1
|
Hou Y, Fan F, Xie N, Zhang Y, Wang X, Meng X. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155529. [PMID: 38503156 DOI: 10.1016/j.phymed.2024.155529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND/PURPOSE Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. STUDY DESIGN/METHODS The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKβ and Sirt1 were determined by immunofluorescent and western blot analyses. RESULTS The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. CONCLUSION Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.
Collapse
Affiliation(s)
- Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fuhan Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
2
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
3
|
Guo P, Ru X, Zhou J, Chen M, Li Y, Duan M, Li Y, Li W, Chen Y, Zuo S, Feng H. TIMP-3 Alleviates White Matter Injury After Subarachnoid Hemorrhage in Mice by Promoting Oligodendrocyte Precursor Cell Maturation. Cell Mol Neurobiol 2024; 44:33. [PMID: 38625414 PMCID: PMC11021342 DOI: 10.1007/s10571-024-01469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
Subarachnoid hemorrhage (SAH) is associated with high mortality and disability rates, and secondary white matter injury is an important cause of poor prognosis. However, whether brain capillary pericytes can directly affect the differentiation and maturation of oligodendrocyte precursor cells (OPCs) and subsequently affect white matter injury repair has still been revealed. This study was designed to investigate the effect of tissue inhibitor of metalloproteinase-3 (TIMP-3) for OPC differentiation and maturation. PDGFRβret/ret and wild-type C57B6J male mice were used to construct a mouse model of SAH via endovascular perforation in this study. Mice were also treated with vehicle, TIMP-3 RNAi or TIMP-3 RNAi + TIMP-3 after SAH. The effect of TIMP-3 on the differentiation and maturation of OPCs was determined using behavioral score, ELISA, transmission electron microscopy, immunofluorescence staining and cell culture. We found that TIMP-3 was secreted mainly by pericytes and that SAH and TIMP-3 RNAi caused a significant decrease in the TIMP-3 content, reaching a nadir at 24 h, followed by gradual recovery. In vitro, the myelin basic protein content of oligodendrocytes after oxyhemoglobin treatment was increased by TIMP-3 overexpression. The data indicates TIMP-3 could promote the differentiation and maturation of OPCs and subsequently improve neurological outcomes after SAH. Therefore, TIMP-3 could be beneficial for repair after white matter injury and could be a potential therapeutic target in SAH.
Collapse
Affiliation(s)
- Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiru Zhou
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mao Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Yanling Li
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Mingxu Duan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shilun Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
4
|
Gaastra B, Zhang J, Tapper W, Bulters D, Galea I. Sphingosine-1-phosphate Signalling in Aneurysmal Subarachnoid Haemorrhage: Basic Science to Clinical Translation. Transl Stroke Res 2024; 15:352-363. [PMID: 36749550 PMCID: PMC10891271 DOI: 10.1007/s12975-023-01133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
Sphingosine-1-phosphate (S1P) is generated intracellularly and, when transported to the extracellular compartment, predominantly signals through S1P receptors. The S1P signalling pathway has been implicated in the pathophysiology of neurological injury following aneurysmal subarachnoid haemorrhage (aSAH). In this review, we bring together all the available data regarding the role of S1P in neurological injury following aSAH. There is agreement in the literature that S1P increases in the cerebrospinal fluid following aSAH and leads to cerebral artery vasospasm. On the other hand, the role of S1P in the parenchyma is less clear cut, with different studies arguing for beneficial and deleterious effects. A parsimonious interpretation of this apparently conflicting data is presented. We discuss the potential of S1P receptor modulators, in clinical use for multiple sclerosis, to be repurposed for aSAH. Finally, we highlight the gaps in our knowledge of S1P signalling in humans, the clinical challenges of targeting the S1P pathway after aSAH and other research priorities.
Collapse
Affiliation(s)
- Ben Gaastra
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.
| | - John Zhang
- Center of Neuroscience Research, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Will Tapper
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Ian Galea
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
5
|
Liu T, Wang W, Li X, Chen Y, Mu F, Wen A, Liu M, Ding Y. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling. Phytother Res 2023; 37:5509-5528. [PMID: 37641491 DOI: 10.1002/ptr.7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Li
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yidan Chen
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minna Liu
- Department of Nephrology, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Hao X, Zeng Z, Liang L, Feng Z, Li W, Xiong B, Guo P, Zhang Q, Chen Y, Feng H, Chen Z. The Role of Neutrophil Extracellular Traps in Early Microthrombosis and Brain Injury After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2023; 14:752-765. [PMID: 35962915 PMCID: PMC9375080 DOI: 10.1007/s12975-022-01074-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Microthrombosis plays an important role in secondary brain injury after experimental subarachnoid hemorrhage (SAH), but the specific mechanism of microthrombosis remains unclear. The purpose of this study was to investigate the role of neutrophil extracellular traps (NETs) in microthrombosis after SAH. SAH was induced in male C57BL/6 mice using an endovascular perforation technique. The marker protein of NETs, citrullinated histone H3 (CitH3), was significantly elevated in the cerebral cortex after SAH, and was co-labeled with microthrombi. Both depletion of neutrophils by anti-Ly6G antibody and DNase I treatment significantly reduced the formation of NETs and microthrombi, and ameliorated neurological deficits, brain edema, BBB disruption, and neuronal injury at 24 h after SAH induction. Cerebral hypoperfusion in the first hours after SAH is a major determinant of poor neurological outcome; in this study, we found that DNase I treatment significantly improved the restoration of early cortical perfusion after SAH. In addition, DNase I treatment also significantly attenuated cerebrospinal fluid (CSF) flow after SAH, which was associated with the diffusion barrier caused by microthrombi in the paravascular space after SAH. In conclusion, NETs are associated with early microthrombosis after SAH; they may be a novel therapeutic target for early brain injury (EBI) after SAH.
