1
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Wang HH, Lin LL, Li ZJ, Wei X, Askander O, Cappuccio G, Hashem MO, Hubert L, Munnich A, Alqahtani M, Pang Q, Burmeister M, Lu Y, Poirier K, Besmond C, Sun S, Brunetti-Pierri N, Alkuraya FS, Qi L. Hypomorphic variants of SEL1L-HRD1 ER-associated degradation are associated with neurodevelopmental disorders. J Clin Invest 2024; 134:e170054. [PMID: 37943610 PMCID: PMC10786691 DOI: 10.1172/jci170054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Recent studies using cell type-specific knockout mouse models have improved our understanding of the pathophysiological relevance of suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) endoplasmic reticulum-associated (ER-associated) degradation (ERAD); however, its importance in humans remains unclear, as no disease variant has been identified. Here, we report the identification of 3 biallelic missense variants of SEL1L and HRD1 (or SYVN1) in 6 children from 3 independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia, and/or ataxia. These SEL1L (p.Gly585Asp, p.Met528Arg) and HRD1 (p.Pro398Leu) variants were hypomorphic and impaired ERAD function at distinct steps of ERAD, including substrate recruitment (SEL1L p.Gly585Asp), SEL1L-HRD1 complex formation (SEL1L p.Met528Arg), and HRD1 activity (HRD1 p.Pro398Leu). Our study not only provides insights into the structure-function relationship of SEL1L-HRD1 ERAD, but also establishes the importance of SEL1L-HRD1 ERAD in humans.
Collapse
Affiliation(s)
- Huilun H. Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
| | - Liangguang L. Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
| | - Zexin J. Li
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
| | - Omar Askander
- Hopital Cheik Zaïd, Hopital Universitaire International RABAT, Morocco
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Mais O. Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laurence Hubert
- Imagine Institute, INSERM UMR1163, Paris, France
- Université Paris Cité, Paris, France
| | | | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Margit Burmeister
- Michigan Neuroscience Institute and Departments of Computational Medicine & Bioinformatics, Psychiatry, and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - You Lu
- Department of Molecular & Integrative Physiology and
| | | | | | - Shengyi Sun
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology and
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Ortiz-Álvarez G, Fortoul A, Srivastava A, Moreau MX, Bouloudi B, Mailhes-Hamon C, Delgehyr N, Faucourt M, Bahin M, Blugeon C, Breau M, Géli V, Causeret F, Meunier A, Spassky N. p53/p21 pathway activation contributes to the ependymal fate decision downstream of GemC1. Cell Rep 2022; 41:111810. [PMID: 36516767 DOI: 10.1016/j.celrep.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Aurélien Fortoul
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France.
| |
Collapse
|
4
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
5
|
Baeza V, Cifuentes M, Martínez F, Ramírez E, Nualart F, Ferrada L, Oviedo MJ, De Lima I, Troncoso N, Saldivia N, Salazar K. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep 2021; 11:18537. [PMID: 34535732 PMCID: PMC8448829 DOI: 10.1038/s41598-021-97948-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Ependymal cells have multiple apical cilia that line the ventricular surfaces and the central canal of spinal cord. In cancer, the loss of ependymal cell polarity promotes the formation of different types of tumors, such as supratentorial anaplastic ependymomas, which are highly aggressive in children. IIIG9 (PPP1R32) is a protein restricted to adult ependymal cells located in cilia and in the apical cytoplasm and has unknown function. In this work, we studied the expression and localization of IIIG9 in the adherens junctions (cadherin/β-catenin-positive junctions) of adult brain ependymal cells using confocal and transmission electron microscopy. Through in vivo loss-of-function studies, ependymal denudation (single-dose injection experiments of inhibitory adenovirus) was observed, inducing the formation of ependymal cells with a "balloon-like" morphology. These cells had reduced cadherin expression (and/or delocalization) and cleavage of the cell death marker caspase-3, with "cilia rigidity" morphology (probably vibrational beating activity) and ventriculomegaly occurring prior to these events. Finally, after performing continuous infusions of adenovirus for 14 days, we observed total cell denudation and reactive parenchymal astrogliosis. Our data confirmed that IIIG9 is essential for the maintenance of adherens junctions of polarized ependymal cells. Eventually, altered levels of this protein in ependymal cell differentiation may increase ventricular pathologies, such as hydrocephalus or neoplastic transformation.
