1
|
Zeng ZJ, Lin X, Yang L, Li Y, Gao W. Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04225-1. [PMID: 38789893 DOI: 10.1007/s12035-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
As the brain's resident immune patrol, microglia mediate endogenous immune responses to central nervous system injury in ischemic stroke, thereby eliciting either neuroprotective or neurotoxic effects. The association of microglia-mediated neuroinflammation with the progression of ischemic stroke is evident through diverse signaling pathways, notably involving inflammasomes. Within microglia, inflammasomes play a pivotal role in promoting the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), facilitating pyroptosis, and triggering immune infiltration, ultimately leading to neuronal cell dysfunction. Addressing the persistent and widespread inflammation holds promise as a breakthrough in enhancing the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
He F, Chen C, Wang Y, Wang S, Lyu S, Jiao J, Huang G, Yang J. Safranal acts as a neurorestorative agent in rats with cerebral ischemic stroke via upregulating SIRT1. Exp Ther Med 2024; 27:71. [PMID: 38234630 PMCID: PMC10792405 DOI: 10.3892/etm.2023.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Safranal is an active ingredient of saffron (Crocus sativus L.). Its neuroprotective role in ischemic stroke (IS) through reducing oxidative stress damage has been widely reported. However, the neurorestorative mechanisms of safranal are still in the preliminary stage of exploration. the present study is aimed to discuss the effects of safranal on the recovery of neural function after IS. A middle cerebral artery occlusion/reperfusion (MCAO/R) rat model and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in rat brain microvascular endothelial cells (RBMEC) were established to explore the effects of safranal on IS in vivo and in vitro. It was found that safranal dramatically reduced infarct size and Nissl's body loss in rats subjected to MCAO/R. Safranal also promoted neuron survival, stimulated neurogenesis, induced angiogenesis and increased SIRT1 expression in vivo and in vitro. Silencing of SIRT1 reversed the above effects of safranal on OGD/R-induced RBMEC. The present study indicated that safranal was a promising compound to exert neurorestorative effect in IS via upregulating SIRT1 expression. These results offer insight into developing new mechanisms in the recovery of neural function after safranal treatment of IS.
Collapse
Affiliation(s)
- Fei He
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Chunmian Chen
- Key Laboratory of Neuropsychiatric Endocrinology, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Yangyang Wang
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Shuen Wang
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Shuangyan Lyu
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Junqiang Jiao
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Guoyong Huang
- Key Laboratory of Neuropsychiatric Endocrinology, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Jiangshun Yang
- Key Laboratory of Neuropsychiatric Endocrinology, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| |
Collapse
|
3
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Jeong HC, Chae YJ, Shin KH. Predicting the systemic exposure and lung concentration of nafamostat using physiologically-based pharmacokinetic modeling. Transl Clin Pharmacol 2022; 30:201-211. [PMID: 36632076 PMCID: PMC9810492 DOI: 10.12793/tcp.2022.30.e20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Nafamostat has been actively studied for its neuroprotective activity and effect on various indications, such as coronavirus disease 2019 (COVID-19). Nafamostat has low water solubility at a specific pH and is rapidly metabolized in the blood. Therefore, it is administered only intravenously, and its distribution is not well known. The main purposes of this study are to predict and evaluate the pharmacokinetic (PK) profiles of nafamostat in a virtual healthy population under various dosing regimens. The most important parameters were assessed using a physiologically based pharmacokinetic (PBPK) approach and global sensitivity analysis with the Sobol sensitivity analysis. A PBPK model was constructed using the SimCYP® simulator. Data regarding the in vitro metabolism and clinical studies were extracted from the literature to assess the predicted results. The model was verified using the arithmetic mean maximum concentration (Cmax), the area under the curve from 0 to the last time point (AUC0-t), and AUC from 0 to infinity (AUC0-∞) ratio (predicted/observed), which were included in the 2-fold range. The simulation results suggested that the 2 dosing regimens for the treatment of COVID-19 used in the case reports could maintain the proposed effective concentration for inhibiting severe acute respiratory syndrome coronavirus 2 entry into the plasma and lung tissue. Global sensitivity analysis indicated that hematocrit, plasma half-life, and microsomal protein levels significantly influenced the systematic exposure prediction of nafamostat. Therefore, the PBPK modeling approach is valuable in predicting the PK profile and designing an appropriate dosage regimen.