Collapse
Affiliation(s)
- Xiaoke Hao
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
- Department of Neurosurgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Zongwei Zeng
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Liang Liang
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Wu Li
- Department of Geriatrics and Special Service Medicine, Southwest Hospital, Army Military Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Binyuan Xiong
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Peiwen Guo
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Qiang Zhang
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
7
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Kisler K, Sagare AP, Lazic D, Bazzi S, Lawson E, Hsu CJ, Wang Y, Ramanathan A, Nelson AR, Zhao Z, Zlokovic BV. Anti-malaria drug artesunate prevents development of amyloid-β pathology in mice by upregulating PICALM at the blood-brain barrier. Mol Neurodegener 2023; 18:7. [PMID: 36707892 PMCID: PMC9883925 DOI: 10.1186/s13024-023-00597-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND PICALM is one of the most significant susceptibility factors for Alzheimer's disease (AD). In humans and mice, PICALM is highly expressed in brain endothelium. PICALM endothelial levels are reduced in AD brains. PICALM controls several steps in Aβ transcytosis across the blood-brain barrier (BBB). Its loss from brain endothelium in mice diminishes Aβ clearance at the BBB, which worsens Aβ pathology, but is reversible by endothelial PICALM re-expression. Thus, increasing PICALM at the BBB holds potential to slow down development of Aβ pathology. METHODS To identify a drug that could increase PICALM expression, we screened a library of 2007 FDA-approved drugs in HEK293t cells expressing luciferase driven by a human PICALM promoter, followed by a secondary mRNA screen in human Eahy926 endothelial cell line. In vivo studies with the lead hit were carried out in Picalm-deficient (Picalm+/-) mice, Picalm+/-; 5XFAD mice and Picalmlox/lox; Cdh5-Cre; 5XFAD mice with endothelial-specific Picalm knockout. We studied PICALM expression at the BBB, Aβ pathology and clearance from brain to blood, cerebral blood flow (CBF) responses, BBB integrity and behavior. RESULTS Our screen identified anti-malaria drug artesunate as the lead hit. Artesunate elevated PICALM mRNA and protein levels in Eahy926 endothelial cells and in vivo in brain capillaries of Picalm+/- mice by 2-3-fold. Artesunate treatment (32 mg/kg/day for 2 months) of 3-month old Picalm+/-; 5XFAD mice compared to vehicle increased brain capillary PICALM levels by 2-fold, and reduced Aβ42 and Aβ40 levels and Aβ and thioflavin S-load in the cortex and hippocampus, and vascular Aβ load by 34-51%. Artesunate also increased circulating Aβ42 and Aβ40 levels by 2-fold confirming accelerated Aβ clearance from brain to blood. Consistent with reduced Aβ pathology, treatment of Picalm+/-; 5XFAD mice with artesunate improved CBF responses, BBB integrity and behavior on novel object location and recognition, burrowing and nesting. Endothelial-specific knockout of PICALM abolished all beneficial effects of artesunate in 5XFAD mice indicating that endothelial PICALM is required for its therapeutic effects. CONCLUSIONS Artesunate increases PICALM levels and Aβ clearance at the BBB which prevents development of Aβ pathology and functional deficits in mice and holds potential for translation to human AD.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Sam Bazzi
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Erica Lawson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Ching-Ju Hsu
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Yaoming Wang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Anita Ramanathan
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Amy R. Nelson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| |
Collapse
|
9
|
Zhang K, Yang Y, Ge H, Wang J, Lei X, Chen X, Wan F, Feng H, Tan L. Neurogenesis and Proliferation of Neural Stem/Progenitor Cells Conferred by Artesunate via FOXO3a/p27Kip1 Axis in Mouse Stroke Model. Mol Neurobiol 2022; 59:4718-4729. [PMID: 35596896 DOI: 10.1007/s12035-021-02710-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022]
Abstract
Promoting neurogenesis and proliferation of endogenous neural stem/progenitor cells (NSPCs) is considered a promising strategy for neurorehabilitation after stroke. Our previous study revealed that a moderate dose of artesunate (ART, 150 mg/kg) could enhance functional recovery in middle cerebral artery occlusion (MCAO) mice. This study aimed to investigate the effects of ART treatment on neurogenesis and proliferation of NSPCs using a rodent MCAO model. MRI results indicated that the ischemic brain volume of MCAO mice was reduced by ART treatment. The results of diffusion tensor imaging, electron microscopic, and immunofluorescence of Tuj-1 also revealed that ischemia-induced white matter lesion was alleviated by ART treatment. After ischemia/reperfusion, the proportion of Brdu + endogenous NSPCs in the ipsilateral subventricular zone and peri-infarct cortex was increased by ART treatment. Furthermore, the neuro-restorative effects of ART were abolished by the overexpression of FOXO3a. These findings suggested that ART could rescue ischemia/reperfusion damage and alleviate white matter injury, subsequently contributing to post-stroke functional recovery by promoting neurogenesis and proliferation of endogenous NSPCs via the FOXO3a/p27Kip1 pathway.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China
- Department of Neurosurgery, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Yang Yang
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China
- Department of Neurosurgery, 904Th Hospital of the PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, China
| | - Hongfei Ge
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, the Third Military Medical University (Army Military Medical University), Chongqing, China.
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
10
|
Li Q, Ru X, Yang Y, Zhao H, Qu J, Chen W, Pan P, Ruan H, Li C, Chen Y, Feng H. Lipocalin-2-Mediated Insufficient Oligodendrocyte Progenitor Cell Remyelination for White Matter Injury After Subarachnoid Hemorrhage via SCL22A17 Receptor/Early Growth Response Protein 1 Signaling. Neurosci Bull 2022; 38:1457-1475. [PMID: 35817941 DOI: 10.1007/s12264-022-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 10/17/2022] Open
Abstract
Insufficient remyelination due to impaired oligodendrocyte precursor cell (OPC) differentiation and maturation is strongly associated with irreversible white matter injury (WMI) and neurological deficits. We analyzed whole transcriptome expression to elucidate the potential role and underlying mechanism of action of lipocalin-2 (LCN2) in OPC differentiation and WMI and identified the receptor SCL22A17 and downstream transcription factor early growth response protein 1 (EGR1) as the key signals contributing to LCN2-mediated insufficient OPC remyelination. In LCN-knockdown and OPC EGR1 conditional-knockout mice, we discovered enhanced OPC differentiation in developing and injured white matter (WM); consistent with this, the specific inactivation of LCN2/SCl22A17/EGR1 signaling promoted remyelination and neurological recovery in both atypical, acute WMI due to subarachnoid hemorrhage and typical, chronic WMI due to multiple sclerosis. This potentially represents a novel strategy to enhance differentiation and remyelination in patients with white matter injury.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Yang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hengli Zhao
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Qu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pengyu Pan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chaojun Li
- Model Animal Research Center, Nanjing University, Nanjing, 210032, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
11
|
Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3777021. [PMID: 35746960 PMCID: PMC9213169 DOI: 10.1155/2022/3777021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Aging is associated with the occurrence of diverse degenerative changes in various tissues and organs and with an increased incidence of neurological disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD). In recent years, the search for effective components derived from medicinal plants in delaying aging and preventing and treating neurodegenerative diseases has been increasing and the number of related publications shows a rising trend. Here, we present a concise, updated review on the preclinical and clinical research progress in the assessment of the therapeutic potential of different traditional Chinese medicines and derived active ingredients and their effect on the signaling pathways involved in AD neuroprotection. Recognized by their multitargeting ability, these natural compounds hold great potential in developing novel drugs for AD.
Collapse
|
12
|
Liu F, Liu J, Xiang H, Sun Z, Li Y, Li X, Liu Y, Liu J. Dihydroartemisinin protects blood-brain barrier permeability during sepsis by inhibiting the transcription factor SNAI1. Clin Exp Pharmacol Physiol 2022; 49:979-987. [PMID: 35651290 PMCID: PMC9543489 DOI: 10.1111/1440-1681.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Blood–brain barrier (BBB) injury is involved in the pathogenesis of sepsis‐associated encephalopathy. In this study, we used dihydroartemisinin (DHA), a derivative of artemisinin, to treat a cecal ligation and puncture (CLP)‐induced mouse sepsis model and a tumour necrosis factor α (TNF‐α)‐stimulated human cerebral microvessel endothelial cells (hCMEC)/D3 cell line. We found that DHA decreased BBB permeability and increased the expression of the tight junction protein occludin (OCLN) in the CLP model. In hCMEC/D3 cells, DHA decreased TNF‐α‐induced hyperpermeability and increased the expression of OCLN. DHA also repressed SNAI1 expression in the CLP mouse model and in TNF‐α‐stimulated hCMEC/D3 cells. These data suggest that DHA protects BBB permeability during sepsis by stimulating the expression of OCLN, by downregulating the expression of the SNAI1 transcription factor.