Collapse
Affiliation(s)
- Victor Baeza
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Malaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology, BIONAND, Malaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Malaga, Spain
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIOBIO, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIOBIO, University of Concepcion, Concepcion, Chile
| | - María José Oviedo
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Isabelle De Lima
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Ninoschka Troncoso
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile.
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIOBIO, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
6
|
Microglia activated by microbial neuraminidase contributes to ependymal cell death. Fluids Barriers CNS 2021; 18:15. [PMID: 33757539 PMCID: PMC7986511 DOI: 10.1186/s12987-021-00249-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
The administration of microbial neuraminidase into the brain ventricular cavities of rodents represents a model of acute aseptic neuroinflammation. Ependymal cell death and hydrocephalus are unique features of this model. Here we demonstrate that activated microglia participates in ependymal cell death. Co-cultures of pure microglia with ependymal cells (both obtained from rats) were performed, and neuraminidase or lipopolysaccharide were used to activate microglia. Ependymal cell viability was unaltered in the absence of microglia or inflammatory stimulus (neuraminidase or lipopolysaccharide). The constitutive expression by ependymal cells of receptors for cytokines released by activated microglia, such as IL-1β, was demonstrated by qPCR. Besides, neuraminidase induced the overexpression of both receptors in ventricular wall explants. Finally, ependymal viability was evaluated in the presence of functional blocking antibodies against IL-1β and TNFα. In the co-culture setting, an IL-1β blocking antibody prevented ependymal cell death, while TNFα antibody did not. These results suggest that activated microglia are involved in the ependymal damage that occurs after the administration of neuraminidase in the ventricular cavities, and points to IL-1β as possible mediator of such effect. The relevance of these results lies in the fact that brain infections caused by neuraminidase-bearing pathogens are frequently associated to ependymal death and hydrocephalus.
Collapse
|
7
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
8
|
The median eminence as the hypothalamic area involved in rapid transfer of glucose to the brain: functional and cellular mechanisms. J Mol Med (Berl) 2019; 97:1085-1097. [PMID: 31129757 DOI: 10.1007/s00109-019-01799-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Our data proposes that glucose is transferred directly to the cerebrospinal fluid (CSF) of the hypothalamic ventricular cavity through a rapid "fast-track-type mechanism" that would efficiently stimulate the glucosensing areas. This mechanism would occur at the level of the median eminence (ME), a periventricular hypothalamic zone with no blood-brain barrier. This "fast-track" mechanism would involve specific glial cells of the ME known as β2 tanycytes that could function as "inverted enterocytes," expressing low-affinity glucose transporters GLUT2 and GLUT6 in order to rapidly transfer glucose to the CSF. Due to the large size of tanycytes, the presence of a high concentration of mitochondria and the expression of low-affinity glucose transporters, it would be expected that these cells accumulate glucose in the endoplasmic reticulum (ER) by sequestering glucose-6-phosphate (G-6-P), in a similar way to that recently demonstrated in astrocytes. Glucose could diffuse through the cells by micrometric distances to be released in the apical region of β2 tanycytes, towards the CSF. Through this mechanism, levels of glucose would increase inside the hypothalamus, stimulating glucosensing mechanisms quickly and efficiently. KEY MESSAGES: • Glucose diffuses through the median eminence cells (β2 tanycytes), towards the hypothalamic CSF. • Glucose is transferred through a rapid "fast-track-type mechanism" via GLUT2 and GLUT6. • Through this mechanism, hypothalamic glucose levels increase, stimulating glucosensing.
Collapse
|