Collapse
Affiliation(s)
- Hyeon-Cheol Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| | - Yoon-Jee Chae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Woosuk University, Wanju 55338, Korea
| | - Kwang-Hee Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
5
|
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16:951202. [PMID: 35966199 PMCID: PMC9368323 DOI: 10.3389/fncel.2022.951202] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-β protein formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chuncao Ao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinlun Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng
| |
Collapse
|
6
|
Yan Y, Yang J, Xiao D, Yin J, Song M, Xu Y, Zhao L, Dai Q, Li Y, Wang C, Wang Z, Ren X, Yang X, Ni J, Liu M, Guo X, Li W, Chen X, Liu Z, Cao R, Zhong W. Nafamostat mesylate as a broad-spectrum candidate for the treatment of flavivirus infections by targeting envelope proteins. Antiviral Res 2022; 202:105325. [PMID: 35460703 DOI: 10.1016/j.antiviral.2022.105325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/24/2023]
Abstract
Epidemics caused by flaviviruses occur globally; however, no antiviral drugs treating flaviviruses infections have yet been developed. Nafamostat (NM) is a protease inhibitor approved for pancreatitis and anti-coagulation. The anti-flavivirus potential of NM has yet to be determined. Here, utilizing in vitro and in vivo infection assays, we present that NM effectively inhibits Zika virus (ZIKV) and other flaviviruses in vitro. NM inhibited the production of ZIKV viral RNA and proteins originating from Asia and African lineage in human-, mouse- and monkey-derived cell lines and the in vivo anti-ZIKV efficacy of NM was verified. Mode-of-action analysis using time-of-drug-addition assay, infectivity inhibition assay, surface plasmon resonance assay, and molecular docking revealed that NM interacted with viral particles and blocked the early stage of infection by targeting the domain III of ZIKV envelope protein. Analysing the anti-flavivirus effects of NM-related compounds suggested that the antiviral effect depended on the unique structure of NM. These findings suggest the potential use of NM as an anti-flavivirus candidate, and a novel drug design approach targeting the flavivirus envelope protein.
Collapse
Affiliation(s)
- Yunzheng Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingjing Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiye Yin
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Mengwen Song
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yijie Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhuang Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaofeng Ren
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaotong Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jie Ni
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Miaomiao Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xingjuan Chen
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
7
|
Yates AG, Weglinski CM, Ying Y, Dunstan IK, Strekalova T, Anthony DC. Nafamostat reduces systemic inflammation in TLR7-mediated virus-like illness. J Neuroinflammation 2022; 19:8. [PMID: 34991643 PMCID: PMC8734544 DOI: 10.1186/s12974-021-02357-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The serine protease inhibitor nafamostat has been proposed as a treatment for COVID-19, by inhibiting TMPRSS2-mediated viral cell entry. Nafamostat has been shown to have other, immunomodulatory effects, which may be beneficial for treatment, however animal models of ssRNA virus infection are lacking. In this study, we examined the potential of the dual TLR7/8 agonist R848 to mimic the host response to an ssRNA virus infection and the associated behavioural response. In addition, we evaluated the anti-inflammatory effects of nafamostat in this model. METHODS CD-1 mice received an intraperitoneal injection of R848 (200 μg, prepared in DMSO, diluted 1:10 in saline) or diluted DMSO alone, and an intravenous injection of either nafamostat (100 μL, 3 mg/kg in 5% dextrose) or 5% dextrose alone. Sickness behaviour was determined by temperature, food intake, sucrose preference test, open field and forced swim test. Blood and fresh liver, lung and brain were collected 6 h post-challenge to measure markers of peripheral and central inflammation by blood analysis, immunohistochemistry and qPCR. RESULTS R848 induced a robust inflammatory response, as evidenced by increased expression of TNF, IFN-γ, CXCL1 and CXCL10 in the liver, lung and brain, as well as a sickness behaviour phenotype. Exogenous administration of nafamostat suppressed the hepatic inflammatory response, significantly reducing TNF and IFN-γ expression, but had no effect on lung or brain cytokine production. R848 administration depleted circulating leukocytes, which was restored by nafamostat treatment. CONCLUSIONS Our data indicate that R848 administration provides a useful model of ssRNA virus infection, which induces inflammation in the periphery and CNS, and virus infection-like illness. In turn, we show that nafamostat has a systemic anti-inflammatory effect in the presence of the TLR7/8 agonist. Therefore, the results indicate that nafamostat has anti-inflammatory actions, beyond its ability to inhibit TMPRSS2, that might potentiate its anti-viral actions in pathologies such as COVID-19.
