080/10408398.2021.1934813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.
Collapse
Affiliation(s)
- Junjie Lin
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- College of Food Science and Technology, South China University of Technology, Guangzhou, China.,Guangdong Wei-Wei Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
17
|
Ramírez-López A, Pastor A, de la Torre R, La Porta C, Ozaita A, Cabañero D, Maldonado R. Role of the endocannabinoid system in a mouse model of Fragile X undergoing neuropathic pain. Eur J Pain 2021; 25:1316-1328. [PMID: 33619843 DOI: 10.1002/ejp.1753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuropathic pain is a complex condition characterized by sensory, cognitive and affective symptoms that magnify the perception of pain. The underlying pathogenic mechanisms are largely unknown and there is an urgent need for the development of novel medications. The endocannabinoid system modulates pain perception and drugs targeting the cannabinoid receptor type 2 (CB2) devoid of psychoactive side effects could emerge as novel analgesics. An interesting model to evaluate the mechanisms underlying resistance to pain is the fragile X mental retardation protein knockout mouse (Fmr1KO), a model of fragile X syndrome that exhibits nociceptive deficits and fails to develop neuropathic pain. METHODS A partial sciatic nerve ligation was performed to wild-type (WT) and Fmr1KO mice having (HzCB2 and Fmr1KO-HzCB2, respectively) or not (WT and Fmr1KO mice) a partial deletion of CB2 to investigate the participation of the endocannabinoid system on the pain-resistant phenotype of Fmr1KO mice. RESULTS Nerve injury induced canonical hypersensitivity in WT and HzCB2 mice, whereas this increased pain sensitivity was absent in Fmr1KO mice. Interestingly, Fmr1KO mice partially lacking CB2 lost this protection against neuropathic pain. Similarly, pain-induced depressive-like behaviour was observed in WT, HzCB2 and Fmr1KO-HzCB2 mice, but not in Fmr1KO littermates. Nerve injury evoked different alterations in WT and Fmr1KO mice at spinal and supra-spinal levels that correlated with these nociceptive and emotional alterations. CONCLUSIONS This work shows that CB2 is necessary for the protection against neuropathic pain observed in Fmr1KO mice, raising the interest in targeting this receptor for the treatment of neuropathic pain. SIGNIFICANCE Neuropathic pain is a complex chronic pain condition and current treatments are limited by the lack of efficacy and the incidence of important side effects. Our findings show that the pain-resistant phenotype of Fmr1KO mice against nociceptive and emotional manifestations triggered by persistent nerve damage requires the participation of the cannabinoid receptor CB2, raising the interest in targeting this receptor for neuropathic pain treatment. Additional multidisciplinary studies more closely related to human pain experience should be conducted to explore the potential use of cannabinoids as adequate analgesic tools.
Collapse
Affiliation(s)
- Angela Ramírez-López
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Antoni Pastor
- IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Carmen La Porta
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Andrés Ozaita
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
18
|
Xie Z, Li C, Xing Z, Zhou W, Xie S, Li M, Zhou Y. Relationship Between Serum Fibrinogen Level and Depressive Symptoms in an Adult Population with Spinal Cord Injury: A Cross-Sectional Study. Neuropsychiatr Dis Treat 2021; 17:2191-2198. [PMID: 34262279 PMCID: PMC8275144 DOI: 10.2147/ndt.s311473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Depression is associated with an inflammatory immune response. There are minimal data regarding the association of inflammatory markers with depression in patients with spinal cord injury (SCI). We aimed to investigate the association of inflammatory markers with depression in middle-aged and elderly SCI patients. METHODS Data were obtained from the Midlife in the United States (MIDUS) study, a longitudinal study of a representative sample of the adult population. We analyzed the associations of serum levels of fibrinogen, interleukin-6, tumor necrosis factor-ɑ, and C-reactive protein with depressive symptoms. RESULTS The median participant age was 52.5 years; 44.9% of participants were men. Multivariate linear regression analyses showed that an increased serum fibrinogen level (Sβ = 0.114, p = 0.005) was associated with higher Centre for Epidemiological Studies-Depression (CES-D) scores after adjustment for age, sex, body mass index (BMI), ethnicity, education, marital status, smoking, alcohol use, exercise, perceived stress score, and cardiovascular disease (CVD). Multivariate logistic regression analysis showed that an increased serum fibrinogen level was independently associated with a history of depression (odds ratio [OR] = 1.240, 95% confidence interval [CI] = 1.103-1.997, p = 0.012) and depressive symptoms (OR = 1.884, 95% CI = 1.165-2.499, p < 0.001; CES-D score ≥ 16) after adjustment for confounding factors. Stratified analysis revealed that the association between serum fibrinogen level and depressive symptoms was affected by antidepressant use. CONCLUSION Serum fibrinogen level had a significantly positive association with depressive symptoms in middle-aged and elderly patients with SCI. Future longitudinal cohort studies should evaluate the possible use of serum fibrinogen for diagnosis of depression in SCI patients.
