1
|
Shukla D, Kaur S, Singh A, Narang RK, Singh C. Enhanced antichemobrain activity of amino acid assisted ferulic acid solid dispersion in adult zebrafish (Danio rerio). Drug Deliv Transl Res 2024; 14:3422-3437. [PMID: 38573496 DOI: 10.1007/s13346-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Chemotherapy-induced cognitive impairment (CICI), also known as "chemobrain," is a common side effect of breast cancer therapy which causes oxidative stress and generation of reactive oxygen species (ROS). Ferulic acid (FA), a natural polyphenol, belongs to BCS class II is confirmed to have nootropic, neuroprotective and antioxidant effects. Here, we have developed FA solid dispersion (SD) in order to enhance its therapeutic potential against chemobrain. An amorphous ferulic acid loaded leucin solid dispersion (FA-Leu SD) was prepared by utilizing amino acid through spray-drying technique. The solid-state characterization was carried out via Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). Additionally, in-vitro release studies and antioxidant assay were also performed along with in-vivo locomotor, biochemical and histopathological analysis. The physical properties showed that FA-Leu SD so formed exhibited spherical, irregular surface hollow cavity of along with broad melting endotherm as observed from FE-SEM and DSC results. The XRD spectra demonstrated absence of sharp and intense peaks in FA-Leu SD which evidenced for complete encapsulation of drug into carrier. Moreover, in-vitro drug release studies over a period of 5 h in PBS (pH 7.4) displayed a significant enhanced release in the first hr (68. 49 ± 5.39%) and in-vitro DPPH assay displayed greater antioxidant potential of FA in FA-Leu SD. Furthermore, the in-vivo behavioral findings of FA-Leu SD (equivalent to 150 mg/kg of free FA) exhibited positive results accompanied by in-vivo biochemical and molecular TNF-α showed a significant difference (p < 0.001) vis-à-vis DOX treated group upon DOX + FA-Leu SD. Additionally, histopathological analysis revealed neuroprotective effects of FA-Leu SD together with declined oxidative stress due to antioxidant potential of FA which was induced by anticancer drug doxorubicin (DOX). Overall, the above findings concluded that spray-dried FA-Leu SD could be useful for the treatment of chemotherapy induced cognitive impairment.
Collapse
Affiliation(s)
- Deeksha Shukla
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
2
|
Panda P, Mohapatra R. Herbal nanoparticles: a targeted approach for neurodegenerative disorder treatment. J Drug Target 2024; 32:1233-1246. [PMID: 39133517 DOI: 10.1080/1061186x.2024.2391913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Nanotechnology has significantly impacted human life, particularly in overcoming the limitations associated with neurodegenerative diseases (NDs). Various nanostructures and vehicle systems, such as polymer nanoparticles, carbon nanotubes (CNTs), nanoliposomes, nano-micelles, lipid nanoparticles, lactoferrin, polybutylcyanoacrylate, and poly lactic-co-glycolic acid, have been shown to enhance drug efficacy, reduce side effects, and improve pharmacokinetics. NDs affect millions worldwide and are challenging to treat due to the blood-brain barrier (BBB), which hinders drug delivery to the central nervous system (CNS). Research suggests that natural ingredients can be formulated into nanoparticles, offering a promising approach for ND treatment. This review examines the advantages and disadvantages of herbal-based nanoformulations, highlighting their potential effectiveness when used alone or in combination with other medications. Herbal nanoparticles provide benefits over synthetic ones due to their biocompatibility, reduced toxicity, and potential for synergistic effects. The study's findings can be applied to develop more efficient drug delivery systems, improving the treatment of NDs by enhancing drug penetration across the BBB and targeting affected CNS areas more precisely.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Khalifa M, Fayed RH, Ahmed YH, Abdelhameed MF, Essa AF, Khalil HMA. Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer's disease-like pathology through Akt-ERK crosstalk pathway in male rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06697-4. [PMID: 39441400 DOI: 10.1007/s00213-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study investigated the neuroprotective effect of ferulic acid (FA) against bisphenol A (BPA) induced Alzheimer's disease-like pathology in male rats. METHODS Rats were allocated into four groups, control, BPA, BPA + FA, and FA, respectively, for 40 days. Spatial working memory and recognition memory were evaluated. Moreover, the brain levels of oxidative stress biomarkers, proinflammatory cytokines, extracellular signal-regulated kinase (ERK), and phosphorylated serine/threonine protein kinase (p-Akt) were measured. We also determined the brain neuropathological protein levels, including Beta-Amyloid 1-42, total Tau (tTau), and phosphorylated Tau (pTau) proteins. Furthermore, brain levels of Acetylcholinesterase (AChE) and Beta-secretase (BACE) were assessed. Brain histological investigation and immunohistochemistry determination of glial fibrillar acidic protein (GFAP) were also performed. Moreover, docking simulation was adapted to understand the inhibitory role of FA on AChE, BACE-1, and ERK1/2. RESULTS Interestingly, the BPA + FA treated group showed a reversal in the cognitive impairments induced by BPA, which was associated with improved brain redox status. They also exhibited a significant decrease in brain inflammatory cytokines, ERK, and p-Akt levels. Moreover, they revealed a decline in beta-amyloid 1-42 and a significant improvement in tTau expression and pTau protein levels in the brain tissue. Further, the brain levels of AChE and BACE were substantially reduced in BPA + FA rats. The neuroprotective effect of FA was confirmed by restoring the normal architecture of brain tissue, which was associated with decreasing GFAP. CONCLUSION FA could be a potent neuroprotectant agent against AD with a possible prospect for its therapeutic capabilities and nutritional supplement value due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed F Essa
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Faculty of Veterinary medicine, King Salman International University, South sinai, Ras Sudr, Egypt
| |
Collapse
|
4
|
Karademir Y, Mackie A, Tuohy K, Dye L. Effects of Ferulic Acid on Cognitive Function: A Systematic Review. Mol Nutr Food Res 2024; 68:e2300526. [PMID: 38342596 DOI: 10.1002/mnfr.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/01/2023] [Indexed: 02/13/2024]
Abstract
SCOPE Plant (poly) phenolic compounds have been reported to decrease the risk of developing dementia and have been associated with maintenance of cognitive performance in normal ageing. Ferulic acid (FA) is a phenolic acid, present in a wide variety of foods including cereals, fruits, vegetables, and coffee. The aim of this systematic review is to examine the effect of FA on cognitive function in humans and animals. METHODS AND RESULTS The search terms "Ferulic acid AND cognit*" and "Ferulic acid OR feruloyl OR ferula AND (memory OR attention OR learning OR recognition)" are used in Web of Science, Scopus, PubMED, OVID (Medline/PsycInfo), and CINAHL through October 2023. No human studies are identified that matched the inclusion criteria. Twenty-six animal studies are identified. A small number (n = 5) of these studies examined FA in healthy animals whilst the remainder examined animal models of dementia. Alzheimer's disease (n = 11) is the most prevalent model. CONCLUSION Overall, results from studies employing disease models suggest that FA ameliorates induced cognitive decline in a time and dose-dependent manner. Similarly, studies in healthy animals show a beneficial effect of FA. However, further studies are required to determine the effects of FA on human cognitive function.
