1
|
Liu C, Chen R, Yun SM, Wang X. Intervention effect of exercise on working memory in patients with depression: a systematic review. PeerJ 2024; 12:e17986. [PMID: 39221273 PMCID: PMC11365484 DOI: 10.7717/peerj.17986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Background This article aims to systematically evaluate the intervention effect of exercise on working memory in patients with depression. Methods Six Chinese and English databases were searched for randomized controlled trials (RCTs) about exercise on working memory in patients with depression. PEDro scale was adopted to evaluate the methodological quality of the included articles, GRADEpro scale was employed to evaluate the level of evidence for outcomes, and the Metafor Package in R 4.4.1 was used to analyze the combined effect size, subgroup analyses and publication bias. Results A total of 15 studies were included. The meta-analysis indicated that exercise had a statistically significant effect on working memory in patients with depression, with an effect size of 0.16 (95% CI [0.03-0.28], p = 0.02). Exercise type (F(3,34) = 1.99, p = 0.13), intervention content (F(1,36) = 1.60, p = 0.22), and exercise duration (F(1,36) = 0.05, p = 0.83) did not moderate the effect, whereas exercise intensity showed a moderating effect (F(2,35) = 8.83, p < 0.01). There was evidence of publication bias in the study results (t = 2.52, p = 0.02). Conclusion Exercise can improve the working memory of patients with depression, and its moderating effect is the best when having low-intensity and moderate-intensity. Research plan was registered in international system evaluation platform PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) (CRD42023475325).
Collapse
Affiliation(s)
- Cong Liu
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Rao Chen
- Shanghai I&C Foreign Languages School, Shanghai, China
| | - So Mang Yun
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Xing Wang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Yeshaw Y, Madakkatel I, Mulugeta A, Lumsden A, Hyppönen E. Uncovering Predictors of Low Hippocampal Volume: Evidence from a Large-Scale Machine-Learning-Based Study in the UK Biobank. Neuroepidemiology 2024; 58:369-382. [PMID: 38560977 PMCID: PMC11449190 DOI: 10.1159/000538565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Hippocampal atrophy is an established biomarker for conversion from the normal ageing process to developing cognitive impairment and dementia. This study used a novel hypothesis-free machine-learning approach, to uncover potential risk factors of lower hippocampal volume using information from the world's largest brain imaging study. METHODS A combination of machine learning and conventional statistical methods were used to identify predictors of low hippocampal volume. We run gradient boosting decision tree modelling including 2,891 input features measured before magnetic resonance imaging assessments (median 9.2 years, range 4.2-13.8 years) using data from 42,152 dementia-free UK Biobank participants. Logistic regression analyses were run on 87 factors identified as important for prediction based on Shapley values. False discovery rate-adjusted p value <0.05 was used to declare statistical significance. RESULTS Older age, male sex, greater height, and whole-body fat-free mass were the main predictors of low hippocampal volume with the model also identifying associations with lung function and lifestyle factors including smoking, physical activity, and coffee intake (corrected p < 0.05 for all). Red blood cell count and several red blood cell indices such as haemoglobin concentration, mean corpuscular haemoglobin, mean corpuscular volume, mean reticulocyte volume, mean sphered cell volume, and red blood cell distribution width were among many biomarkers associated with low hippocampal volume. CONCLUSION Lifestyles, physical measures, and biomarkers may affect hippocampal volume, with many of the characteristics potentially reflecting oxygen supply to the brain. Further studies are required to establish causality and clinical relevance of these findings.
