1
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. Mol Neurodegener 2024; 19:13. [PMID: 38282024 PMCID: PMC10823734 DOI: 10.1186/s13024-023-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Zhen-Xian Niou
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Andrea Enriquez
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Present address: Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Jui-Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Karen Ling
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Paymaan Jafar-Nejad
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Jonathan Gilley
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Michael P Coleman
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vidhya Rangaraju
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. RESEARCH SQUARE 2023:rs.3.rs-2859584. [PMID: 37292715 PMCID: PMC10246254 DOI: 10.21203/rs.3.rs-2859584/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
|
3
|
Siponimod ameliorates metabolic oligodendrocyte injury via the sphingosine-1 phosphate receptor 5. Proc Natl Acad Sci U S A 2022; 119:e2204509119. [PMID: 36161894 DOI: 10.1073/pnas.2204509119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.
Collapse
|
4
|
Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol 2021; 142:643-667. [PMID: 34170374 PMCID: PMC8423657 DOI: 10.1007/s00401-021-02338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
The complement system is implicated in synapse loss in the MS hippocampus, but the functional consequences of synapse loss remain poorly understood. Here, in post-mortem MS hippocampi with demyelination we find that deposits of the complement component C1q are enriched in the CA2 subfield, are linked to loss of inhibitory synapses and are significantly higher in MS patients with cognitive impairments compared to those with preserved cognitive functions. Using the cuprizone mouse model of demyelination, we corroborated that C1q deposits are highest within the demyelinated dorsal hippocampal CA2 pyramidal layer and co-localized with inhibitory synapses engulfed by microglia/macrophages. In agreement with the loss of inhibitory perisomatic synapses, we found that Schaffer collateral feedforward inhibition but not excitation was impaired in CA2 pyramidal neurons and accompanied by intrinsic changes and a reduced spike output. Finally, consistent with excitability deficits, we show that cuprizone-treated mice exhibit impaired encoding of social memories. Together, our findings identify CA2 as a critical circuit in demyelinated intrahippocampal lesions and memory dysfunctions in MS.
Collapse
|
5
|
Zhan J, Fegg FN, Kaddatz H, Rühling S, Frenz J, Denecke B, Amor S, Ponsaerts P, Hochstrasser T, Kipp M. Focal white matter lesions induce long-lasting axonal degeneration, neuroinflammation and behavioral deficits. Neurobiol Dis 2021; 155:105371. [PMID: 33932559 DOI: 10.1016/j.nbd.2021.105371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) with episodes of inflammatory demyelination and remyelination. While remyelination has been linked with functional recovery in MS patients, there is evidence of ongoing tissue damage despite complete myelin repair. In this study, we investigated the long-term consequences of an acute demyelinating white matter CNS lesion. For this purpose, acute demyelination was induced by 5-week-cuprizone intoxication in male C57BL/6 J mice, and the tissues were examined after a 7-month recovery period. While myelination and oligodendrocyte densities appeared normal, ongoing axonal degeneration and glia cell activation were found in the remyelinated corpus callosum. Neuropathologies were paralleled by subtle gait abnormalities evaluated using DigiGait™ high speed ventral plane videography. Gene array analyses revealed increased expression levels of various inflammation related genes, among protein kinase c delta (PRKCD). Immunofluorescence stains revealed predominant microglia/macrophages PRKCD expression in both, cuprizone tissues and post-mortem MS lesions. These results support the hypothesis that chronic microglia/macrophages driven tissue injury represents a key aspect of progressive neurodegeneration and functional decline in MS.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Florian Nepomuk Fegg
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sebastian Rühling
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUMC site, Amsterdam, the Netherlands; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Ponsaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Tanja Hochstrasser
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147 Rostock, Germany.