Collapse
Affiliation(s)
- Yesim Karademir
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Kieran Tuohy
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Louise Dye
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Sustainable Food & Department of Psychology, University of Sheffield, Sheffield, S1 2LT, UK
| |
Collapse
|
5
|
Khalifa M, Fayed RH, Ahmed YH, Sedik AA, El-Dydamony NM, Khalil HMA. Mitigating effect of ferulic acid on di-(2-ethylhexyl) phthalate-induced neurocognitive dysfunction in male rats with a comprehensive in silico survey. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3493-3512. [PMID: 37966574 PMCID: PMC11074231 DOI: 10.1007/s00210-023-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate threatening public health-induced neurotoxicity. This neurotoxicity is associated with behavioral and biochemical deficits in male rats. Our study investigated the neuroprotective effect of ferulic acid (FA) on male rats exposed to DEHP. Thirty-two male Wistar rats were assigned to four groups. Group I control rats received corn oil, group II intoxicated rats received 300 mg/kg of DEHP, group III received 300 mg/kg of DEHP + 50 mg/kg of FA, and group IV received 50 mg/kg of FA, all agents administrated daily per os for 30 days. Anxiety-like behavior, spatial working memory, and recognition memory were assessed. Also, brain oxidative stress biomarkers, including brain malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF) as well as heme oxygenase-1 (HO-1) were measured. Moreover, brain histopathology examinations associated with immunohistochemistry determination of brain caspase-3 were also evaluated. Furthermore, docking simulation was adapted to understand the inhibitory role of FA on caspase-3 and NO synthase. Compared to DEHP-intoxicated rats, FA-treated rats displayed improved cognitive memory associated with a reduced anxious state. Also, the redox state was maintained with increased BNDF levels. These changes were confirmed by restoring the normal architecture of brain tissue and a decrement in the immunohistochemistry caspase-3. In conclusion, FA has potent antioxidant and antiapoptotic properties that confirm the neuroprotective activity of FA, with a possible prospect for its therapeutic capabilities and nutritional supplement value.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Rabie H Fayed
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt.
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6Th of October City, 12585, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
6
|
Si J, Chen X, Qi K, Li D, Liu B, Zheng Y, Ji E, Yang S. Shengmaisan combined with Liuwei Dihuang Decoction alleviates chronic intermittent hypoxia-induced cognitive impairment by activating the EPO/EPOR/JAK2 signaling pathway. Chin J Nat Med 2024; 22:426-440. [PMID: 38796216 DOI: 10.1016/s1875-5364(24)60640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 05/28/2024]
Abstract
Chronic intermittent hypoxia (CIH), a principal pathophysiological aspect of obstructive sleep apnea (OSA), is associated with cognitive deficits. Clinical evidence suggests that a combination of Shengmaisan and Liuwei Dihuang Decoctions (SMS-LD) can enhance cognitive function by nourishing yin and strengthening the kidneys. This study aimed to assess the efficacy and underlying mechanisms of SMS-LD in addressing cognitive impairments induced by CIH. We exposed C57BL/6N mice to CIH for five weeks (20%-5% O2, 5 min/cycle, 8 h/day) and administered SMS-LD intragastrically (15.0 or 30 g·kg-1·day) 30 min before each CIH session. Additionally, AG490, a JJanus kinase 2 (JAK2) inhibitor, was administered via intracerebroventricular injection. Cognitive function was evaluated using the Morris water maze, while synaptic and mitochondrial structures were examined by transmission electron microscopy. Oxidative stress levels were determined using DHE staining, and the activation of the erythropoietin (ER)/ER receptor (EPOR)/JAK2 signaling pathway was analyzed through immunohistochemistry and Western blotting. To further investigate molecular mechanisms, HT22 cells were treated in vitro with either SMS-LD medicated serum alone or in combination with AG490 and then exposed to CIH for 48 h. Our results indicate that SMS-LD significantly mitigated CIH-induced cognitive impairments in mice. Specifically, SMS-LD treatment enhanced dendritic spine density, ameliorated mitochondrial dysfunction, reduced oxidative stress, and activated the EPO/EPOR/JAK2 signaling pathway. Conversely, AG490 negated SMS-LD's neuroprotective and cognitive improvement effects under CIH conditions. These findings suggest that SMS-LD's beneficial impact on cognitive impairment and synaptic and mitochondrial integrity under CIH conditions may predominantly be attributed to the activation of the EPO/EPOR/JAK2 signaling pathway.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Department of Geriatrics, First People's Hospital of Xiaogan, Xiaogan 432000, China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| |
Collapse
|
7
|
Arabnezhad MR, Haghani F, Ghaffarian-Bahraman A, Jafarzadeh E, Mohammadi H, Yadegari JG, Farkhondeh T, Aschner M, Darroudi M, Marouzi S, Samarghandian S. Involvement of Nrf2 Signaling in Lead-induced Toxicity. Curr Med Chem 2024; 31:3529-3549. [PMID: 37221680 DOI: 10.2174/0929867330666230522143341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is used as one of the main protective factors against various pathological processes, as it regulates cells resistant to oxidation. Several studies have extensively explored the relationship between environmental exposure to heavy metals, particularly lead (Pb), and the development of various human diseases. These metals have been reported to be able to, directly and indirectly, induce the production of reactive oxygen species (ROS) and cause oxidative stress in various organs. Since Nrf2 signaling is important in maintaining redox status, it has a dual role depending on the specific biological context. On the one hand, Nrf2 provides a protective mechanism against metal-induced toxicity; on the other hand, it can induce metalinduced carcinogenesis upon prolonged exposure and activation. Therefore, the aim of this review was to summarize the latest knowledge on the functional interrelation between toxic metals, such as Pb and Nrf2 signaling.
Collapse
Affiliation(s)
- Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Haghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Marouzi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|
8
|
Mancuso C. Biliverdin as a disease-modifying agent: An integrated viewpoint. Free Radic Biol Med 2023; 207:133-143. [PMID: 37459935 DOI: 10.1016/j.freeradbiomed.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
9
|
Si J, Liu B, Qi K, Chen X, Li D, Yang S, Ji E. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116677. [PMID: 37268259 DOI: 10.1016/j.jep.2023.116677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear. AIM OF THE STUDY To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH. MATERIALS AND METHODS The study established an HT22 cell model exposed to IH (0.1% O2 3 min/21% O2 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3. RESULTS The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions. CONCLUSION The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Dimonte S, Sikora V, Bove M, Morgese MG, Tucci P, Schiavone S, Trabace L. Social isolation from early life induces anxiety-like behaviors in adult rats: Relation to neuroendocrine and neurochemical dysfunctions. Biomed Pharmacother 2023; 158:114181. [PMID: 36592494 DOI: 10.1016/j.biopha.2022.114181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Subjects suffering from psychosis frequently experience anxiety. However, mechanisms underlying this comorbidity remain still unclear. We investigated whether neurochemical and neuroendocrine dysfunctions were involved in the development of anxiety-like behavior in a rodent model of psychotic-like symptoms, obtained by exposing male rats to social isolation rearing from postnatal day 21 to postnatal day 70. In the elevated zero maze test, isolated rats showed a significant reduction in the time spent in the open arms, as well as an increase in the time spent in the closed arms, compared to controls. An increased grooming time in the open field test was also observed in isolated animals. Isolation-induced anxiety-like behavior was accompanied by a decrease of plasmatic oxytocin, prolactin, ghrelin and melatonin levels, whereas plasmatic amount of Neuropeptide S was not altered. Social isolation also caused a reduction of noradrenaline, serotonin and GABA levels, together with an increase of serotonin turnover and glutamate levels in the amygdala of isolated animals. No significant differences were found in noradrenaline and serotonin levels, as well as in serotonin turnover in hippocampus, while glutamate amount was increased and GABA levels were reduced in isolated rats. Furthermore, there was a reduction in plasmatic serotonin content, and an increase in plasmatic kynurenine levels following social isolation, while no significant changes in serotonin turnover were observed. Taken together, our data provide novel insights in the neurobiological alterations underlying the comorbidity between psychosis and anxiety, and open new perspectives for multi-target therapies acting on both neurochemical and neuroendocrine pathways. DATA AVAILABILITY STATEMENT: The data presented in this study are available on request from the corresponding author.