Collapse
Affiliation(s)
- Yigizie Yeshaw
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia,
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia,
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia,
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia,
| | - Iqbal Madakkatel
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa, Ethiopia
| | - Amanda Lumsden
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Zhu Q, Fu Y, Cui CP, Ding Y, Deng Z, Ning C, Hu F, Qiu C, Yu B, Zhou X, Yang G, Peng J, Zou W, Liu CH, Zhang L. OTUB1 promotes osteoblastic bone formation through stabilizing FGFR2. Signal Transduct Target Ther 2023; 8:142. [PMID: 37024477 PMCID: PMC10079838 DOI: 10.1038/s41392-023-01354-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 04/08/2023] Open
Abstract
Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Dysregulation of this process leads to multiple diseases, including osteoporosis. However, the underlying molecular mechanisms are not fully understood. Here, we show that the global and conditional osteoblast knockout of a deubiquitinase Otub1 result in low bone mass and poor bone strength due to defects in osteogenic differentiation and mineralization. Mechanistically, the stability of FGFR2, a crucial regulator of osteogenesis, is maintained by OTUB1. OTUB1 attenuates the E3 ligase SMURF1-mediated FGFR2 ubiquitination by inhibiting SMURF1's E2 binding. In the absence of OTUB1, FGFR2 is ubiquitinated excessively by SMURF1, followed by lysosomal degradation. Consistently, adeno-associated virus serotype 9 (AAV9)-delivered FGFR2 in knee joints rescued the bone mass loss in osteoblast-specific Otub1-deleted mice. Moreover, Otub1 mRNA level was significantly downregulated in bones from osteoporotic mice, and restoring OTUB1 levels through an AAV9-delivered system in ovariectomy-induced osteoporotic mice attenuated osteopenia. Taken together, our results suggest that OTUB1 positively regulates osteogenic differentiation and mineralization in bone homeostasis by controlling FGFR2 stability, which provides an optical therapeutic strategy to alleviate osteoporosis.
Collapse
Affiliation(s)
- Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yi Ding
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Zhikang Deng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Chao Ning
- Lab of Orthopedics of Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Hu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chen Qiu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Biyue Yu
- School of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xuemei Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Guan Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Jiang Peng
- Lab of Orthopedics of Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| |
Collapse
|
4
|
Xing X, Xu F, Wang Y, Liu H. Role of the OTUB1/IRF7/NOX4 axis in oxidative stress injury and inflammatory responses in mice with Parkinson's disease. Psychogeriatrics 2023; 23:32-44. [PMID: 36332656 DOI: 10.1111/psyg.12900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most devastating neurodegenerative disorders and is associated with oxidative stress injury (OSI) and inflammatory responses. This study sought to investigate the mechanism of ovarian tumour domain-containing ubiquitin aldehyde binding 1 (OTUB1) in OSI and inflammatory responses in PD, providing a theoretical foundation for PD treatment. METHODS The PD mouse model was established by an intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, followed by behavioural tests, observation of brain pathological changes, and quantification of inflammatory (TNF-α, IL-1β, and IL-10) and OS (ROS, SOD, and MDA) factors. Next, the expression levels of OTUB1, interferon regulatory factor 7 (IRF7), and NADPH oxidase 4 (NOX4) levels were determined by real-time quantitative polymerase chain reaction and western blot assay, the binding of OTUB1 to IRF7 was analysed by co-immunoprecipitation, and the ubiquitination level of IRF7 and the enrichment and binding of IRF7 and the NOX4 promoter were measured by chromatin immunoprecipitation and dual-luciferase assays. Afterwards, rescue experiments were performed with IRF7 or NOX4 overexpression in OTUB1 knockout PD mice. RESULTS OTUB1 was upregulated in brain tissues of PD mice. Inhibition of OTUB1 alleviated PD progression, OSI, and inflammatory responses. OTUB1 stabilized IRF7 through deubiquitination, and IRF7 bound to the NOX4 promoter to promote NOX4 expression. IRF7 or NOX4 overexpression reversed the effects of silencing OTUB1 on OSI and inflammatory responses in PD mice. CONCLUSION OTUB1-mediated deubiquitination stabilized IRF7 and upregulated NOX4 expression, thereby promoting OSI and inflammatory responses in PD mice.