Collapse
Affiliation(s)
- Fuhong Liu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Medical Research Center, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, China
| | - Jing Liu
- Medical Research Center, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, China
| | - Zongguo Sun
- Medical Research Center, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, China
| | - Yan Li
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanjun Liu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ju Liu
- Medical Research Center, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, China
| |
Collapse
|
13
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Shindo S, Murota H, Seki T, Mori K, Kaizu K, Nishizaka T, Takagi Y, Katayama I. Effects of a moisturizer containing pseudo-ceramide and a eucalyptus extract on sweating function in adult atopic dermatitis: a double-blind, randomized, controlled left-right comparison clinical trial. J Cosmet Dermatol 2022; 21:4503-4509. [PMID: 35298858 DOI: 10.1111/jocd.14923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Many patients with atopic dermatitis (AD) have a decreased ability to sweat. Several factors can cause decreased perspiration, such as weak tight junctions of sweat ducts, reduced acetylcholine receptor function and inhibition of perspiration by histamines. Parakeratosis of AD skin also decreases sweating by occluding sweat pores. Increased ceramide levels in the stratum corneum reduce parakeratosis by improving stratum corneum functions. Furthermore, ceramides and/or ceramide derivatives may affect claudin-3 and acetylcholine receptors. OBJECTIVE In this study, we investigated the efficacy of a moisturizer containing pseudo-ceramide and a eucalyptus extract to increase ceramide levels in the epidermis to improve the sweating ability of patients with AD. METHODS Nineteen patients with AD applied moisturizers with or without pseudo-ceramide and a eucalyptus extract on the cubital fossa of either arm twice a day for 4 weeks. Skin conditions and sweating ability, measured as the response to acetylcholine stimulation, were evaluated prior to the start of the study (week 0) and at the end of weeks 2 and 4. RESULTS Both moisturizers improved the visually evaluated skin symptoms and skin hydration. However, only the moisturizer containing pseudo-ceramide and the eucalyptus extract significantly improved cutaneous barrier function and significantly increased the ceramide level in the stratum corneum. That moisturizer also increased the sweating volume and shortened the latency time for sweating, an indicator of sweating ability, but the other moisturizer did not. CONCLUSION Based on these results, the moisturizer containing pseudo-ceramide and a eucalyptus extract helps recover the sweat function of AD patients.
Collapse
Affiliation(s)
- Shoko Shindo
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Osaka City University, Osaka, Japan
| |
Collapse
|
15
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
16
|
Liu Y, Dang W, Zhang S, Wang L, Zhang X. Artesunate attenuates inflammatory injury and inhibits the NF-κB pathway in a mouse model of cerebral ischemia. J Int Med Res 2021; 49:3000605211053549. [PMID: 34743632 PMCID: PMC8579345 DOI: 10.1177/03000605211053549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Inflammation is an important factor in the pathological process of cerebral ischemia. Artesunate exhibits a broad range of anti-inflammatory properties in many diseases. We investigated the potential protective effect of artesunate against cerebral ischemia and the related mechanisms. METHODS Mice were divided into distal middle cerebral artery occlusion (dMCAO), sham, low dose, and high dose groups and subjected to dMCAO, except for the sham group. The low and high dose groups were administered artesunate (15 and 30 mg/kg), and the neuroprotective effects were analyzed by evaluating infarct volumes and neurological deficits. Microglial activation and neutrophil infiltration were evaluated by immunofluorescence, immunohistochemical staining, and western blotting. Inflammatory mediators were measured by enzyme-linked immunosorbent assays. Nuclear factor (NF)-κB nuclear translocation was detected by immunofluorescence and western blotting. RESULTS Compared with the dMCAO group, artesunate significantly improved neurological deficit scores and infarct volumes and ameliorated inflammation by reducing neutrophil infiltration, suppressing microglial activation, and downregulating tumor necrosis factor-α and interleukin-1β expression. Furthermore, artesunate inhibited nuclear translocation of NF-κB and inhibitor protein α proteolysis. CONCLUSIONS Artesunate protected against inflammatory injury by reducing neutrophil infiltration and microglial activation, suppressing inflammatory cytokines, and inhibiting the NF-κB pathway. Therefore, artesunate is a potential ischemic stroke treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, 71213Second Hospital of Hebei Medical University, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease
| | - Wei Dang
- Linxi County People's Hospital, Linxi, Hebei, China
| | - Shiyang Zhang
- Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Lina Wang
- Department of Neurology, 71213Second Hospital of Hebei Medical University, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease
| | - Xiangjian Zhang
- Department of Neurology, 71213Second Hospital of Hebei Medical University, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease
| |
Collapse
|
17
|
The calcimimetic R-568 attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt/eNOS signaling pathway in the rat model. Brain Res 2021; 1765:147508. [PMID: 33930376 DOI: 10.1016/j.brainres.2021.147508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Cerebral vasospasm (CVS) causes mortality and morbidity in patients after subarachnoid hemorrhage (SAH). The mechanism and adequate treatment of CVS are still elusive. R-568 is a calcimimetic agent known to exert a vasodilating effect. However, there is no report on its vasodilator effect against SAH-induced vasospasm. In the present study, we investigated the therapeutic effect of R-568 on the SAH-induced CVS model in rats. Seventy-two adult male Sprague-Dawley rats were divided into 8 groups: sham surgery; SAH only; SAH + Vehicle, SAH + R-568; SAH + R-568 + Wortmannin (the PI3K inhibitor); SAH + Wortmannin; SAH + R-568 + Calhex-231 (a calcilytic agent); SAH + Calhex-231. SAH was induced by blood (0.3 mL) given by intracisternal injection. R-568 (20 µM) was administered intracisternal immediately prior to experimental SAH. Basilar arteries (BAs) were obtained to evaluate PI3K/Akt/eNOS pathway (immunoblotting) and morphological changes 48 h after SAH. Perimeters of BAs were decreased by 24.1% in the SAH group compared to the control group and the wall thickness was increased by 75.3%. With R-568 treatment, those percentages were 9.6% and 29.6%, respectively, indicating that vasospasm was considerably improved when compared with the SAH group (P < 0.001 in both). While p-PI3K/PI3K and p-Akt/Akt ratio and eNOS protein expression were markedly decreased in the SAH rats, treatment with R-568 resulted in a significant increase in these levels. The beneficial effects of R-568 were partially blocked in the presence of Calhex-231 and completely blocked in the presence of Wortmannin. Herein, we found that treatment with R-568 would attenuate SAH-induced CVS through the PI3K/Akt/eNOS pathway and demonstrate therapeutic promise in CVS treatment following SAH.
Collapse
|
18
|
Ru X, Qu J, Li Q, Zhou J, Huang S, Li W, Zuo S, Chen Y, Liu Z, Feng H. MiR-706 alleviates white matter injury via downregulating PKCα/MST1/NF-κB pathway after subarachnoid hemorrhage in mice. Exp Neurol 2021; 341:113688. [PMID: 33713655 DOI: 10.1016/j.expneurol.2021.113688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022]
Abstract
Increasing numbers of patients with spontaneous subarachnoid hemorrhage(SAH) who recover from surgery and intensive care management still live with cognitive impairment after discharge, indicating the importance of white matter injury at the acute stage of SAH. In the present study, standard endovascular perforation was employed to establish an SAH mouse model, and a microRNA (miRNA) chip was used to analyze the changes in gene expression in white matter tissue after SAH. The data indicate that 17 miRNAs were downregulated, including miR-706, miR-669a-5p, miR-669p-5p, miR-7116-5p and miR-195a-3p, while 13 miRNAs were upregulated, including miR-6907-5p, miR-5135, miR-6982-5p, miR-668-5p, miR-8119. Strikingly, miR-706 was significantly downregulated with the highest fold change. Further experiments confirmed that miR-706 could alleviate white matter injury and improve neurological behavior, at least partially by inhibiting the PKCα/MST1/NF-κB pathway and the release of inflammatory cytokines. These results might provide a deeper understanding of the pathophysiological processes in white matter after SAH, as well as potential therapeutic strategies for the translational research.
