1
|
Gao K, Zhou T, Yin Y, Sun X, Jiang H, Li T. Atorvastatin inhibits glioma glycolysis and immune escape by modulating the miR-125a-5p/TXLNA axis. Hereditas 2024; 161:54. [PMID: 39726023 DOI: 10.1186/s41065-024-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Conventional treatments, including surgery, radiotherapy and chemotherapy, have many limitations in the prognosis of glioma patients. Atorvastatin (ATOR) has a significant inhibitory effect on glioma malignancy. Thus, ATOR may play a key role in the search for new drugs for the effective treatment of gliomas. METHODS U87 cells were treated with different doses of ATOR and transfected. Viability was assessed using MTT, proliferative ability was determined using the colony formation test, Bax and Bcl-2 were identified using Western blot, apoptosis was identified using flow cytometry, and U87 cell migration and invasion were detected using the Transwell assay. Glucose uptake, lactate secretion, and ATP production in U87 cell culture medium were quantified. The positive rates of IFN-γ and TNF-α in CD8T were measured through flow cytometry. Subcutaneous injection of U87 cells was carried out to construct an in vivo mouse model of gliom, followed by HE staining to assess the effects of ATOR and miR-125a-5p on tumor development. RESULTS ATOR blocked the viability, proliferation, migration, and invasion of U87 cells through the miR-125a-5p/TXLNA axis, and suppressed glycolysis and immune escape of glioma cells. Furthermore, overexpressing miR-125a-5p enhanced the anti-tumor effect of ATOR in vivo. CONCLUSION ATOR blocks glioma progression by modulating the miR-125a-5p/TXLNA axis, further demonstrating that ATOR provides an effective therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Kang Gao
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - Tao Zhou
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - YingChun Yin
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China
| | - XiaoJie Sun
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China
| | - HePing Jiang
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - TangYue Li
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China.
| |
Collapse
|
2
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Chai X, Zhang Y, Zhang W, Feng K, Jiang Y, Zhu A, Chen X, Di L, Wang R. Tumor Metabolism: A New Field for the Treatment of Glioma. Bioconjug Chem 2024; 35:1116-1141. [PMID: 39013195 DOI: 10.1021/acs.bioconjchem.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The clinical treatment of glioma remains relatively immature. Commonly used clinical treatments for gliomas are surgery combined with chemotherapy and radiotherapy, but there is a problem of drug resistance. In addition, immunotherapy and targeted therapies also suffer from the problem of immune evasion. The advent of metabolic therapy holds immense potential for advancing more efficacious and tolerable therapies against this aggressive disease. Metabolic therapy alters the metabolic processes of tumor cells at the molecular level to inhibit tumor growth and spread, and lead to better outcomes for patients with glioma that are insensitive to conventional treatments. Moreover, compared with conventional therapy, it has less impact on normal cells, less toxicity and side effects, and higher safety. The objective of this review is to examine the changes in metabolic characteristics throughout the development of glioma, enumerate the current methodologies employed for studying tumor metabolism, and highlight the metabolic reprogramming pathways of glioma along with their potential molecular mechanisms. Importantly, it seeks to elucidate potential metabolic targets for glioblastoma (GBM) therapy and summarize effective combination treatment strategies based on various studies.
Collapse
Affiliation(s)
- Xiaoqian Chai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingjie Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Anran Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xiaojin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
4
|
Mohammadpour ZJ, Mohammadzadeh R, Javadrashid D, Baghbanzadeh A, Doustvandi MA, Barpour N, Baradaran B. Combination of SIX4-siRNA and temozolomide inhibits the growth and migration of A-172 glioblastoma cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2741-2751. [PMID: 37093251 DOI: 10.1007/s00210-023-02495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma is one of the most common and invasive types of primary brain malignancies in adults, accounting for 45.5% of malignancies. Its annual prevalence is low compared to other cancers. The survival rate of this disease is about 14 months after diagnosis. Temozolomide (TMZ) is a common chemotherapy drug used to treatment of glioblastoma, but drug resistance against this drug is an important barrier to successful treatment of this cancer. Today, siRNAs play a significant role in cancer treatment. SIX4 is a transcriptional regulatory molecule that can act as a transcriptional suppressor and an activator in target genes involved in differentiation, migration, and cell survival processes. The aim of this study was to evaluate the effect of SIX4-siRNA on A-172 glioblastoma cells, its role as a tumor suppressor, and its combination with TMZ. We studied the cytotoxic effect of the SIX4-siRNA and TMZ on A-172 cells using the MTT assay investigated their effect on apoptosis and cell cycle of A-172 cells used wound healing assays to assess their effect on cell migration. Finally, we used qRT-PCR to study the mRNA expression levels of genes involved in apoptosis and migration of tumoral cells after treatments. Based on our results, silencing SIX4-siRNA expression reduced the cell viability of A-172 cells and sensitize these cells to TMZ. Furthermore, we observed an increase in apoptosis and cell cycle arrest, and a decrease in migration. Bax and caspase-9 overexpression and BCL2 and MMP9 downregulation were detected in the combination of SIX4-siRNA and TMZ. According to our results, the combination of SIX4-siRNA and TMZ can be a very useful strategy for successful glioblastoma treatment.