Collapse
Affiliation(s)
- Xiaolian Xing
- Department of Neurology, Taiyuan Central Hospital, Shanxi Medical University, Taiyuan, China
| | - Fei Xu
- Department of Neurology, Taiyuan Central Hospital, Shanxi Medical University, Taiyuan, China
| | - Yu Wang
- Departments of Emergency Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tong ji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Liu
- Department of Neurology, Taiyuan Central Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Aksoy O, Hantusch B, Kenner L. Emerging role of T3-binding protein μ-crystallin (CRYM) in health and disease. Trends Endocrinol Metab 2022; 33:804-816. [PMID: 36344381 DOI: 10.1016/j.tem.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Thyroid hormones are essential metabolic and developmental regulators that exert a huge variety of effects in different organs. Triiodothyronine (T3) and thyroxine (T4) are synthesized in the thyroid gland and constitute unique iodine-containing hormones that are constantly regulated by a homeostatic feedback mechanism. T3/T4 activity in cells is mainly determined by specific transporters, cytosolic binding proteins, deiodinases (DIOs), and nuclear receptors. Modulation of intracellular T3/T4 level contributes to the maintenance of this regulatory feedback. μ-Crystallin (CRYM) is an important intracellular high-affinity T3-binding protein that buffers the amount of T3 freely available in the cytosol, thereby controlling its action. In this review, we focus on the molecular and pathological properties of CRYM in thyroid hormone signaling, with emphasis on its critical role in malignancies.
Collapse
Affiliation(s)
- Osman Aksoy
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Unit for Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Peven JC, Handen BL, Laymon CM, Fleming V, Piro-Gambetti B, Christian BT, Klunk W, Cohen AD, Okonkwo O, Hartley SL. Physical activity, memory function, and hippocampal volume in adults with Down syndrome. Front Integr Neurosci 2022; 16:919711. [PMID: 36176326 PMCID: PMC9514120 DOI: 10.3389/fnint.2022.919711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Higher engagement in moderate-intensity physical activity (PA) is related to better cognitive functioning in neurotypical adults; however, little is known about the effect of PA on cognitive aging in adults with Down syndrome (DS). Individuals with DS have three copies of chromosome 21, which includes the gene involved in the production of the amyloid precursor protein, resulting in an increased risk for an earlier onset of Alzheimer’s disease (AD). The goal of this study was to understand the relationship between engagement in moderate PA, memory, and hippocampal volume in adults with DS. Adults with DS participated in an ancillary Lifestyle study linked to the Alzheimer’s Biomarkers Consortium for DS (ABC- DS; N = 71). A within-sample z-score memory composite was created from performance on the Cued Recall Test (CRT) and the Rivermead Picture Recognition Test. Participants wore a wrist-worn accelerometer (GT9X) to measure PA. Variables of interest included the average percentage of time spent in moderate PA and average daily steps. Structural MRI data were acquired within 18 months of actigraphy/cognitive data collection for a subset of participants (n = 54). Hippocampal volume was extracted using Freesurfer v5.3. Associations between moderate PA engagement, memory, and hippocampal volume were evaluated with hierarchical linear regressions controlling for relevant covariates [age, body mass index, intellectual disability level, sex, and intracranial volume]. Participants were 37.77 years old (SD = 8.21) and were 55.6% female. They spent 11.1% of their time engaged in moderate PA (SD = 7.5%) and took an average of 12,096.51 daily steps (SD = 4,315.66). After controlling for relevant covariates, higher memory composite score was associated with greater moderate PA engagement (β = 0.232, p = 0.027) and more daily steps (β = 0.209, p = 0.037). In a subset of participants, after controlling for relevant covariates, PA variables were not significantly associated with the hippocampal volume (all p-values ≥ 0.42). Greater hippocampal volume was associated with higher memory composite score after controlling for relevant covariates (β = 0.316, p = 0.017). More PA engagement was related to better memory function in adults with DS. While greater hippocampal volume was related to better memory performance, it was not associated with PA. Greater PA engagement may be a promising lifestyle behavior to preserve memory in adults with DS.