Collapse
Affiliation(s)
- Stefania Dimonte
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Vladyslav Sikora
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy; Department of Pathology, Sumy State University, 2, Rymskogo-Korsakova st., Sumy 40007, Ukraine.
| | - Maria Bove
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Maria Grazia Morgese
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Paolo Tucci
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Stefania Schiavone
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Luigia Trabace
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| |
Collapse
|
11
|
Liu M, Mu J, Gong W, Zhang K, Yuan M, Song Y, Li B, Jin N, Zhang W, Zhang D. In Vitro Diagnosis and Visualization of Cerebral Ischemia/Reperfusion Injury in Rats and Protective Effects of Ferulic Acid by Raman Biospectroscopy and Machine Learning. ACS Chem Neurosci 2023; 14:159-169. [PMID: 36516359 DOI: 10.1021/acschemneuro.2c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is a major cause of mortality with complicated pathophysiological mechanisms, and hematoxylin and eosin (HE) staining is a histochemical diagnosis technique heavily relying on subjective observation. In this study, we developed a noninvasive assay using Raman spectroscopy for in vitro diagnosis and visualization of cerebral ischemia/reperfusion injury and protective effects of ferulic acid. By establishing a middle cerebral artery occlusion (MCAO) model in Sprague-Dawley male rats, we found effective interventions by ferulic acid using the neurological function score and HE staining. Raman spectra of neuronal and neuroglial cells exhibited significant intensity changes of protein, nucleotide, lipid, and carbohydrate at 780, 814, 1002, 1012, 1176, 1224, 1402, 1520, 1586, 1614, and 1752 cm-1. Cluster vector analysis highlighted the alterations at 1002, 1080, 1298, 1430, 1478, 1508, 1586, and 1676 cm-1. To evaluate the levels of neuron injury and intervention performance, a random forest model was developed on Raman spectral data and achieved satisfactory accuracy (0.9846), sensitivity (0.9679-0.9932), and specificity (0.9945-0.9989), ranking peaks around 1002 cm-1 as key fingerprint for classification. Spectral phenylalanine-to-tryptophan ratio was the biomarker to visualize neuronal injury and intervention performance of ferulic acid with a resolution of 1 μm. Our results unravel the biochemical changes in neuronal cells with cerebral ischemia/reperfusion injury and ferulic acid treatment, and prove Raman spectroscopy coupled with machine learning as a power tool to classify neuron viability and evaluate the intervention performance in pharmacological research.
Collapse
Affiliation(s)
- Mingying Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Ju Mu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Wan Gong
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Kena Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Maoyun Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, P. R. China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, P. R. China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing100875, P. R. China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun130021, P. R. China.,College of New Energy and Environment, Jilin University, Changchun130021, P. R. China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun130021, P. R. China.,College of New Energy and Environment, Jilin University, Changchun130021, P. R. China
| |
Collapse
|
12
|
Mancuso C. The impact of heme oxygenase-2 on pharmacological research: A bibliometric analysis and beyond. Front Pharmacol 2023; 14:1156333. [PMID: 37153762 PMCID: PMC10154548 DOI: 10.3389/fphar.2023.1156333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Heme oxygenase (HO-2) is an enzyme mainly involved in the physiologic turnover of heme and intracellular gas sensing, and it is very abundant in the brain, testes, kidneys and vessels. Since 1990, when HO-2 was discovered, the scientific community has underestimated the role of this protein in health and disease, as attested by the small amount of articles published and citations received. One of the reason that have contributed to the lack of interest in HO-2 was the difficulty in upregulating or inhibiting this enzyme. However, over the last 10 years, novel HO-2 agonists and antagonists have been synthesized, and the availability of these pharmacological tools should increase the appeal of HO-2 as drug target. In particular, these agonists and antagonists could help explain some controversial aspects, such as the neuroprotective versus neurotoxic roles of HO-2 in cerebrovascular diseases. Furthermore, the discovery of HO-2 genetic variants and their involvement in Parkinson's disease, in particular in males, opens new avenues for pharmacogenetic studies in gender medicine.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Rome, Italy
- *Correspondence: Cesare Mancuso,
| |
Collapse
|
13
|
Ngo TV, Kusumawardani S, Kunyanee K, Luangsakul N. Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods 2022; 11:3384. [PMID: 36359996 PMCID: PMC9658643 DOI: 10.3390/foods11213384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Health problems associated with excess calories, such as diabetes and obesity, have become serious public issues worldwide. Innovative methods are needed to reduce food caloric impact without negatively affecting sensory properties. The interaction between starch and phenolic compounds has presented a positive impact on health and has been applied to various aspects of food. In particular, an interaction between polyphenols and starch is widely found in food systems and may endow foods with several unique properties and functional effects. This review summarizes knowledge of the interaction between polyphenols and starch accumulated over the past decade. It discusses changes in the physicochemical properties, in vitro digestibility, prebiotic properties, and antioxidant activity of the starch-polyphenol complex. It also reviews innovative methods of obtaining the complexes and their applications in the food industry. For a brief description, phenolic compounds interact with starch through covalent or non-covalent bonds. The smoothness of starch granules disappears after complexation, while the crystalline structure either remains unchanged or forms a new structure and/or V-type complex. Polyphenols influence starch swelling power, solubility, pasting, and thermal properties; however, research remains limited regarding their effects on oil absorption and freeze-thaw stability. The interaction between starch and polyphenolic compounds could promote health and nutritional value by reducing starch digestion rate and enhancing bioavailability; as such, this review might provide a theoretical basis for the development of novel functional foods for the prevention and control of hyperglycemia. Further establishing a comprehensive understanding of starch-polyphenol complexes could improve their application in the food industry.
Collapse
Affiliation(s)
| | | | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
14
|
Shukla D, Nandi NK, Singh B, Singh A, Kumar B, Narang RK, Singh C. Ferulic acid-loaded drug delivery systems for biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Wdowiak K, Walkowiak J, Pietrzak R, Bazan-Woźniak A, Cielecka-Piontek J. Bioavailability of Hesperidin and Its Aglycone Hesperetin—Compounds Found in Citrus Fruits as a Parameter Conditioning the Pro-Health Potential (Neuroprotective and Antidiabetic Activity)—Mini-Review. Nutrients 2022; 14:nu14132647. [PMID: 35807828 PMCID: PMC9268531 DOI: 10.3390/nu14132647] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hesperidin and hesperetin are polyphenols that can be found predominantly in citrus fruits. They possess a variety of pharmacological properties such as neuroprotective and antidiabetic activity. However, the bioavailability of these compounds is limited due to low solubility and restricts their use as pro-healthy agents. This paper described the limitations resulting from the low bioavailability of the presented compounds and gathered the methods aiming at its improvement. Moreover, this work reviewed studies providing pieces of evidence for neuroprotective and antidiabetic properties of hesperidin and hesperetin as well as providing a detailed look into the significance of reported modes of action in chronic diseases. On account of a well-documented pro-healthy activity, it is important to look for ways to overcome the problem of poor bioavailability.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Aleksandra Bazan-Woźniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
16
|
Xie LL, Rui C, Li ZZ, Li SS, Fan YJ, Qi MM. Melatonin mitigates traumatic brain injury-induced depression-like behaviors through HO-1/CREB signal in rats. Neurosci Lett 2022; 784:136754. [PMID: 35753614 DOI: 10.1016/j.neulet.2022.136754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
In addition to significant antioxidant properties, melatonin exhibits neuroprotective effects against various neurological diseases including traumatic brain injury (TBI) and ischemic stroke. Several potential mechanisms have been reported in the neuroprotection of melatonin among patients with TBI. Notably, the heme oxygenase-1 (HO-1)/cAMP response element-binding protein (CREB) signaling pathway is implicated in the development of a depressive state. Moreover, the activity of CREB in the nucleus accumbens (NAc) participates in reward and motivation, further contributing to depression induced by TBI. This study aims to explore whether melatonin could mitigate TBI-induced depression by activating of HO-1/CREB signal in a rodent model of weight-drop. As a consequence, melatonin (10 mg/kg) attenuated TBI-induced elevated immobility time in the force swim test, decreased time spent sniffing the novel rat in 3-chambered social test, and downregulated phosphorylated CERB in the NAc. However, a special inhibitor of HO-1 (SnPP) via intracerebroventricular injection partially reversed the neuroprotective effects of melatonin. Furthermore, melatonin decreased the number of summarized intersects in the astrocyte, A1-type astrocytes, IL-6-positive astrocytes in the NAc after TBI exposure, nevertheless, these changes could partially be restored by SnPP. Therefore, our findings demonstrate a novel neuroprotective mechanism for melatonin against TBI which can be a potential neuroprotective agent for the treatment of TBI-induced depression.