Collapse
Affiliation(s)
- Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Jie Qu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Department of Emergency, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Qiang Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Jiru Zhou
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Suna Huang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Shilun Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China.
| | - Zhi Liu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| |
Collapse
|
19
|
Chen Y, Wu J, Zhu J, Yang G, Tian J, Zhao Y, Wang Y. Artesunate Provides Neuroprotection against Cerebral Ischemia-Reperfusion Injury via the TLR-4/NF-κB Pathway in Rats. Biol Pharm Bull 2021; 44:350-356. [PMID: 33390425 DOI: 10.1248/bpb.b20-00604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation has an important role in ischemia-reperfusion (I/R) injury. Artesunate (ART) has anti-microbial and anti-inflammatory pharmacological activities, and it is used for various types of serious malaria, including cerebral malaria. ART maintains a high concentration in the brain but little is known about the neuroprotective effect of ART against brain I/R injury. We studied the neuroprotection of ART against brain I/R injury and its underlying mechanism. In this study, rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h. After 24 h of reperfusion, neurological deficits, cerebrum water content, infarct volume, hematoxylin-eosin (H&E)-staining, myeloperoxidase (MPO) activity, and proinflammatory cytokine levels were measured. Administration of 20, 40, 80, and 160 mg/kg ART intraperitoneally (i.p.) 10 min after MCAO significantly decreased brain water content and improved neurological deficits in a dose-dependent manner. An 80 mg/kg dosage was optimal. ART significantly reduced infarct volume, suppressed MPO activity and diminished the expressions of toll-like receptor (TLR)-4, MyD88, nuclear factor-κB (NF-κB), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the area of the ischemic cortex. The neuroprotective action of ART against focal cerebral I/R injury might be due to the attenuation of inflammation through the TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Yanlin Chen
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University
- Department of Pathology, Jinshan Hospital, The First Affiliated Hospital of Chongqing Medical University
| | - Jingxian Wu
- Department of Pathology, Chongqing Medical University
| | - Jin Zhu
- Department of Pathology, Chongqing Medical University
| | - Guoan Yang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University
| | - Junying Tian
- Department of Foreign Language, Chongqing Medical University
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University
| |
Collapse
|
20
|
Wang J, Hu J, Chen X, Lei X, Feng H, Wan F, Tan L. Traditional Chinese Medicine Monomers: Novel Strategy for Endogenous Neural Stem Cells Activation After Stroke. Front Cell Neurosci 2021; 15:628115. [PMID: 33716673 PMCID: PMC7952516 DOI: 10.3389/fncel.2021.628115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy, which has become a potential regenerative medical treatment and a promising approach for treating brain injuries induced by different types of cerebrovascular disease, has various application methods. Activation of endogenous neural stem cells (NSCs) can enable infarcted neuron replacement and promote neural networks’ regeneration without the technical and ethical issues associated with the transplantation of exogenous stem cells. Thus, NSC activation can be a feasible strategy to treat central nervous system (CNS) injury. The potential molecular mechanisms of drug therapy for the activation of endogenous NSCs have gradually been revealed by researchers. Traditional Chinese medicine monomers (TCMs) are active components extracted from Chinese herbs, and some of them have demonstrated the potential to activate proliferation and neurogenesis of NSCs in CNS diseases. Ginsenoside Rg1, astragaloside IV (AST), icariin (ICA), salvianolic acid B (Sal B), resveratrol (RES), curcumin, artesunate (ART), and ginkgolide B (GB) have positive effects on NSCs via different signaling pathways and molecules, such as the Wingless/integrated/β-catenin (Wnt/β-catenin) signaling pathway, the sonic hedgehog (Shh) signaling pathway, brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). This article may provide further motivation for researchers to take advantage of TCMs in studies on CNS injury and stem cell therapy.
Collapse
Affiliation(s)
- Ju Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
21
|
Zhou Z, Hou J, Li Q. Artesunate attenuates traumatic brain injury-induced impairments in rats. Transl Neurosci 2020; 11:309-318. [PMID: 33335770 PMCID: PMC7712024 DOI: 10.1515/tnsci-2020-0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/26/2022] Open
Abstract
Background Blood–brain barrier (BBB) dysfunction and neuroinflammation induced by traumatic brain injuries (TBIs) cause a succession of secondary brain damage events and finally lead to a massive and progressive cerebral neuronal destruction. Artesunate, a semisynthetic artemisinin derivative, is a potential candidate for the management of cerebral damage induced by TBI due to its protective function to BBB and cerebral neurons. Methods To demonstrate the effect of artesunate to TBI-induced BBB dysfunction and neural damage, TBI rat model was constructed by cortical impact injury. Behavioral experiments were used to estimate the impact of the combined treatment on rats. Western blotting was performed to demonstrate the protein levels in the brain tissues of rats. Quantitative real-time PCRs were utilized to investigate the alteration in the expression of various RNA levels. The chemokine levels were estimated by ELISA. Results Artesunate treatment attenuated the impact caused by TBI on rat brain and improved the long-term neurological recover. Artesunate treatment protected the integrity of BBB and inhibited neuroinflammation. Artesunate treatment promoted the phosphorylation of Akt and inhibited the phosphorylation of glycogen synthase kinase (GSK)-3β in TBI rat model. Conclusion Artesunate protected rats from TBI-induced impairments of BBB and improved longer-term neurological outcomes.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| | - Jun Hou
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| | - Qinghua Li
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| |
Collapse
|
22
|
Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, Zhang X, He X, Li X, Duan C. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging (Albany NY) 2020; 12:21161-21185. [PMID: 33168786 PMCID: PMC7695377 DOI: 10.18632/aging.103796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). T cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of adaptive and innate immune responses, and has been identified to play a vital role in certain inflammatory diseases; The present study explored the effect of Tim-3 on inflammatory responses and detailed mechanism in EBI following SAH. We investigated the effects of Tim-3 on SAH models established by endovascular puncture method in Sprague–Dawley rats. The present studies revealed that SAH induced a significant inflammatory response and significantly increased Tim-3 expression. Tim-3-AAV administration aggravated neurocyte apoptosis, brain edema, blood-brain barrier permeability, and neurological dysfunction; significantly inhibited Nrf2 expression; and increased HMGB1 expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-17, and IL-18. However, Tim-3 siRNA or NK252 administration abolished the pro-inflammatory effects of Tim-3. Our results indicate a function for Tim-3 as a molecular player that links neuroinflammation and brain damage after SAH. We reveal that Tim-3 overexpression deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats.