Collapse
Affiliation(s)
- Zahra Jodari Mohammadpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Basic Sciences, Department of Biology, University of Maragheh, Maragheh, Iran
| | - Reza Mohammadzadeh
- Faculty of Basic Sciences, Department of Biology, University of Maragheh, Maragheh, Iran.
| | - Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nesa Barpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Gales L, Forsea L, Mitrea D, Stefanica I, Stanculescu I, Mitrica R, Georgescu M, Trifanescu O, Anghel R, Serbanescu L. Antidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer Therapy. Medicina (B Aires) 2022; 58:medicina58091239. [PMID: 36143915 PMCID: PMC9503803 DOI: 10.3390/medicina58091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Over the last years, repurposed agents have provided growing evidence of fast implementation in oncology treatment such as certain antimalarial, anthelmintic, antibiotics, anti-inflammatory, antihypertensive, antihyperlipidemic, antidiabetic agents. In this study, the four agents of choice were present in our patients’ daily treatment for nonmalignant-associated pathology and have known, light toxicity profiles. It is quite common for a given patient’s daily administration schedule to include two or three of these drugs for the duration of their treatment. We chose to review the latest literature concerning metformin, employed as a first-line treatment for type 2 diabetes; mebendazole, as an anthelmintic; atorvastatin, as a cholesterol-lowering drug; propranolol, used in cardiovascular diseases as a nonspecific inhibitor of beta-1 and beta-2 adrenergic receptors. At the same time, certain key action mechanisms make them feasible antitumor agents such as for mitochondrial ETC inhibition, activation of the enzyme adenosine monophosphate-activated protein kinase, amelioration of endogenous hyperinsulinemia, inhibition of selective tyrosine kinases (i.e., VEGFR2, TNIK, and BRAF), and mevalonate pathway inhibition. Despite the abundance of results from in vitro and in vivo studies, the only solid data from randomized clinical trials confirm metformin-related oncological benefits for only a small subset of nondiabetic patients with HER2-positive breast cancer and early-stage colorectal cancer. At the same time, clinical studies confirm metformin-related detrimental/lack of an effect for lung, breast, prostate cancer, and glioblastoma. For atorvastatin we see a clinical oncological benefit in patients and head and neck cancer, with a trend towards radioprotection of critical structures, thus supporting the role of atorvastatin as a promising agent for concomitant association with radiotherapy. Propranolol-related increased outcomes were seen in clinical studies in patients with melanoma, breast cancer, and sarcoma.
Collapse
Affiliation(s)
- Laurentia Gales
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Oncology, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Leyla Forsea
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Mitrea
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Irina Stefanica
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Irina Stanculescu
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Radu Mitrica
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
- Correspondence: ; Tel.: +40-741-964-311
| | - Mihai Georgescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Oana Trifanescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Anghel
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Luiza Serbanescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
6
|
崔 颖, 范 顺, 潘 迪, 巢 青. [Atorvastatin inhibits malignant behaviors and induces apoptosis in human glioma cells by up-regulating miR-146a and inhibiting the PI3K/Akt signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:899-904. [PMID: 35790441 PMCID: PMC9257370 DOI: 10.12122/j.issn.1673-4254.2022.06.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effect of atorvastatin (AVT) on biological behaviors and the miR-146a/PI3K/Akt signaling pathway in human glioma cells. METHODS Human glioma U251 cells were treated with 8.0 μmol/L AVT or transfected with a miR-146a inhibitor or a negative control fragment (miR-146a NC) prior to AVT treatment. RT-PCR was used to detect miR-146a expression in the cells, and the changes in cell proliferation rate, apoptosis, cell invasion and migration were detected using MTT assay, flow cytometry, and Transwell assay. Western blotting was performed to detect the changes in cellular expressions of proteins in the PI3K/Akt signaling pathway. RESULTS AVT treatment for 48 h resulted in significantly increased miR-146a expression and cell apoptosis (P < 0.01) and obviously lowered the cell proliferation rate, invasion index, migration index, and expressions of p-PI3K and p-Akt protein in U251 cells (P < 0.01). Compared with AVT treatment alone, transfection with miR-146a inhibitor prior to AVT treatment significantly reduced miR-146a expression and cell apoptosis (P < 0.01), increased the cell proliferation rate, promoted cell invasion and migration, and enhanced the expressions of p-PI3K and p-Akt proteins in the cells (P < 0.01); these effects were not observed following transfection with miR-146a NC group (P>0.05). CONCLUSION AVT can inhibit the proliferation, invasion and migration and promote apoptosis of human glioma cells possibly by up-regulating miR-146a expression and inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- 颖 崔
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 顺志 范
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 迪迪 潘
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 青 巢
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
7
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
8
|
Buchou C, Laud-Duval K, van der Ent W, Grossetête S, Zaidi S, Gentric G, Corbé M, Müller K, Del Nery E, Surdez D, Delattre O. Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins. Cancers (Basel) 2022; 14:2327. [PMID: 35565457 PMCID: PMC9100622 DOI: 10.3390/cancers14092327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease.