Collapse
Affiliation(s)
- Ling-Ling Xie
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Chen Rui
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Zhuang-Zhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Shan-Shan Li
- Clinical Lab, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Yong-Jian Fan
- Department of Ultrasonography, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| |
Collapse
|
17
|
Zhao N, Liu Z, Xing J, Zheng Z, Song F, Liu S. A novel strategy for high-specificity, high-sensitivity, and high-throughput study for gut microbiome metabolism of aromatic carboxylic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
19
|
Oliveira MEAS, Coimbra PPS, Galdeano MC, Carvalho CWP, Takeiti CY. How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Halter B, Ildari N, Cline MA, Gilbert ER. Ferulic acid, a phytochemical with transient anorexigenic effects in birds. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111015. [PMID: 34119636 DOI: 10.1016/j.cbpa.2021.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Ferulic acid (FA) is a phenolic acid found within the plant cell wall that has physiological benefits as an antioxidant. Although metabolic benefits of FA supplementation are described, lacking are reports of effects on appetite regulation. Thus, our objective was to determine if FA affects food or water intake, using chicks as a model. At 4 days post-hatch, broiler chicks were intraperitoneally injected with 0 (vehicle), 12.5, 25, or 50 mg/kg of FA. Chicks treated with 50 mg/kg of FA consumed 70% less food than controls at 30 min post-injection, and the effect dissipated thereafter. Water intake was not affected at any time. In a behavior analysis, FA-treated chicks defecated fewer times than vehicle-injected chicks, while other behaviors were not affected. There was an increase in c-Fos immunoreactivity within the hypothalamic arcuate nucleus (ARC) of FA-treated chicks, and no differences were detected in other nuclei. mRNA abundance was measured in the whole hypothalamus and the ARC. There was decreased hypothalamic galanin, ghrelin, melanocortin receptor 3, and pro-opiomelanocortin (POMC) mRNA in FA-treated chicks. Within the ARC, there was an increase in c-Fos mRNA and a decrease in POMC mRNA in response to FA. It is likely that the mechanism responsible for mediating FA's transient effects on food intake originates within the ARC, possibly involving POMC. A greater understanding of the short-term, mild appetite-suppressive effects of FA may have applications to treating eating disorders and modulating food intake in animal models of obesity.
Collapse
Affiliation(s)
- Bailey Halter
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
21
|
Ghosal K, Augustine R, Zaszczynska A, Barman M, Jain A, Hasan A, Kalarikkal N, Sajkiewicz P, Thomas S. Novel drug delivery systems based on triaxial electrospinning based nanofibers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104895] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
An HM, Li MN, Yang H, Pang HQ, Qu C, Xu Y, Liu RZ, Peng C, Li P, Gao W. A validated UHPLC-MS/MS method for pharmacokinetic and brain distribution studies of twenty constituents in rat after oral administration of Jia-Wei-Qi-Fu-Yin. J Pharm Biomed Anal 2021; 202:114140. [PMID: 34015592 DOI: 10.1016/j.jpba.2021.114140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
A rapid ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QqQ MS/MS) approach with high sensitivity and selectivity was developed for the quantification of twenty compounds, including 9 saponins, 8 flavonoids, 2 oligosaccharide esters and 1 phenolic acid, in rat plasma and brain, which was administrated intragastrically with Jia-Wei-Qi-Fu-Yin (JWQFY), Mass spectrometric detection was operated under multiple reaction monitoring (MRM) mode. All calibration curves possessed good linearity with correlation coefficients ( r2) higher than 0.9916 in their respective linear ranges. For intra- and inter-day precision, all the relative standard deviations (RSDs) at different levels were less than 14.68 %. Based on the UHPLC-QqQ MS/MS quantitative results, pharmacokinetic study and brain distribution of multiple components in JWQFY was then successfully performed. As a result, constituents with discrepancy structures showed diverse pharmacokinetic and distribution characteristics. For instance, ferulic acid (phenolic acid), 3, 6'-disinapoyl sucrose and tenuifoliside A (oligosaccharide esters) showed short Tmax (< 10 min), whereas the Tmax of ginsenosides Rb1, Rb2 and Rc (ppd-type terpenoid saponins) were much longer (> 4 h). Besides, ferulic acid, epimedin C, icariin, glycyrrhizin, ginsenoside Rb1 and ginsenoside Rg1 were considered as the potential effective ingredients of JWQFY because of their relatively high exposure to blood and brain. Our study would provide relevant information for discovery of pharmacodynamic ingredients, as well as further action mechanisms investigations of JWQFY.
Collapse
Affiliation(s)
- Hai-Ming An
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Han-Qing Pang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Yi Xu
- Beijing Zhongyan Tongrentang Pharmaceutical R&D co., Ltd, Beijing, 100079, China
| | - Run-Zhou Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Chao Peng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
23
|
Zhao N, Zhao T, Fan M, Liu Z, Pi Z, Song F, Xing J, Liu S. Stable isotope labeling derivatization combined with multiple-mass spectrometry technologies to monitor metabolites of tenuifoliside A incubated with intestinal bacteria incubation model. Talanta 2021; 224:121791. [PMID: 33379020 DOI: 10.1016/j.talanta.2020.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
Aromatic carboxylic acids (ACAs), play important roles in preventive and therapeutic effects for some diseases. However, complex matrix effect and poor detection sensitivity make it difficult and even rare to detect ACAs in complex bio-samples. Herein, a stable isotope labeling derivatization (SILD) method based on one-pot synthesis of carboxylic amides by aniline (AN) and aniline-d5 (AN-d5) was firstly designed for quantitatively monitoring ACAs under mild conditions. The detection sensitivity was improved up to 500 folds. Importantly, when taking the trace tenuifoliside A (TA) containing p-hydroxyl-benzoyl- (HB) and 3, 4, 5-trimethoxylcinnamoyl- (TC) unit as a special example via intestinal bacteria incubation, the metabolites ACAs and whole metabolic profiles of TA were firstly accurately and systematically monitored by applying the SILD method combined with multiple-mass spectrometry (MMS) technologies. It provides a convenient, universal, high-sensitivity and high-recovery methodological tool for the systematically metabolic study of trace drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Ningning Zhao
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| | - Tiantian Zhao
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meiling Fan
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
24
|
Mhillaj E, Papi M, Paciello F, Silvestrini A, Rolesi R, Palmieri V, Perini G, Fetoni AR, Trabace L, Mancuso C. Celecoxib Exerts Neuroprotective Effects in β-Amyloid-Treated SH-SY5Y Cells Through the Regulation of Heme Oxygenase-1: Novel Insights for an Old Drug. Front Cell Dev Biol 2020; 8:561179. [PMID: 33134292 PMCID: PMC7550645 DOI: 10.3389/fcell.2020.561179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
The formation and aggregation of amyloid-β-peptide (Aβ) into soluble and insoluble species represent the pathological hallmarks of Alzheimer’s disease (AD). Over the last few years, however, soluble Aβ (sAβ) prevailed over fibrillar Aβ (fAβ) as determinant of neurotoxicity. One of the main therapeutic strategies for challenging neurodegeneration is to fight against neuroinflammation and prevent free radical-induced damage: in this light, the heme oxygenase/biliverdin reductase (HO/BVR) system is considered a promising drug target. The aim of this work was to investigate whether or not celecoxib (CXB), a selective inhibitor of the pro-inflammatory cyclooxygenase-2, modulates the HO/BVR system and prevents lipid peroxidation in SH-SY5Y neuroblastoma cells. Both sAβ (6.25–50 nM) and fAβ (1.25–50 nM) dose-dependently over-expressed inducible HO (HO-1) after 24 h of incubation, reaching statistical significance at 25 and 6.25 nM, respectively. Interestingly, CXB (1–10 μM, for 1 h) further enhanced Aβ-induced HO-1 expression through the nuclear translocation of the transcriptional factor Nrf2. Furthermore, 10 μM CXB counteracted the Aβ-induced ROS production with a mechanism fully dependent on HO-1 up-regulation; nevertheless, 10 μM CXB significantly counteracted only 25 nM sAβ-induced lipid peroxidation damage in SH-SY5Y neurons by modulating HO-1. Both carbon monoxide (CORM-2, 50 nM) and bilirubin (50 nM) significantly prevented ROS production in Aβ-treated neurons and favored both the slowdown of the growth rate of Aβ oligomers and the decrease in oligomer/fibril final size. In conclusion, these results suggest a novel mechanism through which CXB is neuroprotective in subjects with early AD or mild cognitive impairment.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiola Paciello