Collapse
Affiliation(s)
- Shenquan Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanzhi Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Boyang Wei
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenping Cheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Menet R, Lecordier S, ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front Physiol 2020; 11:565667. [PMID: 33071819 PMCID: PMC7530281 DOI: 10.3389/fphys.2020.565667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Wnt pathway, which comprises the canonical and non-canonical pathways, is an evolutionarily conserved mechanism that regulates crucial biological aspects throughout the development and adulthood. Emergence and patterning of the nervous and vascular systems are intimately coordinated, a process in which Wnt pathway plays particularly important roles. In the brain, Wnt ligands activate a cell-specific surface receptor complex to induce intracellular signaling cascades regulating neurogenesis, synaptogenesis, neuronal plasticity, synaptic plasticity, angiogenesis, vascular stabilization, and inflammation. The Wnt pathway is tightly regulated in the adult brain to maintain neurovascular functions. Historically, research in neuroscience has emphasized essentially on investigating the pathway in neurodegenerative disorders. Nonetheless, emerging findings have demonstrated that the pathway is deregulated in vascular- and traumatic-mediated brain injuries. These findings are suggesting that the pathway constitutes a promising target for the development of novel therapeutic protective and restorative interventions. Yet, targeting a complex multifunctional signal transduction pathway remains a major challenge. The review aims to summarize the current knowledge regarding the implication of Wnt pathway in the pathobiology of ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI). Furthermore, the review will present the strategies used so far to manipulate the pathway for therapeutic purposes as to highlight potential future directions.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
24
|
Dhangadamajhi G, Singh S. Sphingosine 1-Phosphate in Malaria Pathogenesis and Its Implication in Therapeutic Opportunities. Front Cell Infect Microbiol 2020; 10:353. [PMID: 32923406 PMCID: PMC7456833 DOI: 10.3389/fcimb.2020.00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Sphingosine 1-Phosphate (S1P) is a bioactive lipid intermediate in the sphingolipid metabolism, which exist in two pools, intracellular and extracellular, and each pool has a different function. The circulating extracellular pool, specifically the plasma S1P is shown to be important in regulating various physiological processes related to malaria pathogenesis in recent years. Although blood cells (red blood cells and platelets), vascular endothelial cells and hepatocytes are considered as the important sources of plasma S1P, their extent of contribution is still debated. The red blood cells (RBCs) and platelets serve as a major repository of intracellular S1P due to lack, or low activity of S1P degrading enzymes, however, contribution of platelets toward maintaining plasma S1P is shown negligible under normal condition. Substantial evidences suggest platelets loss during falciparum infection as a contributing factor for severe malaria. However, platelets function as a source for plasma S1P in malaria needs to be examined experimentally. RBC being the preferential site for parasite seclusion, and having the ability of trans-cellular S1P transportation to EC upon tight cell-cell contact, might play critical role in differential S1P distribution and parasite growth. In the present review, we have summarized the significance of both the S1P pools in the context of malaria, and how the RBC content of S1P can be channelized in better ways for its possible implication in therapeutic opportunities to control malaria.
Collapse
Affiliation(s)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
25
|
Li G, Dong Y, Liu D, Zou Z, Hao G, Gao X, Pan P, Liang G. NEK7 Coordinates Rapid Neuroinflammation After Subarachnoid Hemorrhage in Mice. Front Neurol 2020; 11:551. [PMID: 32733353 PMCID: PMC7360676 DOI: 10.3389/fneur.2020.00551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating disease which leads to high morbidity and mortality. Recent studies have indicated that, never in mitosis gene A-related expressed kinase 7 (NEK7), is involved in NLRP3 (NLR family, pyrin domain containing 3) associated inflammation, which may result in subsequent cellular and vascular damage. The aim of this study was to investigate whether NEK7 is involved in the pathophysiology of subarachnoid hemorrhage. Methods: 455 adult male C57B6J mice, weighing 22 to 30 g, were used to investigate the time course of NEK7 expression in the ipsilateral cortex after SAH, and to investigate the intrinsic function and mechanism of NEK7. A vascular puncture model was used to create the mouse SAH model, and intracerebroventricular injection was used to deliver NEK7 recombinant protein, NEK7 small interfering RNA, nigericin, and MCC950. Neurological score, brain water content, Evans blue extravasation, immunofluorescence, and western blot were evaluated for neurological outcome, neuronal apoptosis, blood-brain barrier damage, microglia accumulation, and the mechanism of NEK7 and NLRP3 activation. Results: Our results exhibited that intrinsic NEK7 was elevated after SAH in the cortex of the left/ipsilateral hemisphere and was colocalized with microglia, endothelial cells, neuron, astrocyte, and oligodendrocyte, and highly expressed in microglia and endothelial cells after SAH. NEK7 recombinant protein aggravated neurological deficits, brain edema, neuronal apoptosis, BBB permeability, microglial accumulation, and activated caspase-1 and IL-1β maturation, while NEK7 small interfering RNA injection reversed those effects. Nigericin administration enhanced ASC oligomerization, caspase-1 and IL-1β maturation without increasing the protein level of NLRP3, and ASC oligomerization and caspase-1 IL-1β maturation reduced when combined with NEK7 knockdown or MCC950 delivery. We found the level of NEK7 expression increased after SAH and could activate the downstream NLRP3 pathway to induce caspase-1, IL-1β expression and then increased the BBB opening, microglia accumulation and neuronal apoptosis after SAH. Conclusions: This study demonstrated for the first time that NEK7 mediated the harmful effects of neuronal apoptosis and BBB disruption after SAH, which may potentially be mediated by the NEK7/NLRP3 signal. NEK7 served as a co-component for NLRP3 inflammasome activation after SAH. NEK7 may be a promising target on the management of SAH patients.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China.,Dalian Medical University, Dalian, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Dongdong Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China.,Dalian Medical University, Dalian, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| |
Collapse
|
26
|
Zhang K, Yang Y, Ge H, Wang J, Chen X, Lei X, Zhong J, Zhang C, Xian J, Lu Y, Tan L, Feng H. Artesunate promotes the proliferation of neural stem/progenitor cells and alleviates Ischemia-reperfusion Injury through PI3K/Akt/FOXO-3a/p27 kip1 signaling pathway. Aging (Albany NY) 2020; 12:8029-8048. [PMID: 32379706 PMCID: PMC7244066 DOI: 10.18632/aging.103121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/24/2020] [Indexed: 01/02/2023]
Abstract
Stroke is one of the leading causes of death worldwide that also result in long-term disability. Endogenous neural stem/progenitor cells (NSPCs) within subventricular (SVZ) and dentate gyrus (DG) zone, stimulated by cerebral infarction, can promote neural function recovery. However, the proliferation of eNSPCs triggered by ischemia is not enough to induce neural repair, which may contribute to the permanent disability in stroke patients. In this study, our results showed that following the treatment with artesunate (ART, 150 mg/kg), the functional recovery was significantly improved, the infarct volume was notably reduced, and the expression of Nestin, a proliferation marker of NSPCs in the infarcted cortex, was also increased. Additionally, the proliferative activity of NSPCs with or without oxygen-glucose deprivation/reperfusion was significantly promoted by ART treatment, and the therapeutic concentration was 0.8 μmol/L (without OGD/R) or 0.4 μmol/L (with OGD/R) in the in vitro model. Furthermore, the effects of ART can be abolished by the treatment of PI3K inhibitor wortmannin. The expression levels of related molecules in PI3K/Akt/FOXO-3a/p27kip1 signaling pathway (p-AKT, p-FOXO-3a, p27kip1) were examined using western blotting. The results suggested ART could inhibit the transcriptional function of FOXO-3a by inducing its phosphorylation, subsequently downregulating p27kip1 and enhancing neural stem cell proliferation in the infarcted cortex via PI3K/AKT signaling, further alleviating ischemia-reperfusion injury after ischemic stroke.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Ju Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Chao Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jishu Xian
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yongling Lu
- Clinical Research Center, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
27
|
Ikebuchi R, Fujimoto M, Moriya T, Kusumoto Y, Kobayashi K, Tomura M. T cells are the main population in mouse breast milk and express similar profiles of tight junction proteins as those in mammary alveolar epithelial cells. J Reprod Immunol 2020; 140:103137. [PMID: 32402923 DOI: 10.1016/j.jri.2020.103137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/26/2019] [Accepted: 04/16/2020] [Indexed: 01/30/2023]
Abstract
Immune cells are present in the breast milk of several mammalian species; however, their immunological function and transmigration mechanisms to milk remain unknown. Some researchers hypothesize that milk leukocytes have a mammary gland (MG) origin and transmigrate thorough the paracellular pathway, but mammary alveolar epithelial cells strictly regulate the paracellular movement of milk components during lactation via barrier structures, such as tight junctions (TJs). To investigate this discrepancy, we compared leukocyte populations in mouse MG and milk and explored TJ protein expression profiles in MG leukocytes. The main subsets of milk leukocytes were CD8+ and CD4+ T cells displaying the memory phenotype. The proportions of myeloid, B, and dendritic cells were significantly lower in milk than in the MG. CD8+ T cells expressed genes encoding the TJ proteins claudin-3, -7, -12, and ZO-1 at higher levels when compared with myeloid and B cells in the MG among lactating mice. Alveolar epithelial cells in the MG expressed claudin-3, -4, and -7. Administration of FTY720, an inhibitory agonist of sphingosine 1-phosphate receptor 1 that stabilizes TJ permeability, increased the myeloid cell proportion in milk. Different leukocyte populations in the MG and milk suggest active and selective mechanisms of cell transmigration to milk. Both TJ-forming components in alveolar epithelial cells from the MG and TJ protein expression profiles in leukocytes from the MG appear to regulate milk leukocyte populations. T cells are the main population in mouse breast milk and express similar profiles of TJ proteins as those in mammary alveolar epithelial cells.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, 584-8540, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan.