Collapse
Affiliation(s)
- Abi G Yates
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Caroline M Weglinski
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
| | - Yuxin Ying
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
| | - Isobel K Dunstan
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
| | - Tatyana Strekalova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Daniel C Anthony
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russia.
- University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Matsubara H, Imai T, Tsuji S, Oka N, Egashira Y, Enomoto Y, Nakayama N, Nakamura S, Shimazawa M, Iwama T, Hara H. Nafamostat protects against early brain injury after subarachnoid hemorrhage in mice. J Pharmacol Sci 2022; 148:65-72. [PMID: 34924132 DOI: 10.1016/j.jphs.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to evaluate the effects of nafamostat, a serin protease inhibitor, in the management of subarachnoid hemorrhage (SAH). SAH was induced by endovascular perforation in male mice. Nafamostat was administered intraperitoneally four times immediately after SAH induction. Cerebral blood flow, neurological behavior tests, SAH grade and protein expression were evaluated at 24 h after SAH induction. In the in vitro model, human brain microvascular endothelial cells (HBMVECs), HBVECs were exposed to thrombin and hypoxia for 24 h; nafamostat was administered and the protein expression was evaluated. Eighty-eight mice were included in the in vivo study. Fifteen mice (17%) were excluded because of death or procedure failure. Nafamostat exerted no significant effect on the SAH grade or cerebral blood flow; however, it improved the neurological behavior and suppressed the thrombin and MMP-9 expression. In addition, nafamostat suppressed the ICAM-1 expression and p38 phosphorylation in the in vitro study. Nafamostat has a protective effect against HBMVEC after exposure to thrombin and hypoxia, suggesting its role in improving the neurological outcomes after SAH. These findings indicate that nafamostat has the potential to be a novel therapeutic drug in the management of SAH.
Collapse
Affiliation(s)
- Hirofumi Matsubara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Natsumi Oka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yusuke Egashira
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Noriyuki Nakayama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
9
|
Sun J, Sun R, Li C, Luo X, Chen J, Hong J, Zeng Y, Wang QM, Wen H. NgR1 pathway expression in cerebral ischemic Sprague-Dawley rats with cognitive impairment. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:767-775. [PMID: 34630954 PMCID: PMC8487595 DOI: 10.22038/ijbms.2021.53316.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): This study aimed to determine the effect of ischemic occlusion duration and recovery time course on motor and cognitive function, identify optimal conditions for assessing cognitive function with minimal interference from motor deficits, and elucidate the underlying mechanism of axonal inhibitors. Materials and Methods: Sprague-Dawley (SD) rats were randomly allocated to the transient middle cerebral artery occlusion (tMCAO) 60-min (tMCAO60min), tMCAO90min, tMCAO120min, and sham groups. We conducted forelimb grip strength, two-way shuttle avoidance task, and novel object recognition task (NORT)tests at three time points (14, 21, and 28 days). Expression of Nogo receptor-1 (NgR1), the endogenous antagonist lateral olfactory tract usher substance, ras homolog family member A (Rho-A), and RhoA-activated Rho kinase (ROCK) was examined in the ipsilateral thalamus. Results: There was no difference in grip strength between sham and tMCAO90min rats at 28 days. tMCAO90min and tMCAO120min rats showed lower discrimination indices in the NORT than sham rats on day 28. Compared with that in sham rats, the active avoidance response rate was lower in tMCAO90min rats on days 14, 21, and 28 and in tMCAO120min rats on days 14 and 21. Furthermore, 50-54% of rats in the tMCAO90min group developed significant cognitive impairment on day 28, and thalamic NgR1, RhoA, and ROCK expression were greater in tMCAO90min rats than in sham rats. Conclusion: Employing 90-min tMCAO in SD rats and assessing cognitive function 28 days post-stroke could minimize motor dysfunction effects in cognitive function assessments. Axonal inhibitor deregulation could be involved in poststroke cognitive impairment.