Collapse
Affiliation(s)
- Charlie Buchou
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Wietske van der Ent
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Géraldine Gentric
- INSERM U830, Équipe Labellisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France;
| | - Maxime Corbé
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Kévin Müller
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Elaine Del Nery
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
- Balgrist University Hospital, University of Zurich, Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| |
Collapse
|
9
|
Rahal F, Capdevielle C, Rousseau B, Yzotte J, Dupuy JW, Cappellen D, Chotard G, Ménard M, Charpentier J, Jecko V, Caumont C, Gimbert E, Grosset CF, Hagedorn M. An EZH2 blocker sensitizes histone mutated diffuse midline glioma to cholesterol metabolism inhibitors through an off-target effect. Neurooncol Adv 2022; 4:vdac018. [PMID: 35300150 PMCID: PMC8923007 DOI: 10.1093/noajnl/vdac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Diffuse Midline Glioma, H3K27M-mutant (DMG) is a rare, highly aggressive pediatric tumor affecting the brainstem, and is one of the deadliest cancers. Currently available treatment options such as chemotherapy and radiotherapy do only modestly prolong survival. In this pathology, H3K27 mutations deregulate Polycomb Repressive Complex 2 (PRC2), including enzymatic activity of EZH2, which is therefore under investigation as a therapeutic target. Methods We used a chemical EZH2 inhibitor, GSK126, small interfering RNAs, and a CRISPR/Cas9 knockout approaches in a series of DMG tumor cell lines to investigate metabolic treatment responses by proteomic analysis. A combination strategy was elaborated and studied in primary and established DMG cells, spheroid 3D cultures, and in vivo in a chick chorio-allantoic membrane DMG assay and an orthotopic intracranial DMG mouse model. Results GSK126 shows significant (P < .05–.001) inhibitory effects in in vitro cell proliferation assays and induces apoptosis. Chemical targeting of EZH2 induced expression of proteins implicated in cholesterol metabolism. Low-dose GSK126 treatment together with statins revealed strong growth inhibition in combinatorial treatments, but not in single treatments, both in DMG cells in vitro, in DMG spheroid cultures, and in chick and mouse in vivo models (P < .05). All statistical tests were two-sided. Conclusions Our results reveal an unexpected GSK126-inducible sensitivity to cholesterol biosynthesis inhibitors in highly aggressive pediatric glioma that warrants further evaluation as treatment strategy. This combinatorial therapy should have few side effects because of the low doses used to achieve significant anti-tumor activity.
Collapse
Affiliation(s)
- Farah Rahal
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Caroline Capdevielle
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Benoit Rousseau
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Animalerie A2, Univ. Bordeaux, Bordeaux Cedex
| | - Julien Yzotte
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Animalerie A2, Univ. Bordeaux, Bordeaux Cedex
| | | | - David Cappellen
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Guillaume Chotard
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Mélissa Ménard
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Justine Charpentier
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Vincent Jecko
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Charline Caumont
- Department of Pathology, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Edouard Gimbert
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, place Amélie Raba Léon, Bordeaux CEDEX, France
| | - Christophe F Grosset
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| | - Martin Hagedorn
- Univ Bordeaux, Campus de Carreire/Victoire, Sciences de la santé/Sciences de l'Homme, Bordeaux CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux, France
| |
Collapse
|
10
|
Statins and Gliomas: A Systematic Review of the Preclinical Studies and Meta-Analysis of the Clinical Literature. Drugs 2022; 82:293-310. [PMID: 35122635 DOI: 10.1007/s40265-021-01668-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gliomas represent most common primary brain tumors. Glioblastoma (GBM) is the most common subtype and carries a poor prognosis. There is growing interest in the anti-glioma properties of statins. The aim of this study was to conduct a systematic review of the preclinical literature and to meta-analyze existing clinical studies to determine what benefit, if any, statins may confer in the context of glioma. METHODS The PubMed, Embase, Cochrane, and Web of Science libraries were queried in May 2021. Preclinical studies were included if they investigated the anti-cancer effects of statins in glioma in vitro and in vivo. Clinical studies were included if they reported incidence rates of glioma by statin use, or mortality outcomes among GBM patients by statin use. Pooled point estimates were calculated using a random-effects model. RESULTS In total, 64 publications, 51 preclinical and 13 clinical, were included. Preclinical studies indicated that statins inhibited glioma cell proliferation, migration, and invasion. These effects were time- and concentration-dependent. Synergistic anti-glioma effects were observed when statins were combined with other anti-cancer therapies. Clinical observational studies showed an inverse, albeit non-statistically significant, association between statin use and incidence rate of glioma (HR = 0.84, 95% CI 0.62-1.13, I2 = 72%, p-heterogeneity = 0.003, 6 studies). Statin use was not associated with better overall survival following GBM surgery (HR = 1.05, 95% CI 0.85-1.30, I2 = 30%, p-heterogeneity = 0.23, 4 studies). CONCLUSION Statins were potent anti-cancer drugs that suppressed glioma growth through various mechanisms in vitro; these effects have translated into the clinical realm, clinically but not statistically, in terms of glioma incidence but not GBM survival.