| | - Maika Fujimoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, 584-8540, Japan
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, 584-8540, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, 584-8540, Japan.
| |
Collapse
|
28
|
Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 2020; 18:62. [PMID: 32293472 PMCID: PMC7158016 DOI: 10.1186/s12964-020-00549-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. Despite its high prevalence, effective treatment strategies for TBI are limited. Traumatic brain injury induces structural and functional alterations of astrocytes, the most abundant cell type in the brain. As a way of coping with the trauma, astrocytes respond in diverse mechanisms that result in reactive astrogliosis. Astrocytes are involved in the physiopathologic mechanisms of TBI in an extensive and sophisticated manner. Notably, astrocytes have dual roles in TBI, and some astrocyte-derived factors have double and opposite properties. Thus, the suppression or promotion of reactive astrogliosis does not have a substantial curative effect. In contrast, selective stimulation of the beneficial astrocyte-derived molecules and simultaneous attenuation of the deleterious factors based on the spatiotemporal-environment can provide a promising astrocyte-targeting therapeutic strategy. In the current review, we describe for the first time the specific dual roles of astrocytes in neuronal plasticity and reconstruction, including neurogenesis, synaptogenesis, angiogenesis, repair of the blood-brain barrier, and glial scar formation after TBI. We have also classified astrocyte-derived factors depending on their neuroprotective and neurotoxic roles to design more appropriate targeted therapies. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China.
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China
| |
Collapse
|
29
|
Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. J Neuroinflammation 2020; 17:16. [PMID: 31926558 PMCID: PMC6954572 DOI: 10.1186/s12974-020-1699-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Objective The potential roles and mechanisms of pericytes in maintaining blood–brain barrier (BBB) integrity, which would be helpful for the development of therapeutic strategies for subarachnoid hemorrhage (SAH), remain unclear. We sought to provide evidence on the potential role of pericytes in BBB disruption and possible involvement and mechanism of CypA signaling in both cultured pericytes and SAH models. Methods Three hundred fifty-three adult male C57B6J mice weighing 22 to 30 g, 29 CypA−/− mice, 30 CypA+/+ (flox/flox) mice, and 30 male neonatal C57B6J mice were used to investigate the time course of CypA expression in pericytes after SAH, the intrinsic function and mechanism of CypA in pericytes, and whether the known receptor CD147 mediates these effects. Results Our data demonstrated both intracellular CypA and CypA secretion increased after SAH and could activate CD147 receptor and downstream NF-κB pathway to induce MMP9 expression and proteolytic functions for degradation of endothelium tight junction proteins and basal membranes. CypA served as autocrine or paracrine ligand for its receptor, CD147. Although CypA could be endocytosed by pericytes, specific endocytosis inhibitor chlorpromazine did not have any effect on MMP9 activation. However, specific knockdown of CD147 could reverse the harmful effects of CypA expression in pericytes on the BBB integrity after SAH. Conclusions This study demonstrated for the first time that CypA mediated the harmful effects of pericytes on BBB disruption after SAH, which potentially mediated by CD147/NF-κB/MMP9 signal, and junction protein degradation in the brain. By targeting CypA and pericytes, this study may provide new insights on the management of SAH patients.
Collapse
|
30
|
Wu LY, Enkhjargal B, Xie ZY, Travis ZD, Sun CM, Zhou KR, Zhang TY, Zhu QQ, Hang CH, Zhang JH. Recombinant OX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT signaling pathway following subarachnoid hemorrhage in rats. Exp Neurol 2020; 326:113179. [PMID: 31930990 DOI: 10.1016/j.expneurol.2020.113179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
Subarachnoid hemorrhage (SAH) is the most devastating form of stroke. Reducing neuronal apoptosis is an important countermeasure against early brain injury (EBI) after SAH. Recent evidence indicates that OX40-OX40L coupling is critical for cell survival and proliferation. Current study was performed to detect the role of recombinant OX40 (ReOX40) against neuronal apoptosis after SAH. The endovascular perforation model of SAH was performed on Sprague-Dawley (SD) rats. ReOX40 was injected intracerebroventricularly (i.c.v) 1 h after SAH induction and the following methods were employed: neurological function evaluation, immunofluorescence staining, fluoro-Jade C staining, and western blot. To study the underlying precise molecular mechanism, small interfering ribonucleic acid (siRNA) for OX40L and a specific inhibitor of PI3K, LY294002, were injected i.c.v. into SAH + ReOX40 rats before induction of SAH. When compared with sham rats, the expression of OX40 and OX40L was seen to decrease in the brain at 24 h after SAH induction. Administration of ReOX40 (5 μg/kg) increased expression of the OX40L, reduced the neuronal apoptosis, and improved short and long-term neurological function deficits. Furthermore, ReOx40 heightened activation of OX40L/PI3K/AKT axis, increased the downstream anti-apoptotic protein (Bcl2, Bcl-XL), and depressed the apoptotic protein (cleaved caspase 3, Bax). However, the protective effects of ReOX40 were abolished by the administration of OX40L siRNA and LY294002, respectively. These results demonstrate that ReOX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT pathway in EBI after SAH.
Collapse
Affiliation(s)
- Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Zhi-Yi Xie
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Zachary D Travis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Cheng-Mei Sun
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Ke-Ren Zhou
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Tong-Yu Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Qi-Quan Zhu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Department of Anesthesiology and Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States.
| |
Collapse
|
31
|
Li Y, Wu P, Bihl JC, Shi H. Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Curr Neuropharmacol 2020; 18:1168-1179. [PMID: 31903882 PMCID: PMC7770641 DOI: 10.2174/1570159x18666200106154203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of hemorrhagic stroke with significant morbidity and mortality. Aneurysmal bleeding causes elevated intracranial pressure, decreased cerebral blood flow, global cerebral ischemia, brain edema, blood component extravasation, and accumulation of breakdown products. These post-SAH injuries can disrupt the integrity and function of the blood-brain barrier (BBB), and brain tissues are directly exposed to the neurotoxic blood contents and immune cells, which leads to secondary brain injuries including inflammation and oxidative stress, and other cascades. Though the exact mechanisms are not fully clarified, multiple interconnected and/or independent signaling pathways have been reported to be involved in BBB disruption after SAH. In addition, alleviation of BBB disruption through various pathways or chemicals has a neuroprotective effect on SAH. Hence, BBB permeability plays an important role in the pathological course and outcomes of SAH. This review discusses the recent understandings of the underlying mechanisms and potential therapeutic targets in BBB disruption after SAH, emphasizing the dysfunction of tight junctions and endothelial cells in the development of BBB disruption. The emerging molecular targets, including toll-like receptor 4, netrin-1, lipocalin-2, tropomyosin-related kinase receptor B, and receptor tyrosine kinase ErbB4, are also summarized in detail. Finally, we discussed the emerging treatments for BBB disruption after SAH and put forward our perspectives on future research.