Collapse
Affiliation(s)
- Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.,Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen 518048, Guangdong Province, China.,Shenzhen Dapeng New District Nan'ao People's Hospital Shenzhen 518048, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School,96 13 Street, Charlestown, MA 02129, USA
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
10
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
11
|
Electroacupuncture on Trigeminal Nerve-Innervated Acupoints Ameliorates Poststroke Cognitive Impairment in Rats with Middle Cerebral Artery Occlusion: Involvement of Neuroprotection and Synaptic Plasticity. Neural Plast 2020; 2020:8818328. [PMID: 32963517 PMCID: PMC7492933 DOI: 10.1155/2020/8818328] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Poststroke cognitive impairment (PSCI) is a severe sequela of stroke. There are no effective therapeutic options for it. In this study, we evaluated whether electroacupuncture (EA) on the trigeminal nerve-innervated acupoints could alleviate PSCI and identified the mechanisms in an animal model. The male Sprague-Dawley rat middle cerebral artery occlusion (MCAO) model was used in our study. EA was conducted on the two scalp acupoints, EX-HN3 (Yintang) and GV20 (Baihui), innervated by the trigeminal nerve, for 14 sessions, daily. Morris water maze and novel object recognition were used to evaluate the animal's cognitive performance. Neuroprotection and synaptic plasticity biomarkers were analyzed in brain tissues. Ischemia-reperfusion (I/R) injury significantly impaired spatial and cognition memory, while EA obviously reversed cognitive deterioration to the control level in the two cognitive paradigms. Moreover, EA reversed the I/R injury-induced decrease of brain-derived neurotrophic factor, tyrosine kinase B, N-methyl-D-aspartic acid receptor 1, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, γ-aminobutyric acid type A receptors, Ca2+/calmodulin-dependent protein kinase II, neuronal nuclei, and postsynaptic density protein 95 expression in the prefrontal cortex and hippocampus. These results suggest that EA on the trigeminal nerve-innervated acupoints is an effective therapy for PSCI, in association with mediating neuroprotection and synaptic plasticity in related brain regions in the MCAO rat model.
Collapse
|
12
|
Sun H, He X, Tao X, Hou T, Chen M, He M, Liao H. The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke. J Neuroinflammation 2020; 17:171. [PMID: 32473633 PMCID: PMC7260848 DOI: 10.1186/s12974-020-01845-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spontaneous functional recovery occurs during the acute phase after stroke onset, but this intrinsic recovery remains limited. Therefore, exploring the mechanism underlying spontaneous recovery and identifying potential strategies to promote functional rehabilitation after stroke are very important. The CD200/CD200R signaling pathway plays an important role in neurological recovery by modulating synaptic plasticity during multiple brain disorders. However, the effect and mechanism of action of the CD200/CD200R pathway in spontaneous functional recovery after stroke are unclear. METHODS In this study, we used a transient middle cerebral artery occlusion (MCAO) model in rats to investigate the function of CD200/CD200R signaling in spontaneous functional recovery after stroke. We performed a battery of behavioral tests (Longa test, adhesive removal test, limb-use asymmetry test, and the modified grip-traction test) to evaluate sensorimotor function after intracerebroventricular (i.c.v.) injection with CD200 fusion protein (CD200Fc) or CD200R blocking antibody (CD200R Ab) post-stroke. Density and morphology of dendritic spines were analyzed by Golgi staining. Microglia activation was evaluated by immunofluorescence staining. Western blot was used to detect the levels of protein and the levels of mRNA were measured by qPCR. RESULTS Our study demonstrated that sensorimotor function, synaptic proteins, and structures were gradually recovered and CD200R was transiently upregulated in ipsilateral cortex after stroke. Synapse-related proteins and dendritic spines were preserved, accompanied by sensorimotor functional recovery, after stereotaxic CD200Fc injection post-stroke. In addition, CD200Fc restrained microglia activation and pro-inflammatory factor release (such as Il-1, Tnf-α, and Il-6) after MCAO. On the contrary, CD200R Ab aggravated sensory function recovery in adhesive removal test and further promoted microglia activation and pro-inflammatory factor release (such as Il-1) after MCAO. The immune-modulatory effect of CD200/CD200R signaling might be exerted partly by its inhibition of the MAPK pathway. CONCLUSIONS This study provides evidence that the CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity via inhibition of microglia activation and inflammatory factor release.