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Cesare Mancuso
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
25
|
Yao K, Yang Q, Li Y, Lan T, Yu H, Yu Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One 2020; 15:e0228825. [PMID: 32470970 PMCID: PMC7259979 DOI: 10.1371/journal.pone.0228825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 01/17/2023] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is prone to cognitive and memory impairments, and there is no effective clinical treatment until now. Ferulic acid (FA) is found within members of the genus Angelica, reportedly shows protective effects on neuronal damage. However, the protective effects of FA on HIBD remains unclear. In this study, using the Morris water maze task, we herein found that the impairment of spatial memory formation in adult rats exposed to HIBD was significantly reversed by FA treatment and the administration of LNA-miR-9. The expression of miRNA-9 was detected by RT-PCR analyses, and the results shown that miRNA-9 was significantly increased in the hippocampus of neonatal rats following HIBD and in the PC12 cells following hypoxic-ischemic injury, while FA and LNA-miR-9 both inhibited the expression of miRNA-9, suggesting that the therapeutic effect of FA was mainly attributed to the inhibition of miRNA-9 expression. Indeed, the silencing of miR-9 by LNA-miR-9 or FA similarly attenuated neuronal damage and cerebral atrophy in the rat hippocampus after HIBD, which was consistent with the restored expression levels of brain-derived neurotrophic factor (BDNF). Therefore, our findings indicate that FA treatment may protect against neuronal death through the inhibition of miRNA-9 induction in the rat hippocampus following hypoxic-ischemic damage.
Collapse
Affiliation(s)
- Keli Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Qin Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Yajuan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Ting Lan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Hong Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
- * E-mail: (HY); (YY)
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
- * E-mail: (HY); (YY)
| |
Collapse
|
26
|
Rashmi HB, Negi PS. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res Int 2020; 136:109298. [PMID: 32846511 DOI: 10.1016/j.foodres.2020.109298] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Abstract
Phenolic acids are the most prominent group of bioactive compounds present in various plant sources. Hydroxybenzoic acids and hydroxycinnamic acids, the aromatic secondary metabolites imparting typical organoleptic characteristics to food are the major phenolic acids, and they are linked to several health benefits. Fruit and beverage crops being the richer sources of phenolic acids have been studied in depth, but phenolic acids from vegetables are largely overlooked. Though lesser in quantity in many vegetables, there is a need to explore the health benefits of the phenolic acids present in them. In this review, the importance of vegetables as a significant source of phenolic acids is emphasized. Vegetables being easily accessible throughout the year and consumed in larger quantities compared to fruits in our daily diet will probably contribute to significant health benefits. Since vegetables are often processed before consumption, the changes in phenolic acids as influenced by processing methods are highlighted. Best processing methods, pre-treatments and storage conditions for higher retention of phenolic acids have been highlighted to minimize their losses. The phenolic acids in vegetables and their health benefits have been cluster mapped, which may facilitate further research for nutraceutical development for specific health concerns. The processing stability of phenolic acids coupled with higher consumption indicates that they may be a potential source of phenolic acids in the diet. It is expected that the popularization of vegetables as a source of phenolic acids in daily diet will help in ameliorating the adverse effect of some of the lifestyle diseases.
Collapse
Affiliation(s)
- Havalli Bommegowda Rashmi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
27
|
Lorigooini Z, Nouri A, Mottaghinia F, Balali-Dehkordi S, Bijad E, Dehkordi SH, Soltani A, Amini-Khoei H. Ferulic acid through mitigation of NMDA receptor pathway exerts anxiolytic-like effect in mouse model of maternal separation stress. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2019-0263/jbcpp-2019-0263.xml. [PMID: 32374285 DOI: 10.1515/jbcpp-2019-0263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/24/2020] [Indexed: 11/15/2022]
Abstract
Background Experiencing early-life stress plays an important role in the pathophysiology of anxiety disorders. Ferulic acid is a phenolic compound found in some plants which has several pharmacological properties. N-methyl-D-aspartate (NMDA) receptors are involved in the pathophysiology of mood disorders. In this study we aimed to assess the anxiolytic-like effect of ferulic acid in a mouse model of maternal separation (MS) stress by focusing on the possible involvement of NMDA receptors. Methods Mice were treated with ferulic acid (5 and 40 mg/kg) alone and in combination with NMDA receptor agonist/antagonist. Valid behavioral tests were performed, including open field test (OFT) and elevated plus maze test (EPM), while quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate gene expression of NMDA subunits (GluN2A and GluN2B) in the hippocampus. Results Findings showed that treatment of MS mice with ferulic acid increased the time spent in the central zone of the OFT and increased both open arm time and the percent of open arm entries in the EPM. Ferulic acid reduced the expression of NMDA receptor subunit genes. We showed that administration of NMDA receptor agonist (NMDA) and antagonist (ketamine) exerted anxiogenic and anxiolytic-like effects, correspondingly. Results showed that co-administration of a sub-effective dose of ferulic acid plus ketamine potentiated the anxiolytic-like effect of ferulic acid. Furthermore, co-administration of an effective dose of ferulic acid plus NMDA receptor agonist (NMDA) attenuated the anxiolytic-like effect of ferulic acid. Conclusions In deduction, our findings showed that NMDA, partially at least, is involved in the anxiolytic-like effect of ferulic acid in the OFT and EPM tests.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Faezeh Mottaghinia
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Balali-Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
28
|
Oliveira SR, Castelhano J, Sereno J, Vieira HLA, Duarte CB, Castelo-Branco M. Response of the cerebral vasculature to systemic carbon monoxide administration-Regional differences and sexual dimorphism. Eur J Neurosci 2020; 52:2771-2780. [PMID: 32168385 DOI: 10.1111/ejn.14725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 01/18/2023]
Abstract
Previous studies about the modulation of the vasculature by CO were performed exclusively in male or sexually immature animals. Understanding the sex differences regarding systemic drug processing and pharmacodynamics is an important feature for safety assessment of drug dosing and efficacy. In this work, we used CORM-A1 as source of CO to examine the effects of this gasotransmitter on brain perfusion and the sex-dependent differences. Dynamic contrast-enhanced imaging (DCE)-based analysis was used to characterize the properties of CO in the modulation of cerebral vasculature in vivo, in adult C57BL/6 healthy mice. Perfusion of the temporal muscle, maxillary vein and in hippocampus, cortex and striatum was analysed for 108 min following CORM-A1 administration of 3 or 5 mg/kg. Under control conditions, brain perfusion was lower in females when compared with males. Under CO treatment, females showed a surprisingly overall reduced perfusion compared with controls (F = 3.452, p = .0004), while no major alterations (or even the expected increase) were observed in males. Cortical structures were only modulated in females. A striking female-dominated vasoconstriction effect was observed in the hippocampus and striatum following administration of CO, in this mixed-sex cohort. As these two regions are implicated in episodic and procedural memory formation, CO may have a relevant impact in learning and memory.