Collapse
Affiliation(s)
| | | | - Ji C. Bihl
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| | - Huaizhang Shi
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| |
Collapse
|
32
|
DL-3-n-butylphthalide protects the blood-brain barrier against ischemia/hypoxia injury via upregulation of tight junction proteins. Chin Med J (Engl) 2019; 132:1344-1353. [PMID: 30939485 PMCID: PMC6629356 DOI: 10.1097/cm9.0000000000000232] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The increased permeability of the blood-brain barrier (BBB) induced by ischemia/hypoxia is generally correlated with alteration of tight junctions (TJs). DL-3-n-butylphthalide (NBP) has been shown to exert neuroprotective effects after ischemic injury. However, few studies have assessed the correlation between NBP and TJs. This study aimed to investigate the potential effect of NBP on the TJ proteins claudin-5, zonula occludens-1 (ZO-1), and occludin during brain ischemia. METHODS A chronic cerebral hypoperfusion (CCH) Sprague-Dawley rat model was established, and NBP (20, 40, or 80 mg/kg, gavage, once a day) treatment was performed for 14 days. NBP (0.1 or 1.0 μmol/L) pre-treatment was applied to an in vitro hypoxia microvascular endothelial cell model (1% O2, 24 h). BBB permeability was assessed by performing the Evans blue assay. The expressions and localization of claudin-5, ZO-1, occludin, phosphorylated/total protein kinase B (p-Akt/Akt), phosphorylated/total glycogen synthase kinase 3β (GSK-3β)/GSK-3β, and β-catenin/β-actin were evaluated by Western blotting or immunofluorescence. Reactive oxygen species (ROS) generation was measured by flow cytometry analysis. TJ ultrastructure was observed by transmission electron microscopy. RESULTS In CCH rats, treatment with 40 and 80 mg/kg NBP decreased the Evans blue content in brain tissue (9.0 ± 0.9 μg/g vs. 12.3 ± 1.9 μg/g, P = 0.005; 6.7 ± 0.6 μg/g vs. 12.3 ± 1.9 μg/g, P < 0.01), increased the expression of claudin-5 (0.79 ± 0.08 vs. 0.41 ± 0.06, P < 0.01; 0.97 ± 0.07 vs. 0.41 ± 0.06, P < 0.01), and elevated the ZO-1 protein level (P < 0.05) in brain microvascular segments in a dose-dependent manner in comparison with the corresponding values in the model group. There was no significant difference in occludin expression (P > 0.05). In the hypoxia cell model, NBP pre-treatment improved TJ ultrastructure, decreased intracellular ROS level, and increased the expression of claudin-5 (P < 0.01) and ZO-1 (P < 0.01) in comparison with the corresponding values in the hypoxia group. NBP treatment also elevated the relative expression levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and β-catenin/β-actin in comparison with the corresponding values in the hypoxia group (all P < 0.05). CONCLUSION NBP improves the barrier function of BBB against ischemic injury by upregulating the expression of TJ proteins, possibly by reducing oxidative stress and activating the Akt/GSK-3β/β-catenin signaling pathway.
Collapse
|
33
|
Immune response mediates the cardiac damage after subarachnoid hemorrhage. Exp Neurol 2019; 323:113093. [PMID: 31676318 DOI: 10.1016/j.expneurol.2019.113093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 10/25/2019] [Indexed: 11/23/2022]
Abstract
Cardiac dysfunction is a common adverse effect of subarachnoid hemorrhage (SAH). Autopsy of SAH patients shows immunocyte infiltration into the heart. In this study, a SAH model of endovascular perforation was performed in adult male mice in order to test whether SAH causes cardiac dysfunction in non-primary cardiac disease young adult male mice and whether immune response mediates SAH induced cardiac and neurological deficit. Splenectomy was performed on a subpopulation of mice one week prior to induction of the SAH. Neurological functional tests, transthoracic Doppler echocardiography, immunofluorescent staining, and flow cytometry were performed to investigate neurological and cardiac function and immune/inflammatory effects of SAH in mice with or without splenectomy. We found that SAH significantly induces ventricular fibrillation and cardiac dysfunction identified by significantly reduced left ventricular ejection fraction, left ventricular fractional shortening, decreased heart rate, as well as increased macrophage and neutrophil infiltration into heart and inflammatory factor expression in the heart compared to sham control mice. SAH also induces neurological deficit, increases astrocyte and microglial activity, and inflammatory cell infiltration into brain as well as up-regulates inflammatory factor expression in the brain tissue. Splenectomy not only significantly improves neurological function, but also reduces cardiac dysfunction compared to SAH alone mice. Splenectomy in SAH mice significantly reduces inflammatory cell infiltration, and decreases NADPH oxidase-2 and macrophage chemokine protein-1 expression in heart and brain when compared to non-splenectomy SAH mice. Our data suggest that, SAH induces acute cardiac dysfunction in non-primary cardiac disease mice. Secondary immune response may play an important role in mediating brain-heart damage after SAH.
Collapse
|
34
|
Kumar SEP, Bairy KL, Nayak V, Kumar Reddy S, Kiran A, Ballal A. Amelioration of Aluminium Chloride (AlCl3) Induced Neurotoxicity by Combination of Rivastigmine and Memantine with Artesunate in Albino Wistar Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer’s disease (AD) is an age-related progressive disorder characterized by neurodegeneration and accumulation of abnormal proteins. Artesunate, an anti-malarial drug has recently been shown to have anti-inflammatory, antiviral, angiogenic and other pleiotropic effects. It has also improved cognitive decline induced by hepatic coma which is suggestive of its role in learning and memory. In view of this, the current study was planned to assess the effect of the combination of artesunate with rivastigmine and memantine in aluminium chloride induced neurotoxicity. The study was conducted on 24 male adult albino wistar rats which were divided into four groups (n=6). Group - I to IV received saline, aluminium chloride (AlCl3), AlCl3 + artesunate +rivastigmine, AlCl3 + artesunate + memantine for 60 days respectively. After the 60th day of treatment, all animals were subjected to a passive avoidance task. All the animals were then sacrificed to study the histopathological changes in the hippocampus. Artesunate in combination with rivastigmine and memantine showed significant improvement in memory impairment and reduced neuronal death. Neuronal viability was more prominent in combination treatments as shown by histopathological results. Artesunate in combination with rivastigmine and memantine could be useful in AD. Artesunate can be used as an adjuvant therapy because artesunate combined with standard drugs produced significant neuroprotective effect.