Collapse
Affiliation(s)
- Hao Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Xinran He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Xia Tao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Tingting Hou
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Mingming Chen
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Meijun He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Hong Liao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| |
Collapse
|
13
|
Hu J, Li C, Hua Y, Liu P, Gao B, Wang Y, Bai Y. Constraint-induced movement therapy improves functional recovery after ischemic stroke and its impacts on synaptic plasticity in sensorimotor cortex and hippocampus. Brain Res Bull 2020; 160:8-23. [PMID: 32298779 DOI: 10.1016/j.brainresbull.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 01/28/2023]
Abstract
Constraint-induced movement therapy (CIMT) has proven to be an effective way to restore functional deficits following stroke in human and animal studies, but its underlying neural plasticity mechanism remains unknown. Accumulating evidence indicates that rehabilitation after stroke is closely associated with synaptic plasticity. We therefore investigated the impact of CIMT on synaptic plasticity in ipsilateral and contralateral brain of rats following stroke. Rats were subjected to 90 minutes of transient middle cerebral artery occlusion (MCAO). CIMT was performed from 7 days after stroke and lasted for two weeks. Modified Neurology Severity Score (mNSS) and the ladder rung walking task tests were conducted at 7,14 and 21 days after stroke. Golgi-Cox staining was used to observe the plasticity changes of dendrites and dendritic spines. The expression of glutamate receptors (GluR1, GluR2 and NR1) were examined by western blot. Our data suggest that the dendrites and dendritic spines are damaged to varying degrees in bilateral sensorimotor cortex and hippocampus after acute stroke. CIMT treatment enhances the plasticity of dendrites and dendritic spines in the ipsilateral and contralateral sensorimotor cortex, increases the expression of synaptic GluR2 in ipsilateral sensorimotor cortex, which may be mechanisms for CIMT to improve functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peile Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beiyao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Yuan L, Sun S, Pan X, Zheng L, Li Y, Yang J, Wu C. Pseudoginsenoside-F11 improves long-term neurological function and promotes neurogenesis after transient cerebral ischemia in mice. Neurochem Int 2020; 133:104586. [DOI: 10.1016/j.neuint.2019.104586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
|
15
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Fuwa M, Kageyama M, Ohashi K, Sasaoka M, Sato R, Tanaka M, Tashiro K. Nafamostat and sepimostat identified as novel neuroprotective agents via NR2B N-methyl-D-aspartate receptor antagonism using a rat retinal excitotoxicity model. Sci Rep 2019; 9:20409. [PMID: 31892740 PMCID: PMC6938488 DOI: 10.1038/s41598-019-56905-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
In addition to its role in the treatment of pancreatitis, the serine protease inhibitor nafamostat exhibits a retinal protective effect. However, the exact mechanisms underlying this effect are unknown. In this study, the neuroprotective effects of nafamostat and its orally active derivative sepimostat against excitotoxicity were further characterised in vitro and in vivo. In primary rat cortical neurons, nafamostat completely suppressed N-methyl-D-aspartate (NMDA)-induced cell death. Intravitreal injection of nafamostat and sepimostat protected the rat retina against NMDA-induced degeneration, whereas the structurally related compounds, gabexate and camostat, did not. The neuroprotective effects of nafamostat and the NR2B antagonist ifenprodil were remarkably suppressed by spermidine, a naturally occurring polyamine that modulates the NR2B subunit. Both nafamostat and sepimostat inhibited [3H]ifenprodil binding to fractionated rat brain membranes. Thus, nafamostat and sepimostat may exert neuroprotective effects against excitotoxic retinal degeneration through NMDA receptor antagonism at the ifenprodil-binding site of the NR2B subunit.