Collapse
Affiliation(s)
- Sara R Oliveira
- CNC-Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Castelhano
- CIBIT, Coimbra Institute for Biomedical Imaging and Life Sciences, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CIBIT, Coimbra Institute for Biomedical Imaging and Life Sciences, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Helena L A Vieira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.,UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT, Coimbra Institute for Biomedical Imaging and Life Sciences, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders. Front Bioeng Biotechnol 2020; 8:238. [PMID: 32318551 PMCID: PMC7154137 DOI: 10.3389/fbioe.2020.00238] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Nanotechnology is one of the methods that influenced human life in different ways and is a substantial approach that assists to overcome the multiple limitations of various diseases, particularly neurodegenerative disorders (NDs). Diverse nanostructures such as polymer nanoparticles, lipid nanoparticles, nanoliposomes, nano-micelles, and carbon nanotubes (CNTs); as well as different vehicle systems including poly lactic-co-glycolic acid, lactoferrin, and polybutylcyanoacrylate could significantly increase the effectiveness, reduce the side effects, enhance the stability, and improve the pharmacokinetics of many drugs. NDs belong to a group of annoying and debilitating diseases that involve millions of people worldwide. Previous studies revealed that several nanoformulations from a number of natural products such as curcumin (Cur), quercetin (QC), resveratrol (RSV), piperine (PIP), Ginkgo biloba, and Nigella sativa significantly improved the condition of patients diagnosed with NDs. Drug delivery to the central nervous system (CNS) has several limitations, in which the blood brain barrier (BBB) is the main drawback for treatment of NDs. This review discusses the effects of herbal-based nanoformulations, their advantages and disadvantages, to manage NDs. In summary, we conclude that herbal-based nano systems have promising proficiency in treatment of NDs, either alone or in combination with other drugs.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
He S, Guo Y, Zhao J, Xu X, Wang N, Liu Q. Ferulic Acid Ameliorates Lipopolysaccharide-Induced Barrier Dysfunction via MicroRNA-200c-3p-Mediated Activation of PI3K/AKT Pathway in Caco-2 Cells. Front Pharmacol 2020; 11:376. [PMID: 32308620 PMCID: PMC7145943 DOI: 10.3389/fphar.2020.00376] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
Intestinal barrier dysfunction is an important clinical problem in various acute and chronic pathological conditions. Ferulic acid (FA) can attenuate the intestinal epithelial barrier dysfunction, however, the underlying mechanism remains unclear. The present study aimed to uncover the protective effect of FA on intestinal epithelial barrier dysfunction in a Caco-2 cell model of lipopolysaccharide (LPS) stimulation and the underlying mechanism. Caco-2 cells were pretreated with FA and then exposed to LPS stimulation. The barrier function of Caco-2 cells was evaluated by measuring trans-epithelial resistance (TER) and 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4) flux, and analyzing the tight junction protein expression and structure. The results showed that decreased TER and increased FITC-FD4 flux were observed in Caco-2 cells stimulated with LPS, but these effects were attenuated by FA pretreatment. FA pretreatment inhibited LPS-induced decrease in occludin and ZO-1 mRNA and protein expression. LPS stimulation decreased miR-200c-3p expression, whereas this decrease was inhibited by FA pretreatment. Furthermore, overexpression of miR-200c-3p strengthened the protective effects of FA on LPS-induced Caco-2 cell barrier dysfunction by decreasing epithelial permeability, increasing occludin and ZO-1 protein expression, and maintaining of ZO-1 protein distribution, while suppression of miR-200c-3p reversed the protective effects of FA. LPS treatment increased the expression of PTEN protein and decreased expression of phosphorylated PI3K and AKT proteins. However, pretreatment of FA inhibited expression of PTEN protein and promoted activation of PI3K/AKT signaling pathway in the LPS-treated Caco-2 cells, and this regulatory effect of FA on the PTEN/PI3K/AKT signaling pathway was strengthened or weakened by miR-200c-3p overexpression or suppression, respectively. Our findings suggested that in Caco-2 cells, FA promotes activation of PI3K/AKT pathway by miR-200c-3p-mediated suppression of the negative mediator PTEN, which, in turn, maintains TJ function and thus ameliorates LPS-induced intestinal epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Ning Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| |
Collapse
|
31
|
Tao ZH, Li C, Xu XF, Pan YJ. Scavenging activity and mechanism study of ferulic acid against reactive carbonyl species acrolein. J Zhejiang Univ Sci B 2020; 20:868-876. [PMID: 31595723 DOI: 10.1631/jzus.b1900211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acrolein, known as one of the most common reactive carbonyl species, is a toxic small molecule affecting human health in daily life. This study is focused on the scavenging abilities and mechanism of ferulic acid and some other phenolic acids against acrolein. Among the 13 phenolic compounds investigated, ferulic acid was found to have the highest efficiency in scavenging acrolein under physiological conditions. Ferulic acid remained at (3.04±1.89)% and acrolein remained at (29.51±4.44)% after being incubated with each other for 24 h. The molecular mechanism of the detoxifying process was also studied. Detoxifying products, namely 2-methoxy-4-vinylphenol (product 21) and 5-(4-hydroxy-3-methoxyphenyl)pent-4-enal (product 22), were identified though nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS), after the scavenging process. Ferulic acid showed significant activity in scavenging acrolein under physiological conditions. This study indicates a new method for inhibiting damage from acrolein.