Collapse
|
11
|
Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin Cancer Biol 2021; 73:116-133. [DOI: 10.1016/j.semcancer.2020.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
|
12
|
Rosa JM, Camargo A, Wolin IAV, Kaster MP, Rodrigues ALS. Physical exercise prevents amyloid β 1-40-induced disturbances in NLRP3 inflammasome pathway in the hippocampus of mice. Metab Brain Dis 2021; 36:351-359. [PMID: 33211258 DOI: 10.1007/s11011-020-00646-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ), one of the main hallmarks of Alzheimer's Disease (AD), may stimulate pattern recognition receptors (PRR) such as the NLRP3 inflammasome, inducing a pro-inflammatory state in the brain that contributes to disease development. Physical exercise can have multiple beneficial effects on brain function, including anti-inflammatory and neuroprotective roles. The objective of this study was to investigate the prophylactic effect of moderate treadmill exercise for 4 weeks on inflammatory events related to NLRP3 signaling in the hippocampus of mice after intracerebroventricular Aβ1-40 administration. Our results show that Aβ1-40 administration (400 pmol/mouse, i.c.v.) significantly increased the immunocontent Iba-1 (a microglial reactivity marker), NLRP3, TXNIP, and caspase-1 in the hippocampus of mice. However, physical exercise prevented the hippocampal increase in Iba-1, TXNIP, and activation of the NLRP3 inflammasome pathway caused by Aβ1-40. Moreover, physical exercise per se reduced the TXNIP and caspase-1 immunocontent in the hippocampus. No alterations were observed on the immunocontent of GFAP, ASC, and IL-1β in the hippocampus after Aβ1-40 and/or physical exercise. These results reinforce the role of NLRP3 inflammasome pathway in AD and point to physical exercise as a possible non-pharmacological strategy to prevent inflammatory events triggered by Aβ1-40 in mice.
Collapse
Affiliation(s)
- Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
13
|
Pleiotropic effects of statins on brain cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183340. [PMID: 32387399 DOI: 10.1016/j.bbamem.2020.183340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/06/2023]
Abstract
Starting with cholesterol homeostasis, the first part of the review addresses various aspects of cholesterol metabolism in neuronal and glial cells and the mutual crosstalk between the two cell types, particularly the transport of cholesterol from its site of synthesis to its target loci in neuronal cells, discussing the multiple mechanistic aspects and transporter systems involved. Statins are next analyzed from the point of view of their chemical structure and its impingement on their pharmacological properties and permeability through cell membranes and the blood-brain barrier in particular. The following section then discusses the transcriptional effects of statins and the changes they induce in brain cell genes associated with a variety of processes, including cell growth, signaling and trafficking, uptake and synthesis of cholesterol. We review the effects of statins at the cellular level, analyzing their impact on the cholesterol composition of the nerve and glial cell plasmalemma, neurotransmitter receptor mobilization, myelination, dendritic arborization of neurons, synaptic vesicle release, and cell viability. Finally, the role of statins in disease is exemplified by Alzheimer and Parkinson diseases and some forms of epilepsy, both in animal models and in the human form of these pathologies.