Collapse
Affiliation(s)
- Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zelong Xing
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - MeiHua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yujuan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People's Republic of China
| |
Collapse
|
19
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
20
|
Gurunathan S, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in the Central Nervous System and Cancers. Cancers (Basel) 2020; 12:cancers12061567. [PMID: 32545820 PMCID: PMC7352348 DOI: 10.3390/cancers12061567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian rhythms at several levels and, in recent times, has garnered considerable attention both from academia and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic, anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics raise hopes that it could be used in humans for central nervous system (CNS)-related disorders. MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland; it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a considerable amount of the existing literature. The objectives of this comprehensive review were to evaluate the impact of MLT on the CNS from the published literature, specifically to address the biological functions and potential mechanism of action of MLT in the CNS. We document the effectiveness of MLT in various animal models of brain injury and its curative effects in humans. Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage, and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases, particularly CNS-related injuries.
Collapse
|
21
|
Liu Y, Liu J, Liu B. Identification of Circular RNA Expression Profiles and their Implication in Spinal Cord Injury Rats at the Immediate Phase. J Mol Neurosci 2020; 70:1894-1905. [DOI: 10.1007/s12031-020-01586-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
|
22
|
Qu X, Li Z, Chen J, Hou L. The emerging roles of circular RNAs in CNS injuries. J Neurosci Res 2020; 98:1485-1497. [PMID: 32052488 DOI: 10.1002/jnr.24591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaolin Qu
- Department of Neurosurgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Zhenxing Li
- Department of Neurosurgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Jigang Chen
- Department of Neurosurgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Lijun Hou
- Department of Neurosurgery Changzheng Hospital Second Military Medical University Shanghai China
| |
Collapse
|
23
|
Yang Z, Bao Y, Chen W, He Y. Melatonin exerts neuroprotective effects by attenuating astro- and microgliosis and suppressing inflammatory response following spinal cord injury. Neuropeptides 2020; 79:102002. [PMID: 31902595 DOI: 10.1016/j.npep.2019.102002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/17/2023]
Abstract
Reactive gliosis and inflammatory reaction are common pathological change to spinal cord injury (SCI). Whereas, the effects of melatonin (MT) on the astro- and microgliosis and their related inflammatory response in the injured spinal cord are not fully understood. In this study, MT's effects on the accumulation and proliferation of microglia and astrocytes and their related inflammatory response were investigated in an acute SCI model. The effects of MT on oxidative stress, neuronal survival and behavioral performance were also tested. It was found that MT treatment significantly suppressed the accumulation and the proliferation of microglia and astrocytes. Quantitative PCR data showed that MT significantly down-regulated the pro-inflammatory markers iNOS, IL-1β and TNF-α expressions. The data showed that MT led to the rise in SOD, CAT and GSH-Px contents and the decrease in MDA content. Western blotting analysis verified that MT significantly down-regulated caspase-3, Bax and GFAP expressions, up-regulated Bcl-2 expression. Compared with the SCI vehicle-treated group, the SCI MT-treated group exhibited a greater Basso Mouse Scale (BMS) locomotor rating score. On the whole, these findings implied that MT exerts its neuroprotective effects by suppressing the accumulation and the proliferation of microglia and astrocytes and reducing the release of pro-inflammatory cytokines, which might be one of the underlying mechanisms of the MT's neuroprotective effect after SCI. Accordingly, MT may be a promising therapeutic candidate for acute SCI.