Collapse
Affiliation(s)
- Masahiro Fuwa
- Research and Development, Santen Pharmaceutical Co., Ltd, Nara, Japan.,Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaaki Kageyama
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Koji Ohashi
- Research and Development, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Masaaki Sasaoka
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Ryuichi Sato
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masami Tanaka
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
17
|
Zheng Q, Liu L, Liu H, Zheng H, Sun H, Ji J, Sun Y, Yang T, Zhao H, Qi F, Li K, Li J, Zhang N, Fan Y, Wang L. The Bu Shen Yi Sui Formula Promotes Axonal Regeneration via Regulating the Neurotrophic Factor BDNF/TrkB and the Downstream PI3K/Akt Signaling Pathway. Front Pharmacol 2019; 10:796. [PMID: 31379571 PMCID: PMC6650751 DOI: 10.3389/fphar.2019.00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal damage is recognized as an important pathological feature in the chronic progressive neurological disorder multiple sclerosis (MS). Promoting axonal regeneration is a critical strategy for the treatment of MS. Our clinical and experimental studies have shown that the Bu Shen Yi Sui formula (BSYS) promotes axonal regeneration in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, but the exact mechanism has not been thoroughly elucidated to date. In this study, we investigated the effects of BSYS and its two decomposed formulas-the Bu Shen formula (BS) and the Hua Tan Huo Xue formula (HTHX)-on brain-derived neurotrophic factor (BDNF)/TrkB and related signaling pathways to explore the mechanism by which axonal regeneration is promoted in vitro and in vivo. Damaged SH-SY5Y cells incubated with low serum were treated with BSYS-, BS-, and HTHX-containing serum, and EAE mice induced by the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide were treated with BSYS. The results showed that the BSYS-containing serum markedly increased cell viability and increased the levels of growth associated protein (GAP)-43, phosphorylated (p)-cAMP-response element binding protein (CREB), BDNF, TrkB, and p-PI3K. The BS and HTHX treatments also induced the protein expression of GAP-43 and p-extracellular signal-regulated kinase (ERK) in the cells. Furthermore, the effects of BSYS on cell viability, GAP-43, p-CREB, and neurite outgrowth were clearly inhibited by LY294002, a specific antagonist of the PI3K signaling pathways. The addition of U0126 and U73122, antagonists of the ERK and PLCγ pathway, respectively, significantly inhibited cell viability and GAP-43 protein expression. Moreover, BSYS treatment significantly increased the expression of the 68-, 160-, and 200-kDa neurofilaments (NFs) of proteins and the BDNF, TrkB, PI3K, and Akt mRNA and proteins in the brain or spinal cord of mice at different stages. These results indicated that BSYS promotes nerve regeneration, and its mechanism is mainly related to the upregulation of the BDNF/TrkB and PI3K/Akt signaling pathways. BS and HTHX also promoted nerve regeneration, and this effect involved the ERK pathway.