Collapse
|
14
|
Broniarek I, Dominiak K, Galganski L, Jarmuszkiewicz W. The Influence of Statins on the Aerobic Metabolism of Endothelial Cells. Int J Mol Sci 2020; 21:ijms21041485. [PMID: 32098258 PMCID: PMC7073032 DOI: 10.3390/ijms21041485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/23/2022] Open
Abstract
Endothelial mitochondrial dysfunction is considered to be the main cause of cardiovascular disease. The aim of this research was to elucidate the effects of cholesterol-lowering statins on the aerobic metabolism of endothelial cells at the cellular and mitochondrial levels. In human umbilical vein endothelial cells (EA.hy926), six days of exposure to 100 nM atorvastatin (ATOR) induced a general decrease in mitochondrial respiration. No changes in mitochondrial biogenesis, cell viability, or ATP levels were observed, whereas a decrease in Coenzyme Q10 (Q10) content was accompanied by an increase in intracellular reactive oxygen species (ROS) production, although mitochondrial ROS production remained unchanged. The changes caused by 100 nM pravastatin were smaller than those caused by ATOR. The ATOR-induced changes at the respiratory chain level promoted increased mitochondrial ROS production. In addition to the reduced level of mitochondrial Q10, the activity of Complex III was decreased, and the amount of Complex III in a supercomplex with Complex IV was diminished. These changes may cause the observed decrease in mitochondrial membrane potential and an increase in Q10 reduction level as a consequence, leading to elevated mitochondrial ROS formation. The above observations highlight the role of endothelial mitochondria in response to potential metabolic adaptations related to the chronic exposure of endothelial cells to statins.
Collapse
|
15
|
Alfaifi MY, Shati AA, Alshehri MA, Elbehairi SEI, Fahmy UA, Alshehri OY. Atorvastatin-TPGS-PLGA Nanoparticles Cytotoxicity Augmentation Against Liver Cancer HepG2 cells. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.79.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Xie Y, Lu Q, Lenahan C, Yang S, Zhou D, Qi X. Whether statin use improves the survival of patients with glioblastoma?: A meta-analysis. Medicine (Baltimore) 2020; 99:e18997. [PMID: 32118710 PMCID: PMC7478415 DOI: 10.1097/md.0000000000018997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Glioblastomas are malignant brain tumors associated with high mortality and poor prognosis. Evidence from preclinical studies suggests that statins have an antitumor role, but their effects on the survival of patients with glioblastoma remain controversial. This meta-analysis attempts to assess the association between statins and glioblastoma. METHODS We searched 4 databases (PubMed, Web of Science, Embase, and Cochrane Library) for articles that evaluate the effect of statins on the survival of patients with glioblastoma. Two reviewers were asked to assess the quality of the studies and extract the data regarding progression-free survival (PFS) and overall survival (OS). RESULT A total of 5 studies met the inclusion criteria with 430 statin users and 2089 nonstatin users. All 5 studies were retrospectively analyzed. The pooled hazard ratio (HR) and 95% confidence intervals (CIs) were calculated. There was no benefit of statins found pertaining to the survival of glioblastoma patients in both PFS (HR, 0.97; CI, 0.84-1.13) and OS (HR, 0.98; CI, 0.87-1.11). In a subgroup defined by the patterns of statin use, it was determined that usage before glioblastoma diagnosis favored the OS of patients (HR, 0.85). The result, however, failed to demonstrate a statistically significant difference. CONCLUSION Use of statins was not associated with prolonged survival of patients with glioblastoma. Further well-designed randomized controlled trials are needed to confirm.
Collapse
Affiliation(s)
| | - Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Elangovan P, Jalaludeen AM, Ramakrishnan R, Amutha K, Pari L. In-vivo and In-vitro Antioxidant Activity of Troxerutin on Nickel Induced Toxicity in Experimental Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:89-97. [PMID: 33224214 PMCID: PMC7667551 DOI: 10.22037/ijpr.2020.15487.13126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to evaluate the effect of troxerutin (TXN) on Nickel (Ni) toxicity by using rats and in-vitro model. Ni toxicity induced in male albino wistar rats (20 mg/kg body weight (b.w) was administered orally for 20 days). TXN was administered orally (100 mg/kg (b.w) for 20 days with administration of Ni. The toxic effect of Ni and the action of TXN was measure by determining the lipid peroxidation markers and antioxidant levels in plasma and various in-vitro antioxidant systems. TXN exhibited a significant (p < 0.05) antioxidant activity in Ni induced toxicity by reversing the changes observed in TBARS, HP, Vitamin C, E and GSH. The free radical scavenging properties of TXN at different concentrations (10-50ug/mL) were investigated with various in-vitro methods such as 2, 2'-diphenyl-1- picrylhydrazyl radical (DPPH), 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS•+), hydroxyl radical, superoxide anion scavenging activity and reducing power. Among the different concentrations, 50 μg/mL of TXN was more effective compared to other concentrations in all in-vitro assays. The above study conclude that TXN possesses potent in-vivo and in-vitro antioxidant activity with effective free radical scavenger for potential therapeutic value.