Collapse
Affiliation(s)
- Zhijie Yang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yingying Bao
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weigang Chen
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuqin He
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
24
|
Ibarra-Lara L, Sánchez-Aguilar M, Soria-Castro E, Vargas-Barrón J, Roldán FJ, Pavón N, Torres-Narváez JC, Cervantes-Pérez LG, Pastelín-Hernández G, Sánchez-Mendoza A. Clofibrate Treatment Decreases Inflammation and Reverses Myocardial Infarction-Induced Remodelation in a Rodent Experimental Model. Molecules 2019; 24:molecules24020270. [PMID: 30642049 PMCID: PMC6359129 DOI: 10.3390/molecules24020270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction (MI) initiates an inflammatory response that promotes both beneficial and deleterious effects. The early response helps the myocardium to remove damaged tissue; however, a prolonged later response brings cardiac remodeling characterized by functional, metabolic, and structural pathological changes. Current pharmacological treatments have failed to reverse ischemic-induced cardiac damage. Therefore, our aim was to study if clofibrate treatment was capable of decreasing inflammation and apoptosis, and reverse ventricular remodeling and MI-induced functional damage. Male Wistar rats were assigned to (1) Sham coronary artery ligation (Sham) or (2) Coronary artery ligation (MI). Seven days post-MI, animals were further divided to receive vehicle (V) or clofibrate (100 mg/kg, C) for 7 days. The expression of IL-6, TNF-α, and inflammatory related molecules ICAM-1, VCAM-1, MMP-2 and -9, nuclear NF-kB, and iNOS, were elevated in MI-V. These inflammatory biomarkers decreased in MI-C. Also, apoptotic proteins (Bax and pBad) were elevated in MI-V, while clofibrate augmented anti-apoptotic proteins (Bcl-2 and 14-3-3ε). Clofibrate also protected MI-induced changes in ultra-structure. The ex vivo evaluation of myocardial functioning showed that left ventricular pressure and mechanical work decreased in infarcted rats; clofibrate treatment raised those parameters to control values. Echocardiogram showed that clofibrate partially reduced LV dilation. In conclusion, clofibrate decreases cardiac remodeling, decreases inflammatory molecules, and partly preserves myocardial diameters.
Collapse
Affiliation(s)
- Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - María Sánchez-Aguilar
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Elizabeth Soria-Castro
- Department of Pathology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Jesús Vargas-Barrón
- Department of Haemodynamics, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Francisco J Roldán
- Department of Haemodynamics, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Natalia Pavón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Juan C Torres-Narváez
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Luz G Cervantes-Pérez
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Gustavo Pastelín-Hernández
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Tlalpan, Z.C., Mexico City 14080, Mexico.
| |
Collapse
|
25
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
26
|
Tokazzabani Belasi F, Vaezi G, Bakhtiarian A, Hojati V, Mousavi Z, Nikoui V. On the benefit of melatonin in protection against ouabain-induced arrhythmia through modulation of oxidative stress factors in isolated rat atria. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1424769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Azam Bakhtiarian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Zahra Mousavi
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Tan Y, Yu L, Zhang C, Chen K, Lu J, Tan L. miRNA-146a attenuates inflammation in an in vitro spinal cord injury model via inhibition of TLR4 signaling. Exp Ther Med 2018; 16:3703-3709. [PMID: 30233729 DOI: 10.3892/etm.2018.6645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
The present study evaluated the anti-inflammatory effect of microRNA (miR)-146a in a spinal cord injury (SCI) rat model and in vitro model, and explored possible underlying mechanisms of this effect. miR-146a expression was analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 content was measured using ELISA kits. Inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88) and phosphorylated (p)-nuclear factor (NF)-κB were measured using western blotting. In the SCI rat model, miR-146a expression was downregulated. In the in vitro model, downregulation of miR-146a increased inflammation, enhanced iNOS and PGE2 protein expression and induced TLR4, MyD88 and NF-κB expression. Overexpression of miR-146a reduced inflammation, iNOS and PGE2 protein expression, and suppressed TLR4, MyD88 and NF-κB expression in the in vitro SCI model. The inhibition of TLR4 attenuated the proinflammatory effects of anti-miR-146a in the in vitro SCI model. The results indicate that miR-146a reduces inflammation in an SCI model through the TLR4-NF-κB signaling pathway. The present study demonstrated that miR-146a may be a promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Ying Tan