Collapse
Affiliation(s)
- Zhi-Hao Tao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chang Li
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao-Fei Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuan-Jiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Coman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:483-499. [PMID: 31472019 DOI: 10.1002/jsfa.10010] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
There is an urgent need to improve human diet globally. Compelling evidence gathered over the past several decades suggests that a suboptimal diet is associated with many chronic diseases and may be responsible for more deaths than any other risks worldwide. The main components in our diet that need higher intake are whole grains, fruit and vegetables, and nuts and seeds; all of these are important sources of dietary fiber and polyphenols. The health benefits of dietary fiber and polyphenols are also supported by several decades of valuable research. However, the conclusions drawn from interventional human trials are not straightforward and the action mechanisms in improving human health are not fully understood. Moreover, there is a great inter-individual variation caused by different individual capabilities of processing, absorbing and using these compounds effectively. Data on the bioavailability and bioefficacy of hydroxycinnamic acids (HCAs) are limited when compared to other classes of polyphenols (e.g. anthocyanins). This review aims to summarize the latest research advances related to HCA bioavailability and their biological effects revealed by epidemiological data, pre-clinical and clinical studies. Moreover, we aim to review the effects of HCAs on gut microbiota diversity and function and its respective influence on host health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Mhillaj E, Cuomo V, Trabace L, Mancuso C. The Heme Oxygenase/Biliverdin Reductase System as Effector of the Neuroprotective Outcomes of Herb-Based Nutritional Supplements. Front Pharmacol 2019; 10:1298. [PMID: 31780933 PMCID: PMC6859463 DOI: 10.3389/fphar.2019.01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Over the last few years, several preclinical studies have shown that some herbal products, such as ferulic acid, Ginkgo biloba, and resveratrol, exert neuroprotective effects through the modulation of the heme oxygenase/biliverdin reductase system. Unfortunately, sufficient data supporting the shift of knowledge from preclinical studies to humans, particularly in neurodegenerative diseases, are not yet available in the literature. The purpose of this review is to summarize the studies and the main results achieved on the potential therapeutic role of the interaction between the heme oxygenase/biliverdin reductase system with ferulic acid, G. biloba, and resveratrol. Some critical issues have also been reported, mainly concerning the safety profile and the toxicological sequelae associated to the supplementation with the herbs mentioned above, based on both current literature and specific reports issued by the competent Regulatory Authorities.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Cesare Mancuso
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
34
|
Francisqueti-Ferron FV, Ferron AJT, Garcia JL, Silva CCVDA, Costa MR, Gregolin CS, Moreto F, Ferreira ALA, Minatel IO, Correa CR. Basic Concepts on the Role of Nuclear Factor Erythroid-Derived 2-Like 2 (Nrf2) in Age-Related Diseases. Int J Mol Sci 2019; 20:E3208. [PMID: 31261912 PMCID: PMC6651020 DOI: 10.3390/ijms20133208] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is one of the most important oxidative stress regulator in the human body. Once Nrf2 regulates the expression of a large number of cytoprotective genes, it plays a crucial role in the prevention of several diseases, including age-related disorders. However, the involvement of Nrf2 on these conditions is complex and needs to be clarified. Here, a brief compilation of the Nrf2 enrollment in the pathophysiology of the most common age-related diseases and bring insights for future research on the Nrf2 pathway is described. This review shows a controversial response of this transcriptional factor on the presented diseases. This reinforces the necessity of more studies to investigate modulation strategies for Nrf2, making it a possible therapeutic target in the treatment of age-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fernando Moreto
- Medical School, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | | | - Igor Otávio Minatel
- Institute of Biosciences, São Paulo State University, Botucatu 18618-689, SP, Brazil
| | | |
Collapse
|
35
|
Zhang G, Zhou Z, Xu J, Liao Y, Hu X. Groove binding between ferulic acid and calf thymus DNA: spectroscopic methodology combined with chemometrics and molecular docking studies. J Biomol Struct Dyn 2019; 38:2029-2037. [PMID: 31157597 DOI: 10.1080/07391102.2019.1624194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ferulic acid (FA), a dietary phenolic acid compound, is proved to possess numerous biological activities. Hence, this study was devoted to explore the interaction between FA and calf thymus DNA (ctDNA) by UV - vis absorption, fluorescence, circular dichroism (CD) spectroscopy combined with multivariate curve resolution-alternating least-squares (MCR - ALS) and molecular docking studies. The concentration curves and the pure spectra of compositions (FA, ctDNA and FA - ctDNA complex) were obtained by MCR - ALS approach to verify and monitor the interaction of FA with ctDNA. The groove binding mode between FA and ctDNA was confirmed by the results of melting analysis, viscosity measurements, single-stranded DNA experiments, and competitive studies. The binding constant of FA - ctDNA complex was 4.87 × 104 L mol-1 at 298 K. The values of enthalpy (ΔH°) and entropy (ΔS°) changes in the interaction were -16.24 kJ mol-1 and 35.02 J mol-1 K-1, respectively, indicating that the main binding forces were hydrogen bonds and hydrophobic interactions. The result of CD spectra suggested that a decrease in right-handed helicity of ctDNA was induced by FA and the DNA conformational transition from the B-form to the A-form. The results of docking indicated that FA binding with ctDNA in the minor groove. These findings may be conducive to understand the interaction mechanism of FA with ctDNA and the pharmacological effects of FA. Communicated by Ramaswamy H. Sarma[Formula: see text].
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhisheng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jianjian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Liang Y, Zou Y, Niu C, Niu Y. Astragaloside IV and ferulic acid synergistically promote neurite outgrowth through Nrf2 activation. Mech Ageing Dev 2019; 180:70-81. [PMID: 30978363 DOI: 10.1016/j.mad.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Recently, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) have nuclear localization and nuclear exclusion signals and shuttle between the cytoplasm and the nucleus. Thus, we hypothesised that astragaloside IV (AS-IV) induction nuclear import of Nrf2 and ferulic acid (FA) inhibition nuclear export of Nrf2 contribute to synergistic antioxidant effects of combination of FA and AS-IV (FA/AS-IV). Here, we have demonstrated that FA/AS-IV enhances neurite outgrowth of PC12 cells challenged with lead acetate (PbAc) via antioxidant properties in a synergistic manner. Concomitantly, FA/AS-IV significantly promotes Nrf2 activation and induces "phase-II'' enzymes during PbAc toxicity, compared with either FA or AS-IV alone. Interestingly, FA but not AS-IV activates the extracellular signal-regulated kinases 1 and 2 (ERK1/2), leading to an increase in both de novo synthesis of Nrf2 and nuclear import of Nrf2. Simultaneously, AS-IV but not FA suppresses Fyn phosphorylation via Akt-mediated inhibition of GSK-3β, which inhibited nuclear export of Nrf2. Importantly, dual activation of both ERK1/2 and Akt by FA/AS-IV in PC12 cells challenged with PbAc is mediated by independent mechanisms, which are supported by pharmacological inhibitors. Collectively, these results support the notion that the FA/AS-IV may be promising in therapy for lead developmental neurotoxicity. This combination deserves further study in vivo.
Collapse
Affiliation(s)
- Yini Liang
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Zou
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Chengu Niu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
37
|
Mastinu A, Bonini SA, Rungratanawanich W, Aria F, Marziano M, Maccarinelli G, Abate G, Premoli M, Memo M, Uberti D. Gamma-oryzanol Prevents LPS-induced Brain Inflammation and Cognitive Impairment in Adult Mice. Nutrients 2019; 11:nu11040728. [PMID: 30934852 PMCID: PMC6520753 DOI: 10.3390/nu11040728] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Rice (Oryza sativa L.) is the main food source for more than half of humankind. Rice is rich in phytochemicals and antioxidants with several biological activities; among these compounds, the presence of γ-oryzanol is noteworthy. The present study aims to explore the effects of γ-oryzanol on cognitive performance in a mouse model of neuroinflammation and cognitive alterations. Methods: Mice received 100 mg/kg γ-oryzanol (ORY) or vehicle once daily for 21 consecutive days and were then exposed to an inflammatory stimulus elicited by lipopolysaccharide (LPS). A novel object recognition test and mRNA expression of antioxidant and neuroinflammatory markers in the hippocampus were evaluated. Results: ORY treatment was able to improve cognitive performance during the neuroinflammatory response. Furthermore, phase II antioxidant enzymes such as heme oxygenase-1 (HO-1) and NADPH-dehydrogenase-quinone-1 (NQO1) were upregulated in the hippocampi of ORY and ORY+LPS mice. Lastly, γ-oryzanol showed a strong anti-inflammatory action by downregulating inflammatory genes after LPS treatment. Conclusion: These results suggest that chronic consumption of γ-oryzanol can revert the LPS-induced cognitive and memory impairments by promoting hippocampal antioxidant and anti-inflammatory molecular responses.
Collapse
Affiliation(s)
- Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Wiramon Rungratanawanich
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Francesca Aria
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Mariagrazia Marziano
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
38
|
Andreicut AD, Pârvu AE, Mot AC, Pârvu M, Fischer Fodor E, Cătoi AF, Feldrihan V, Cecan M, Irimie A. Phytochemical Analysis of Anti-Inflammatory and Antioxidant Effects of Mahonia aquifolium Flower and Fruit Extracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2879793. [PMID: 30050649 PMCID: PMC6040276 DOI: 10.1155/2018/2879793] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.