Collapse
Affiliation(s)
- Perumal Elangovan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar – 608002, Tamil Nadu, India.
| | - Abdulkadhar Mohamed Jalaludeen
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar – 608002, Tamil Nadu, India.
| | - Ramalingam Ramakrishnan
- Department of Biochemistry, St. Joseph’s College of Arts & Science (Autonomous), Cuddalore 607001, Tamil Nadu, India.
| | - Kasinathan Amutha
- Department of Biochemistry, Sri Sankara Arts & Science College, Enathur, Kancheepuram,Tamil Nadu, India.
| | - Leelavinothan Pari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar – 608002, Tamil Nadu, India.
| |
Collapse
|
18
|
Kong Y, Feng Z, Chen A, Qi Q, Han M, Wang S, Zhang Y, Zhang X, Yang N, Wang J, Huang B, Zhang Q, Xiang G, Li W, Zhang D, Wang J, Li X. The Natural Flavonoid Galangin Elicits Apoptosis, Pyroptosis, and Autophagy in Glioblastoma. Front Oncol 2019; 9:942. [PMID: 31612107 PMCID: PMC6776614 DOI: 10.3389/fonc.2019.00942] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022] Open
Abstract
Galangin (GG), a flavonoid, elicits a potent antitumor activity in diverse cancers. Here, we evaluated the efficacy of GG in the treatment of human glioblastoma multiforme (GBM) and investigated the molecular basis for its inhibitory effects in the disease. GG inhibited viability and proliferation of GBM cells (U251, U87MG, and A172) in a dose-dependent manner (IC50 = 221.8, 262.5, 273.9 μM, respectively; P < 0.001; EdU, ~40% decrease at 150 μM, P < 0.001), and the number of colonies formed was significantly reduced (at 50 μM, P < 0.001). However, normal human astrocytes were more resistant to its cytotoxic effects (IC50 >450 μM). Annexin-V/PI staining was increased indicating that GG induced apoptosis in GBM cells (26.67 and 30.42%, U87MG and U251, respectively) and associated proteins including BAX and cleaved PARP-1 were increased (~3×). Cells also underwent pyroptosis as determined under phase-contrast microscopy. Knockdown of gasdermin E (GSDME), a protein involved in pyroptosis, alleviated pyroptosis induced by GG through aggravating nuclear DNA damage in GBM cells. Meanwhile, fluorescent GFP-RFP-MAP1LC3B puncta associated with autophagy increased under GG treatment, and transmission electron microscopy confirmed the formation of autophagic vesicles. Inhibition of autophagy enhanced GG-induced apoptosis and pyroptosis in GBM cells. Finally, in an orthotopic xenograft model in nude mice derived from U87MG cells, treatment with GG in combination with an inhibitor of autophagy, chloroquine, suppressed tumor growth, and enhanced survival compared to GG monotherapy (P < 0.05). Our results demonstrated that GG simultaneously induces apoptosis, pytoptosis, and protective autophagy in GBM cells, indicating that combination treatment of GG with autophagy inhibitors may be an effective therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Yang Kong
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Guo Xiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
19
|
Lovastatin Enhances Cytotoxicity of Temozolomide via Impairing Autophagic Flux in Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2710693. [PMID: 31662972 PMCID: PMC6778891 DOI: 10.1155/2019/2710693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Drug resistance to temozolomide (TMZ) contributes to the majority of tumor recurrence and treatment failure in patients with glioblastoma multiforme (GBM). Autophagy has been reported to play a role in chemoresistance in various types of cancer, including GBM. The anticancer effect of statins is arousing great research interests and has been demonstrated to modulate autophagic function. In this study, we investigated the combinational effects of lovastatin and TMZ on treating U87 and U251 GBM cell lines. Cytotoxicity was measured by MTT and colony formation assays; apoptosis was measured by flow cytometry; the cellular autophagic function was detected by the EGFP-mRFP-LC3 reporter and western blot assay. The results showed that lovastatin might enhance the cytotoxicity of TMZ, increase the TMZ-induced cellular apoptosis, and impair the autophagic flux in GBM cells. Lovastatin triggered autophagy initiation possibly by inhibiting the Akt/mTOR signaling pathway. Moreover, lovastatin might impair the autophagosome-lysosome fusion machinery by suppressing LAMP2 and dynein. These results suggested that lovastatin could enhance the chemotherapy efficacy of TMZ in treating GBM cells. The mechanism may be associated with impaired autophagic flux and thereby the enhancement of cellular apoptosis. Combining TMZ with lovastatin could be a promising strategy for GBM treatment.