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Longtan Yu
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunming Zhang
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Kebing Chen
- Department of Spine Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510430, P.R. China
| | - Junfan Lu
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Lei Tan
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
28
|
Paterniti I, Esposito E, Cuzzocrea S. An In Vivo Compression Model of Spinal Cord Injury. Methods Mol Biol 2018; 1727:379-384. [PMID: 29222797 DOI: 10.1007/978-1-4939-7571-6_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Animal spinal cord injury (SCI) models have proven highly useful for investigating the mechanisms involved in the injury process and evaluating the effectiveness of experimental therapeutic interventions. Over the last years, substantial improvements have been made in producing consistent and reproducible animal SCI models. Different SCI models have been developed to address the mechanism of injury, being divided into contusion, compression, distraction, dislocation, transection, or chemical models. The method described here is a mouse compression model of SCI that, in many respects, faithfully reproduces SCI in man.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy.
| |
Collapse
|
29
|
Zhang Y, Zhang WX, Zhang YJ, Liu YD, Liu ZJ, Wu QC, Guan Y, Chen XM. Melatonin for the treatment of spinal cord injury. Neural Regen Res 2018; 13:1685-1692. [PMID: 30136678 PMCID: PMC6128058 DOI: 10.4103/1673-5374.238603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wen-Xiu Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan-Jun Zhang
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ya-Dong Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zong-Jian Liu
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qi-Chao Wu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology and Critical Care Medicine; Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xue-Ming Chen
- Central Laboratory; Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
The Combination of Blueberry Juice and Probiotics Ameliorate Non-Alcoholic Steatohepatitis (NASH) by Affecting SREBP-1c/PNPLA-3 Pathway via PPAR-α. Nutrients 2017; 9:nu9030198. [PMID: 28264426 PMCID: PMC5372861 DOI: 10.3390/nu9030198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is liver inflammation and a major threat to public health. Several pharmaceutical agents have been used for NASH therapy but their high-rate side effects limit the use. Blueberry juice and probiotics (BP) have anti-inflammation and antibacterial properties, and may be potential candidates for NASH therapy. To understand the molecular mechanism, Sprague Dawley rats were used to create NASH models and received different treatments. Liver tissues were examined using HE (hematoxylin and eosin) and ORO (Oil Red O) stain, and serum biochemical indices were measured. The levels of peroxisome proliferators-activated receptor (PPAR)-α, sterol regulatory element binding protein-1c (SREBP-1c), Patatin-like phospholipase domain-containing protein 3 (PNPLA-3), inflammatory cytokines and apoptosis biomarkers in liver tissues were measured by qRT-PCR and Western blot. HE and ORO analysis indicated that the hepatocytes were seriously damaged with more and larger lipid droplets in NASH models while BP reduced the number and size of lipid droplets (p < 0.05). Meanwhile, BP increased the levels of SOD (superoxide dismutase), GSH (reduced glutathione) and HDL-C (high-density lipoprotein cholesterol), and reduced the levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), TG (triglycerides), LDL-C (low-density lipoprotein cholesterol) and MDA (malondialdehyde) in NASH models (p < 0.05). BP increased the level of PPAR-α (Peroxisome proliferator-activated receptor α), and reduced the levels of SREBP-1c (sterol regulatory element binding protein-1c) and PNPLA-3 (Patatin-like phospholipase domain-containing protein 3) (p < 0.05). BP reduced hepatic inflammation and apoptosis by affecting IL-6 (interleukin 6), TNF-α (Tumor necrosis factor α), caspase-3 and Bcl-2 in NASH models. Furthermore, PPAR-α inhibitor increased the level of SREBP-1c and PNPLA-3. Therefore, BP prevents NASH progression by affecting SREBP-1c/PNPLA-3 pathway via PPAR-α.
Collapse
|