Collapse
Affiliation(s)
- Jamie C. Peven
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Jamie C. Peven
| | - Benjamin L. Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Charles M. Laymon
- Department of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Victoria Fleming
- School of Human Ecology, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Brianna Piro-Gambetti
- School of Human Ecology, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States
| | - William Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ozioma Okonkwo
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Sigan L. Hartley
- School of Human Ecology, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
7
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
8
|
Fraser MA, Walsh EI, Shaw ME, Anstey KJ, Cherbuin N. Longitudinal Effects of Physical Activity Change on Hippocampal Volumes over up to 12 Years in Middle and Older Age Community-Dwelling Individuals. Cereb Cortex 2021; 32:2705-2716. [PMID: 34671805 DOI: 10.1093/cercor/bhab375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
The objectives of this study were to investigate the long-term associations between changes in physical activity levels and hippocampal volumes over time, while considering the influence of age, sex, and APOE-ε4 genotype. We investigated the effects of change in physical activity on hippocampal volumes in 411 middle age (mean age = 47.2 years) and 375 older age (mean age = 63.1 years) adults followed up to 12 years. An annual volume decrease was observed in the left (middle age: 0.46%; older age: 0.51%) but not in the right hippocampus. Each additional 10 metabolic equivalents (METs, ~2 h of moderate exercise) increase in weekly physical activity was associated with 0.33% larger hippocampal volume in middle age (equivalent to ~1 year of typical aging). In older age, each additional MET was associated with 0.05% larger hippocampal volume; however, the effects declined with time by 0.005% per year. For older age APOE-ε4 carriers, each additional MET was associated with a 0.10% increase in hippocampal volume. No sex effects of physical activity change were found. Increasing physical activity has long-term positive effects on hippocampal volumes and appears especially beneficial for older APOE-ε4 carriers. To optimize healthy brain aging, physical activity programs should focus on creating long-term exercise habits.
Collapse
Affiliation(s)
- Mark A Fraser
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Population Health Exchange, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Marnie E Shaw
- ANU College of Engineering & Computer Science, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Ageing Futures Institute, University of New South Wales, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Liu YJ, Cui ZY, Yang AL, Jallow AW, Huang HL, Shan CL, Lee SD. Anti-apoptotic and pro-survival effect of exercise training on early aged hypertensive rat cerebral cortex. Aging (Albany NY) 2021; 13:20495-20510. [PMID: 34432648 PMCID: PMC8436911 DOI: 10.18632/aging.203431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
The anti-apoptotic and pro-survival effects of exercise training were evaluated on the early aged hypertensive rat cerebral cortex. The brain tissues were analysed from ten sedentary male Wistar Kyoto normotensive rats (WKY), ten sedentary spontaneously 12 month early aged hypertensive rats (SHR), and ten hypertensive rats undergoing treadmill exercise training (60 min/day, 5 days/week) for 12 weeks (SHR-EX). TUNEL-positive apoptotic cells, the expression levels of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) (caspase-independent apoptotic pathway), Fas ligand, Fas death receptor, tumor necrosis factor (TNF)-α, TNF receptor 1, Fas-associated death domain, active caspase-8 and active caspase-3 (Fas-mediated apoptotic pathways) as well as t-Bid, Bax, Bak, Bad, cytochrome c, active caspase 9 and active caspase-3 (mitochondria-mediated apoptotic pathways) were reduced in SHR-EX compared with SHR. Pro-survival Bcl2, Bcl-xL, p-Bad, 14-3-3, insulin-like growth factor (IGF)-1, pPI3K/PI3K, and pAKT/AKT were significantly increased in SHR-EX compared to those in SHR. Exercise training suppressed neural EndoG/AIF-related caspase-independent, Fas/FasL-mediated caspase-dependent, mitochondria-mediated caspase-dependent apoptotic pathways as well as enhanced Bcl-2 family-related and IGF-1-related pro-survival pathways in the early aged hypertensive cerebral cortex. These findings indicated new therapeutic effects of exercise training on preventing early aged hypertension-induced neural apoptosis in cerebral cortex.