Collapse
|
20
|
Spehalski EI, Lee JA, Peters C, Tofilon P, Camphausen K. The Quiescent Metabolic Phenotype of Glioma Stem Cells. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2019; 12:96-103. [PMID: 32153327 DOI: 10.35248/0974-276x.19.12.502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction Glioblastoma (GBM) is the most common primary malignant brain tumor in humans and, even with aggressive treatment that includes surgical resection, radiation (IR), and chemotherapy administration, prognosis is poor due to tumor recurrence. There is evidence that within GBMs a small number of glioma stem-like cells (GSLCs) exist, which are thought to be therapy resistant and are thus capable of repopulating a tumor after treatment. Like most cancers, GBMs largely employ aerobic glycolysis to create ATP, a phenomenon known as the Warburg Effect. There is no consensus on the metabolic characteristics of cancer stem cells. GSLCs have been shown to rely more heavily on oxidative phosphorylation, but there is also evidence that cancer stem cells can adapt their metabolism by fluctuating between energy pathways or acquiring intermediate metabolic phenotypes. We hypothesized that the metabolism of GSLCs differs from that of differentiated GBM tumor cell lines, and that the steady state metabolism would be differentially altered following radiation treatment. Materials and Methods We evaluated the oxygen consumption rate, extracellular acidification rate, and metabolic enzyme levels of GBM cell lines and GSLCs before and after irradiation using extracellular flux assays. We also measured absolute metabolite levels in these cells via mass spectroscopy with and without radiation treatment. Results GSLCs were found to be significantly more quiescent in comparison to adherent GBM cell lines, highlighted by lower glycolytic and maximal respiratory capacities as well as lower oxygen consumption and extracellular acidification rates. Analysis of individual metabolite concentrations revealed lower total metabolite concentrations overall but also elevated levels of metabolites in different energy pathways for GSLCs compared to GBM cell lines. Additionally, the metabolism of both GSLCs and GBM cell lines were found to be altered by IR. Conclusions While there is not one metabolic alteration that distinguishes irradiated GSLC metabolism from that of GBM cell lines, therapies targeting more metabolically quiescent tumor cells and thus the resistant GSLC population may increase a cancer's sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Elizabeth I Spehalski
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, Building 10, CRC, Bethesda, Maryland 20892, USA
| | - Jennifer A Lee
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, Building 10, CRC, Bethesda, Maryland 20892, USA
| | - Cord Peters
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, Building 10, CRC, Bethesda, Maryland 20892, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, Building 10, CRC, Bethesda, Maryland 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, Building 10, CRC, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Huo L, Wang B, Zheng M, Zhang Y, Xu J, Yang G, Guan Q. miR-128-3p inhibits glioma cell proliferation and differentiation by targeting NPTX1 through IRS-1/PI3K/AKT signaling pathway. Exp Ther Med 2019; 17:2921-2930. [PMID: 30906475 PMCID: PMC6425241 DOI: 10.3892/etm.2019.7284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022] Open
Abstract
It has been reported that glioma has a higher morbidity and mortality than other types of malignant brain tumor. While glioma has been extensively researched, the exact molecular mechanisms of its genesis and progression have remained to be fully elucidated. In order to explore a novel glioma-associated pathway which may represent a therapeutic target, 61 pairs of tumor tissues and adjacent normal tissues of glioma patients were collected and subjected to reverse-transcription quantitative polymerase chain reaction analysis, indicating that the relative expression of microRNA (miR)-128-3p was significantly decreased in the tumor tissues. However, the expression of neuronal pentraxin 1 (NPTX1) was obviously elevated. Through a bioinformatics analysis using Targetscan and transfection experiments, it was confirmed that NPTX1 was targeted by miR-128-3p. In the U251 human glioma cell line, transfection with miR-128-3p mimics increased the levels of phosphorylated insulin receptor substrate 1 (p-IRS-1), phosphoinositide-3 kinase (PI3K) and p-AKT, as demonstrated by western blot analysis. In addition, the proliferation rate of the cells was notably decreased following transfection with miR-128-3p mimics. Conversely, transfection with miR-128-3p inhibitor significantly increased the levels of p-IRS-1, PI3K and p-AKT, accompanied by an elevated proliferation rate of the cells. Therefore, it was indicated that miR-128-3p could reversely regulate NPTX1 expression. After the expression of NPTX1 was inhibited with specific small interfering RNA, the levels of p-IRS-1, PI3K and p-AKT were obviously decreased, while the expression of miR-128-3p was not significantly changed. Overall, it was concluded that miR-128-3p suppresses glioma through the NPTX1/IRS-1/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Leiming Huo
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, The First People's Hospital of Longxi County, Dingxi, Gansu 730050, P.R. China
| | - Maohua Zheng
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yonghong Zhang
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jiguang Xu
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Gang Yang