Collapse
Affiliation(s)
- S. E. Praveen Kumar
- Department of Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka - 576104, India
| | - Kurady Laxminarayana Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, P.O.Box 11172, Ras Al Khaimah, UAE
| | - Veena Nayak
- Department of Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka - 576104, India
| | - Shiva Kumar Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka - 576104, India
| | - Amruth Kiran
- Department of Pharmacology, Melaka Manipal Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka - 576104, India
| | - Abhijna Ballal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka - 576104, India
| |
Collapse
|
35
|
Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1138-1143. [PMID: 30804237 PMCID: PMC6425837 DOI: 10.4103/1673-5374.251190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage remains serious hemorrhagic stroke with high morbidities and mortalities. Aneurysm rupture causes arterial bleeding-induced mechanical brain tissue injuries and elevated intracranial pressure, followed by global cerebral ischemia. Post-subarachnoid hemorrhage ischemia, tissue injuries as well as extravasated blood components and the breakdown products activate microglia, astrocytes and Toll-like receptor 4, and disrupt blood-brain barrier associated with the induction of many inflammatory and other cascades. Once blood-brain barrier is disrupted, brain tissues are directly exposed to harmful blood contents and immune cells, which aggravate brain injuries furthermore. Blood-brain barrier disruption after subarachnoid hemorrhage may be developed by a variety of mechanisms including endothelial cell apoptosis and disruption of tight junction proteins. Many molecules and pathways have been reported to disrupt the blood-brain barrier after subarachnoid hemorrhage, but the exact mechanisms remain unclear. Multiple independent and/or interconnected signaling pathways may be involved in blood-brain barrier disruption after subarachnoid hemorrhage. This review provides recent understandings of the mechanisms and the potential therapeutic targets of blood-brain barrier disruption after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
36
|
Eser Ocak P, Ocak U, Sherchan P, Zhang JH, Tang J. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J Neurosci Res 2018; 98:29-41. [PMID: 30345547 DOI: 10.1002/jnr.24327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023]
Abstract
Major facilitator superfamily domain-containing protein-2a (Mfsd2a) which was considered as an orphan transporter has recently gained attention for its regulatory role in the maintenance of proper functioning of the blood-brain barrier. Besides the major role of Mfsd2a in maintaining the barrier function, increasing evidence has emerged with regard to the contributions of Mfsd2a to various biological processes such as transport, cell fusion, cell cycle, inflammation and regeneration, managing tumor growth, functioning of other organs with barrier functions or responses to injury. The purpose of this article is to review the different roles of Mfsd2a and its involvement in the physiological and pathophysiological processes primarily in the central nervous system and throughout the mammalian body under the lights of the current literature.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Umut Ocak
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
37
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
38
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
39
|
Liu Z, Qu M, Yu L, Song P, Chang Y. Artesunate Inhibits Renal Ischemia-Reperfusion-Mediated Remote Lung Inflammation Through Attenuating ROS-Induced Activation of NLRP3 Inflammasome. Inflammation 2018; 41:1546-1556. [DOI: 10.1007/s10753-018-0801-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Li Q, Zhao H, Pan P, Ru X, Zuo S, Qu J, Liao B, Chen Y, Ruan H, Feng H. Nexilin Regulates Oligodendrocyte Progenitor Cell Migration and Remyelination and Is Negatively Regulated by Protease-Activated Receptor 1/Ras-Proximate-1 Signaling Following Subarachnoid Hemorrhage. Front Neurol 2018; 9:282. [PMID: 29922213 PMCID: PMC5996890 DOI: 10.3389/fneur.2018.00282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/10/2018] [Indexed: 01/03/2023] Open
Abstract
Progressive white matter (WM) impairments caused by subarachnoid hemorrhage (SAH) contribute to cognitive deficits and poor clinical prognoses; however, their pathogenetic mechanisms are poorly understood. We investigated the role of nexilin and oligodendrocyte progenitor cell (OPC)-mediated repair in a mouse model of experimental SAH generated via left endovascular perforation. Nexilin expression was enhanced by the elevated migration of OPCs after SAH. Knocking down nexilin by siRNA reduced OPC migration both in vitro and in vivo and abridged WM repair. In contrast, the protease-activated receptor 1 (PAR1), Ras-proximate-1 (RAP1) and phosphorylated RAP1 (pRAP1) levels in WM were elevated after SAH. The genetic inhibition of PAR1 reduced RAP1 and pRAP1 expression, further enhancing nexilin expression. When delivered at an early stage at a concentration of 25 µg/kg, thrombin receptor antagonist peptide along with PAR1 knockdown rescued the down-regulation of myelin basic protein and improved remyelination at the later stage of SAH. Our results suggest that nexilin is required for OPC migration and remyelination following SAH, as it negatively regulates PAR1/RAP1 signaling, thus providing a promising therapeutic target in WM repair and functional recovery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pengyu Pan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xufang Ru
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jie Qu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bin Liao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
41
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
42
|
Keita Alassane S, Nicolau-Travers ML, Menard S, Andreoletti O, Cambus JP, Gaudre N, Wlodarczyk M, Blanchard N, Berry A, Abbes S, Colongo D, Faye B, Augereau JM, Lacroux C, Iriart X, Benoit-Vical F. Young Sprague Dawley rats infected by Plasmodium berghei: A relevant experimental model to study cerebral malaria. PLoS One 2017; 12:e0181300. [PMID: 28742109 PMCID: PMC5524346 DOI: 10.1371/journal.pone.0181300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cerebral malaria (CM) is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173) infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM) symptoms while the majority (55%) of the remaining rats developed severe anemia and hyperparasitemia (NoECM). These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC) count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.
Collapse
Affiliation(s)
- Sokhna Keita Alassane
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Marie-Laure Nicolau-Travers
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sandie Menard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Jean-Pierre Cambus
- Laboratoire Hématologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Noémie Gaudre
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Myriam Wlodarczyk
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Nicolas Blanchard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Sarah Abbes
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | | | - Babacar Faye
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Jean-Michel Augereau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Xavier Iriart
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| |
Collapse
|
43
|
bFGF Protects Against Oxygen Glucose Deprivation/Reoxygenation-Induced Endothelial Monolayer Permeability via S1PR1-Dependent Mechanisms. Mol Neurobiol 2017; 55:3131-3142. [DOI: 10.1007/s12035-017-0544-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
|
44
|
The Potential Therapeutic Effects of Artesunate on Stroke and Other Central Nervous System Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1489050. [PMID: 28116289 PMCID: PMC5223005 DOI: 10.1155/2016/1489050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/20/2016] [Indexed: 12/31/2022]
Abstract
Artesunate is an important agent for cerebral malaria and all kinds of other severe malaria because it is highly efficient, lowly toxic, and well-tolerated. Loads of research pointed out that it had widespread pharmacological activities such as antiparasites, antitumor, anti-inflammation, antimicrobes activities. As we know, the occurrence and development of neurological disorders usually refer to intricate pathophysiologic mechanisms and multiple etiopathogenesis. Recent progress has also demonstrated that drugs with single mechanism and serious side-effects are not likely the candidates for treatment of the neurological disorders. Therefore, the pluripotent action of artesunate may result in it playing an important role in the prevention and treatment of these neurological disorders. This review provides an overview of primary pharmacological mechanism of artesunate and its potential therapeutic effects on neurological disorders. Meanwhile, we also briefly summarize the primary mechanisms of artemisinin and its derivatives. We hope that, with the evidence presented in this review, the effect of artesunate in prevention and curing for neurological disorders can be further explored and studied in the foreseeable future.
Collapse
|
45
|
Petersen JEV, Lavstsen T, Craig A. Breaking down brain barrier breaches in cerebral malaria. J Clin Invest 2016; 126:3725-3727. [PMID: 27643435 DOI: 10.1172/jci90188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent findings have linked brain swelling to death in cerebral malaria (CM). These observations have prompted a number of investigations into the mechanisms of this pathology with the goal of identifying potential therapeutic targets. In this issue of the JCI, Gallego-Delgado and colleagues present evidence that implicates angiotensin receptors and the relocation of β-catenin to the endothelial cell nucleus in CM. This study provides a renewed focus on infected erythrocyte debris as the cause of endothelial damage and challenges previous work implicating direct effects of infected erythrocyte sequestration in the brain as the major driver of disease. While this work provides potential therapeutic avenues for CM, it leaves a number of questions unanswered.
Collapse
|