Collapse
Affiliation(s)
- Yi-Jie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Amadou W Jallow
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hai-Liang Huang
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Chun-Lei Shan
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Medicine, Weifang Medical University, Shandong, China.,Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Alomari MA, Alzoubi KH, Khabour OF. Swimming exercise improves short- and long-term memories: Time-course changes. Physiol Rep 2021; 9:e14851. [PMID: 34110704 PMCID: PMC8191402 DOI: 10.14814/phy2.14851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
The beneficial effects of exercise training on memory formation are well documented. However, the memory enhancement profile following the time-course of exercise training remains unknown. In this investigation, changes in the spatial hippocampal memory following a time-course of swimming exercise training were examined. Young adult Wistar rats were tested for both short-term and long-term memories using the radial arm water maize (RAWM) paradigm following 0, 1, 7, 14, and 28 days of swimming exercise training (60 min per day, 5 days/week)s. The mean total errors on RAWM during the learning phase and memory testing remained the same (p > 0.5) after 1 day of swimming exercise. On the other hand, swimming exercise-induced significant enhancement to the learning phase and memory formation after 7 days of training (p < 0.01). Errors decreased (p < 0.0001) after 7 days of training and remained lower (p < 0.0001) than baseline without differences between 7, 14, and 28 days (p > 0.5). Similarly, short- and long-term memories improved after 7 days (p < 0.05) of training as compared to the baseline without differences between 7, 14, and 28 days (p > 0.05). The time course of improvement of learning and both short- and long-term memories after swimming exercise were evident after 7 days and plateaued thereafter. Results of the current study could form the base for future utilization of exercises to enhance cognitive function in healthy individuals.
Collapse
Affiliation(s)
- Mahmoud A Alomari
- Department of Physical Education, Qatar University, Doha, Qatar.,Division of Physical Therapy, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Zhu Q, Fu Y, Li L, Liu CH, Zhang L. The functions and regulation of Otubains in protein homeostasis and diseases. Ageing Res Rev 2021; 67:101303. [PMID: 33609777 DOI: 10.1016/j.arr.2021.101303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins Otubain1 (OTUB1) and Otubain2 (OTUB2) were initially identified as OTU deubiquitinases (DUBs). Recently, Otubains have emerged as essential regulators of diverse physiological processes, such as immune signaling and DNA damage response. Dysregulation of those processes is likely to increase the risk in multiple aspects of aging-related diseases, including cancers, neurodegenerative disorders, chronic kidney diseases, bone dysplasia and pulmonary fibrosis. Consistently, Otubains are aberrantly expressed in cancers and have been identified to be both tumor suppressors and tumor promoters in different types of cancers. Therefore, the regulatory mechanism of the activity and expression of Otubains is very important for better understanding of Otubains-associated biological networks and human diseases. This review provides a comprehensive description of functions and regulatory axis of Otubains, highlighting experimental evidences indicating Otubains as potential therapeutic targets against aging-related disorders.
Collapse
Affiliation(s)
- Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Lei Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
12
|
Ma X, Huang M, Zheng M, Dai C, Song Q, Zhang Q, Li Q, Gu X, Chen H, Jiang G, Yu Y, Liu X, Li S, Wang G, Chen H, Lu L, Gao X. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer's disease. J Control Release 2020; 327:688-702. [PMID: 32931898 DOI: 10.1016/j.jconrel.2020.09.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Despite the various mechanisms that involved in the pathogenesis of Alzheimer's disease (AD), neuronal damage and synaptic dysfunction are the key events leading to cognition impairment. Therefore, neuroprotection and neurogenesis would provide essential alternatives to the rescue of AD cognitive function. Here we demonstrated that extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs-derived EVs, abbreviated as EVs) entered the brain quickly and efficiently following intranasal administration, and majorly accumulated in neurons within the central nervous system (CNS). Proteomics analysis showed that EVs contained multiple proteins possessing neuroprotective and neurogenesis activities, and neuronal RNA sequencing showed genes enrichment in neuroprotection and neurogenesis following the treatment with EVs. As a result, EVs exerted powerful neuroprotective effect on Aβ1-42 oligomer or glutamate-induced neuronal toxicity, effectively ameliorated neurologic damage in the whole brain areas, remarkably increased newborn neurons and powerfully rescued memory deficits in APP/PS1 transgenic mice. EVs also reduced Aβ deposition and decreased microglia activation although in a less extent. Collectively, here we provide direct evidence that ADSCs-derived EVs may potentially serve as an alternative for AD therapy through alleviating neuronal damage and promoting neurogenesis.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Yu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Xuesong Liu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Gang Wang
- Department of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Andreotti DZ, Silva JDN, Matumoto AM, Orellana AM, de Mello PS, Kawamoto EM. Effects of Physical Exercise on Autophagy and Apoptosis in Aged Brain: Human and Animal Studies. Front Nutr 2020; 7:94. [PMID: 32850930 PMCID: PMC7399146 DOI: 10.3389/fnut.2020.00094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is characterized by a series of molecular and cellular changes over the years that could culminate in the deterioration of physiological parameters important to keeping an organism alive and healthy. Physical exercise, defined as planned, structured and repetitive physical activity, has been an important force to alter physiology and brain development during the process of human beings' evolution. Among several aspects of aging, the aim of this review is to discuss the balance between two vital cellular processes such as autophagy and apoptosis, based on the fact that physical exercise as a non-pharmacological strategy seems to rescue the imbalance between autophagy and apoptosis during aging. Therefore, the effects of different types or modalities of physical exercise in humans and animals, and the benefits of each of them on aging, will be discussed as a possible preventive strategy against neuronal death.