Collapse
Affiliation(s)
- Andra-Diana Andreicut
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 3-4 Victor Babes Street, RO-400012 Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 3-4 Victor Babes Street, RO-400012 Cluj-Napoca, Romania
| | - Augustin Cătălin Mot
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai” University, 11 Arany Janos Street, RO-400028 Cluj-Napoca, Romania
| | - Marcel Pârvu
- Department of Biology, Faculty of Biology and Geology, “Babes-Bolyai” University, 42 Republicii Street, RO-400015 Cluj-Napoca, Romania
| | - Eva Fischer Fodor
- Medfuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, RO-400012 Cluj-Napoca, Romania
- Institute of Oncology “I. Chiricuta”, 34-36 Republicii Street, RO-400015 Cluj-Napoca, Romania
| | - Adriana Florinela Cătoi
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 3-4 Victor Babes Street, RO-400012 Cluj-Napoca, Romania
| | - Vasile Feldrihan
- Department of Immunology and Alergology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 19-21 Croitorilor Street, RO-400162 Cluj-Napoca, Romania
| | - Mihai Cecan
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Babes Street, RO-400012 Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Oncology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, RO-400015 Cluj-Napoca, Romania
| |
Collapse
|
39
|
Zhang L, Chen Z, Gong W, Zou Y, Xu F, Chen L, Huang H. Paeonol Ameliorates Diabetic Renal Fibrosis Through Promoting the Activation of the Nrf2/ARE Pathway via Up-Regulating Sirt1. Front Pharmacol 2018; 9:512. [PMID: 29867511 PMCID: PMC5968333 DOI: 10.3389/fphar.2018.00512] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023] Open
Abstract
Diabetic nephropathy (DN) is rapidly becoming the leading cause of end-stage renal disease worldwide and a major cause of morbidity and mortality in patients of diabetes. The main pathological change of DN is renal fibrosis. Paeonol (PA), a single phenolic compound extracted from the root bark of Cortex Moutan, has been demonstrated to have many potential pharmacological activities. However, the effects of PA on DN have not been fully elucidated. In this study, high glucose (HG)-treated glomerular mesangial cells (GMCs) and streptozotocin (STZ)-induced diabetic mice were analyzed in exploring the potential mechanisms of PA on DN. Results in vitro showed that: (1) PA inhibited HG-induced fibronectin (FN) and ICAM-1 overexpressions; (2) PA exerted renoprotective effect through activating the Nrf2/ARE pathway; (3) Sirt1 mediated the effects of PA on the activation of Nrf2/ARE pathway. What is more, in accordance with the in vitro results, significant elevated levels of Sirt1, Nrf2 and downstream proteins related to Nrf2 were observed in the kidneys of PA treatment group compared with model group. Taken together, our study shows that PA delays the progression of diabetic renal fibrosis, and the underlying mechanism is probably associated with regulating the Nrf2 pathway. The effect of PA on Nrf2 is at least partially dependent on Sirt1 activation.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyan Gong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yezi Zou
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Futian Xu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihao Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Seo JY, Kim BR, Oh J, Kim JS. Soybean-Derived Phytoalexins Improve Cognitive Function through Activation of Nrf2/HO-1 Signaling Pathway. Int J Mol Sci 2018; 19:E268. [PMID: 29337893 PMCID: PMC5796214 DOI: 10.3390/ijms19010268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/31/2017] [Accepted: 01/13/2018] [Indexed: 01/19/2023] Open
Abstract
As soy-derived glyceollins are known to induce antioxidant enzymes in various types of cells and tissues, we hypothesized that the compounds could protect neurons from damage due to reactive oxygen species (ROS). In order to examine the neuroprotective effect of glyceollins, primary cortical neurons collected from mice and mouse hippocampal HT22 cells were challenged with glutamate. Glyceollins attenuated glutamate-induced cytotoxicity in primary cortical neuron isolated from mice carrying wild-type nuclear factor (erythroid-derived 2)-like 2 (Nrf2), but the compounds were ineffective in those isolated from Nrf2 knockout mice, suggesting the involvement of the Nrf2 signaling pathway in glyceollin-mediated neuroprotection. Furthermore, the inhibition of heme oxygenase-1 (HO-1), a major downstream enzyme of Nrf2, abolished the suppressive effect of glyceollins against glutamate-induced ROS production and cytotoxicity, confirming that activation of HO-1 by glyceollins is responsible for the neuroprotection. To examine whether glyceollins also improve cognitive ability, mice pretreated with glyceollins were challenged with scopolamine and subjected to behavioral tests. Glyceollins attenuated scopolamine-induced cognitive impairment of mice, but failed to enhance memory in Nrf2 knockout mice, suggesting that the memory-enhancing effect is also mediated by the Nrf2 signaling pathway. Overall, glyceollins showed neuroprotection against glutamate-induced damage, and attenuated scopolamine-induced memory deficits in an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Ji Yeon Seo
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| | - Bo Ram Kim
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21plus Program), Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
41
|
Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2017; 55:6076-6093. [PMID: 29170981 DOI: 10.1007/s12035-017-0798-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Well-established studies have shown an elevated level of reactive oxygen species (ROS) that induces oxidative stress in the Alzheimer's disease (AD) patient's brain and an animal model of AD. Herein, we investigated the underlying anti-oxidant neuroprotective mechanism of natural dietary supplementation of anthocyanins extracted from Korean black beans in the amyloid precursor protein/presenilin-1 (APP/PS1) mouse model of AD. Both in vivo (APP/PS1 mice) and in vitro (mouse hippocampal HT22 cells) results demonstrated that anthocyanins regulate the phosphorylated-phosphatidylinositol 3-kinase-Akt-glycogen synthase kinase 3 beta (p-PI3K/Akt/GSK3β) pathways and consequently attenuate amyloid beta oligomer (AβO)-induced elevations in ROS level and oxidative stress via stimulating the master endogenous anti-oxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (Nrf2/HO-1) pathways and prevent apoptosis and neurodegeneration by suppressing the apoptotic and neurodegenerative markers such as activation of caspase-3 and PARP-1 expression as well as the TUNEL and Fluoro-Jade B-positive neuronal cells in the APP/PS1 mice. In vitro ApoTox-Glo™ Triplex assay results also showed that anthocyanins act as a potent anti-oxidant neuroprotective agent and reduce AβO-induced neurotoxicity in the HT22 cells via PI3K/Akt/Nrf2 signaling. Importantly, anthocyanins improve memory-related pre- and postsynaptic protein markers and memory functions in the APP/PS1 mice. In conclusion, our data suggested that consumption and supplementation of natural-derived anti-oxidant neuroprotective agent such as anthocyanins may be beneficial and suggest new dietary-supplement strategies for intervention in and prevention of progressive neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Taehyun Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Sohail Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Faiz Ul Amin
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mehtab Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
42
|
Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem Toxicol 2017; 107:362-372. [PMID: 28698154 PMCID: PMC7116968 DOI: 10.1016/j.fct.2017.07.019] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
The use of Panax ginseng and Panax quinquefolius in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Over the past few years, extensive preclinical and clinical evidence in the scientific literature worldwide has supported the beneficial effects of P. ginseng and P. quinquefolius in significant central nervous system, metabolic, infectious and neoplastic diseases. There has been growing research on ginseng because of its favorable pharmacokinetics, including the intestinal biotransformation which is responsible for the processing of ginsenosides - contained in the roots or extracts of ginseng - into metabolites with high pharmacological activity and how such principles act on numerous cell targets. The aim of this review is to provide a simple and extensive overview of the pharmacokinetics and pharmacodynamics of P. ginseng and P. quinquefolius, focusing on the clinical evidence which has shown particular effectiveness in specific diseases, such as dementia, diabetes mellitus, respiratory infections, and cancer. Furthermore, the review will also provide data on toxicological factors to support the favorable safety profile of these medicinal plants.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy.
| | - Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|