Collapse
Affiliation(s)
- Qi Zheng
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.,Oncology Department, Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.,Physical Examination Department, The Chinese Medicine Hospital of Sanmenxia City, Henan, China
| | - Haolong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hong Zheng
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hao Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yaqin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Kangning Li
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Junling Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Nan Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
High serum nerve growth factor concentrations are associated with good functional outcome at 3 months following acute ischemic stroke. Clin Chim Acta 2019; 488:20-24. [DOI: 10.1016/j.cca.2018.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
|
19
|
Lu Y, Hsiang F, Chang JH, Yao XQ, Zhao H, Zou HY, Wang L, Zhang QX. Houshiheisan and its components promote axon regeneration after ischemic brain injury. Neural Regen Res 2018; 13:1195-1203. [PMID: 30028327 PMCID: PMC6065233 DOI: 10.4103/1673-5374.235031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Houshiheisan, a classic prescription in traditional Chinese medicine, contains Flos Chrysanthemi, Radix Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Chuanxiong, Radix et Rhizoma Asari, Radix Platycodonis, Rhizoma Atractylodis macrocephalae, Poria, Rhizoma Zingiberis, Radix Angelicae sinensis, Radix et Rhizoma Ginseng, Radix Scutellariae and Concha Ostreae. According to traditional Chinese medicine theory, Flos Chrysanthemi, Radix Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Chuanxiong, Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs; Rhizoma Atractylodis macrocephalae, Poria, Rhizoma Zingiberis, Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs. A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke, but its mechanism of action is unknown. Axonal remodeling is an important mechanism in neural protection and regeneration. Therefore, this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia. Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery. At 6 hours after model establishment, rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug. These medicines were intragastrically administered as above every 24 hours for 7 consecutive days. Houshiheisan, and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia. Furthermore, Houshiheisan, and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling: amyloid precursor protein, neurite outgrowth inhibitor protein A (Nogo-A), Rho family small GTPase A (RhoA) and Rho-associated kinase 2 (Rock2), and increased the expression of growth associated protein-43, microtubule-associated protein-2, netrin-1, Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42). The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone. In conclusion, Houshiheisan, and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/RhoA/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways. These effects are strongest with Houshiheisan.
Collapse
Affiliation(s)
- Yue Lu
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Flora Hsiang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jia-Hui Chang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xiao-Quan Yao
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Qiu-Xia Zhang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
20
|
Iyer A, Xu W, Reid RC, Fairlie DP. Chemical Approaches to Modulating Complement-Mediated Diseases. J Med Chem 2017; 61:3253-3276. [DOI: 10.1021/acs.jmedchem.7b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weijun Xu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C. Reid
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
The natural product 4,10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway. Acta Pharmacol Sin 2017; 38:29-40. [PMID: 27840407 DOI: 10.1038/aps.2016.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Recent studies focus on promoting neurite outgrowth to remodel the central nervous network after brain injury. Currently, however, there are few drugs treating brain diseases in the clinic by enhancing neurite outgrowth. In this study, we established an NGF-induced PC12 differentiation model to screen novel compounds that have the potential to induce neuronal differentiation, and further characterized 4,10-Aromadendranediol (ARDD) isolated from the dried twigs of the Baccharis gaudichaudiana plant, which exhibited the capability of promoting neurite outgrowth in neuronal cells in vitro. ARDD (1, 10 μmol/L) significantly enhanced neurite outgrowth in NGF-treated PC12 cells and N1E115 cells in a time-dependent manner. In cultured primary cortical neurons, ARDD (5, 10 μmol/L) not only significantly increased neurite outgrowth but also increased the number of neurites on the soma and the number of bifurcations. Further analyses showed that ARDD (10 μmol/L) significantly increased the phosphorylation of ERK1/2 and the downstream GSK-3β, subsequently induced β-catenin expression and up-regulated the gene expression of the Wnt ligands Fzd1 and Wnt3a in neuronal cells. The neurite outgrowth-promoting effect of ARDD in neuronal cells was abolished by pretreatment with the specific ERK1/2 inhibitor PD98059, but was partially reversed by XAV939, an inhibitor of the Wnt/β-catenin pathway. ARDD also increased the expression of BDNF, CREB and GAP-43 in N1E115 cells, which was reversed by pretreatment with PD98059. In N1E115 cells subjected to oxygen and glucose deprivation (OGD), pretreatment with ARDD (1-10 μmol/L) significantly enhanced the phosphorylation of ERK1/2 and induced neurite outgrowth. These results demonstrated that the natural product ARDD exhibits neurite outgrowth-inducing activity in neurons via activation of the ERK signaling pathway, which may be beneficial to the treatment of brain diseases.
Collapse
|