Collapse
Affiliation(s)
- Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Josiane do Nascimento Silva
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amanda Midori Matumoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paloma Segura de Mello
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Fallon IP, Tanner MK, Greenwood BN, Baratta MV. Sex differences in resilience: Experiential factors and their mechanisms. Eur J Neurosci 2020; 52:2530-2547. [PMID: 31800125 PMCID: PMC7269860 DOI: 10.1111/ejn.14639] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Adverse life events can lead to stable changes in brain structure and function and are considered primary sources of risk for post-traumatic stress disorder, depression and other neuropsychiatric disorders. However, most individuals do not develop these conditions following exposure to traumatic experiences, and research efforts have identified a number of experiential factors associated with an individual's ability to withstand, adapt to and facilitate recovery from adversity. While multiple animal models of stress resilience exist, so that the detailed biological mechanisms can be explored, studies have been disproportionately conducted in male subjects even though the prevalence and presentation of stress-linked disorders differ between sexes. This review focuses on (a) the mechanisms by which experiential factors (behavioral control over a stressor, exercise) reduce the impact of adverse events as studied in males; (b) whether other manipulations (ketamine) that buffer against stress-induced sequelae engage the same circuit features; and (c) whether these processes operate similarly in females. We argue that investigation of experiential factors that produce resistance/resilience rather than vulnerability to adversity will generate a unique set of biological mechanisms that potentially underlie sex differences in mood disorders.
Collapse
Affiliation(s)
- Isabella P. Fallon
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Margaret K. Tanner
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80217, USA
| | | | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| |
Collapse
|
15
|
Millon EM, Shors TJ. Taking neurogenesis out of the lab and into the world with MAP Train My Brain™. Behav Brain Res 2019; 376:112154. [PMID: 31421141 DOI: 10.1016/j.bbr.2019.112154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/22/2023]
Abstract
Neurogenesis in the adult hippocampus was rediscovered in the 1990's after being reported in the 1960's. Since then, thousands upon thousands of laboratories have reported on the characteristics and presumed functional significance of new neurons in the adult brain. In 1999, we reported that mental training with effortful learning could extend the survival of these new cells and in the same year, others reported that physical training with exercise could increase their proliferation. Based on these studies and others, we developed MAP Train My Brain™, which is a brain fitness program for humans. The program combines mental and physical (MAP) training through 30-min of effortful meditation followed by 30-min of aerobic exercise. This program, when practiced twice a week for eight weeks reduced depressive symptoms and ruminative thoughts in men and women with major depressive disorder (MDD) while increasing synchronized brain activity during cognitive control. It also reduced anxiety and depression and increased oxygen consumption in young mothers who had been homeless. Moreover, engaging in the program reduced trauma-related cognitions and ruminative thoughts while increasing self-worth in adult women with a history of sexual trauma. And finally, the combination of mental and physical training together was more effective than either activity alone. Albeit effortful, this program does not require inordinate amounts of time or money to practice and can be easily adopted into everyday life. MAP Training exemplifies how we as neuroscientists can take discoveries made in the laboratory out into the world for the benefit of others.
Collapse
Affiliation(s)
- Emma M Millon
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Tracey J Shors
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|