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
22
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
23
|
Statin Use and Cancer Incidence in Patients with Type 2 Diabetes Mellitus: A Network Meta-Analysis. Gastroenterol Res Pract 2018; 2018:8620682. [PMID: 30254671 PMCID: PMC6142785 DOI: 10.1155/2018/8620682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/12/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) patients are involved closely with cancer. This work aims to conduct a systematic review and network meta-analysis (NMA) to examine the effect of different types of statins on cancer incidence in patients with T2DM. Methods We systematically searched the Cochrane Library, PubMed, Embase, and Wanfang databases from January 1999 to March 2017. We performed a pairwise meta-analysis to estimate the pooled ratios (ORs) and 95% confidence intervals (CIs). A NMA was performed to compare different types of statins. Results Seven publications were included. In pairwise meta-analysis, the incidence of cancer in T2DM patients was reduced when simvastatin, atorvastatin, pravastatin, fluvastatin, lovastatin, rosuvastatin, and pitavastatin were used. In the result of NMA, the usage of simvastatin (RR 0.30 and 95% CI 0.16-0.56), atorvastatin (RR 0.29 and 95% CI 0.09-0.88), pravastatin (RR 0.34 and 95% CI 0.12-0.93), fluvastatin (RR 0.27 and 95% CI 0.09-0.83), rosuvastatin (RR 0.22 and 95% CI 0.10-0.49), and pitavastatin (RR 0.33 and 95% CI 0.20-0.57) was superior to the nonstatin groups. When compared with six other statins, rosuvastatin appeared to be the best one. Conclusions Different statins can reduce the risk of cancer in patients with T2DM. Our analyses suggest that rosuvastatin may be more effective than others.
Collapse
|
24
|
Atorvastatin Rejuvenates Neural Stem Cells Injured by Oxygen–Glucose Deprivation and Induces Neuronal Differentiation Through Activating the PI3K/Akt and ERK Pathways. Mol Neurobiol 2018; 56:2964-2977. [DOI: 10.1007/s12035-018-1267-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
|
25
|
Vallard A, Rancoule C, Espenel S, Garcia MA, Langrand-Escure J, He MY, Ben Mrad M, El Meddeb Hamrouni A, Ouni S, Trone JC, Rehailia-Blanchard A, Guillaume E, Vial N, Riocreux C, Guy JB, Magné N. Harnessing drug/radiation interaction through daily routine practice: Leverage medical and methodological point of view (MORSE 02-17 study). Radiother Oncol 2018; 129:471-478. [PMID: 29937210 DOI: 10.1016/j.radonc.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Safety profile of the interaction between anticancer drugs and radiation is a recurrent question. However, there are little data regarding the non-anticancer treatment (NACT)/radiation combinations. The aim of the present study was to investigate concomitant NACTs in patients undergoing radiotherapy in a French comprehensive cancer center. METHODS A prospective cross-sectional study was conducted. All cancer patients undergoing a palliative or curative radiotherapy were consecutively screened for six weeks in 2016. Data on NACTs were collected. RESULTS Out of 214 included patients, a NACT was concomitantly prescribed to 155 patients (72%), with a median number of 5 NACTs per patient (range: 1-12). The most prescribed drugs were anti-hypertensive drugs (101 patients, 47.2%), psychotropic drugs (n = 74, 34.6%), analgesics (n = 78, 36.4%), hypolipidemic drugs (n = 57, 26.6%), proton pump inhibitors (n = 46, 21.5%) and antiplatelet drugs (n = 38, 17.8%). Although 833 different molecules were reported, only 20 possible modifiers of cancer biological pathways (prescribed to 74 patients (34.5%)) were identified. Eight out of the 833 molecules (0.9%), belonging to six drug families, have been investigated in 28 ongoing or published clinical trials in combo with radiotherapy. They were prescribed to 63 patients (29.4%). CONCLUSION Drug-radiation interaction remains a subject of major interest, not only for conventional anticancer drugs, but also for NACTs. New trial designs are thus required.
Collapse
Affiliation(s)
- A Vallard
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France; Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622 Villeurbanne, France
| | - C Rancoule
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France; Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622 Villeurbanne, France
| | - S Espenel
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France; Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622 Villeurbanne, France
| | - M-A Garcia
- General Health Department, Hygée Institute, Avenue Albert Raimond, BP 60008, 42271 Saint-Priest en Jarez, France
| | - J Langrand-Escure
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - M Y He
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - M Ben Mrad
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - A El Meddeb Hamrouni
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - S Ouni
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - J-C Trone
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - A Rehailia-Blanchard
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - E Guillaume
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - N Vial
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - C Riocreux
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France
| | - J-B Guy
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France; Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622 Villeurbanne, France
| | - N Magné
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270 St Priest en Jarez, France; Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622 Villeurbanne, France.
| |
Collapse
|