| |
Collapse
|
6
|
Cree BAC, Cutter G, Wolinsky JS, Freedman MS, Comi G, Giovannoni G, Hartung HP, Arnold D, Kuhle J, Block V, Munschauer FE, Sedel F, Lublin FD. Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2020; 19:988-997. [PMID: 33222767 DOI: 10.1016/s1474-4422(20)30347-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND There is an unmet need to develop therapeutic interventions directed at the neurodegeneration that underlies progression in multiple sclerosis. High-dose, pharmaceutical-grade biotin (MD1003) might enhance neuronal and oligodendrocyte energetics, resulting in improved cell function, repair, or survival. The MS-SPI randomised, double-blind, placebo-controlled study found that MD1003 improved disability outcomes over 12 months in patients with progressive multiple sclerosis. The SPI2 study was designed to assess the safety and efficacy of MD1003 in progressive forms of multiple sclerosis in a larger, more representative patient cohort. METHODS SPI2 was a randomised, double-blind, parallel-group, placebo-controlled trial done at 90 academic and community multiple sclerosis clinics across 13 countries. Patients were aged 18-65 years, had a diagnosis of primary or secondary progressive multiple sclerosis fulfilling the revised International Panel criteria and Lublin criteria, a Kurtzke pyramidal functional subscore of at least 2 (defined as minimal disability), an expanded disability status scale (EDSS) score of 3·5-6·5, a timed 25-foot walk (TW25) of less than 40 s, evidence of clinical disability progression, and no relapses in the 2 years before enrolment. Concomitant disease-modifying therapies were allowed. Patients were randomly assigned (1:1) by an independent statistician using an interactive web response system, with stratification by study site and disease history, to receive MD1003 (oral biotin 100 mg three times daily) or placebo. Participants, investigators, and assessors were masked to treatment assignment. The primary endpoint was a composite of the proportion of participants with confirmed improvement in EDSS or TW25 at month 12, confirmed at month 15, versus baseline. The primary endpoint was assessed in the intention-to-treat analysis set, after all participants completed the month 15 visit. Safety analyses included all participants who received at least one dose of MD1003. This trial is registered with ClinicalTrials.gov (NCT02936037) and the EudraCT database (2016-000700-29). FINDINGS From Feb 22, 2017, to June 8, 2018, 642 participants were randomly assigned MD1003 (n=326) or placebo (n=316). The double-blind, placebo-controlled phase of the study ended when the primary endpoint for the last-entered participant was assessed on Nov 15, 2019. The mean time in the placebo-controlled phase was 20·1 months (SD 5·3; range 15-27). For the primary outcome, 39 (12%) of 326 patients in the MD1003 group compared with 29 (9%) of 316 in the placebo group improved at month 12, with confirmation at month 15 (odds ratio 1·35 [95% CI 0·81-2·26]). Treatment-emergent adverse events occurred in 277 (84%) of 331 participants in the MD1003 group and in 264 (85%) of 311 in the placebo group. 87 (26%) of 331 participants in the MD1003 group and 82 (26%) of 311 participants in the placebo group had at least one serious treatment-emergent adverse event. One (<1%) person died in the MD1003 group and there were no deaths in the placebo group. Despite use of mitigation strategies, MD1003 led to inaccurate laboratory results for tests using biotinylated antibodies. INTERPRETATION This study showed that MD1003 did not significantly improve disability or walking speed in patients with progressive multiple sclerosis and thus, in addition to the potential of MD1003 for deleterious health consequences from interference of laboratory tests, MD1003 cannot be recommended for treatment of progressive multiple sclerosis. FUNDING MedDay Pharmaceuticals.
Collapse
Affiliation(s)
- Bruce A C Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Gary Cutter
- University of Alabama, School of Public Health, Birmingham, AL, USA
| | - Jerry S Wolinsky
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark S Freedman
- The University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Giancarlo Comi
- Institute of Experimental Neurology, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Douglas Arnold
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Valerie Block
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Fred D Lublin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
7
|
Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells 2020; 9:cells9102187. [PMID: 32998402 PMCID: PMC7601078 DOI: 10.3390/cells9102187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
The water channel protein aquaporin-4 (AQP4) is required for a normal rate of water exchange across the blood–brain interface. Following the discovery that AQP4 is a possible autoantigen in neuromyelitis optica, the function of AQP4 in health and disease has become a research focus. While several studies have addressed the expression and function of AQP4 during inflammatory demyelination, relatively little is known about its expression during non-autoimmune-mediated myelin damage. In this study, we used the toxin-induced demyelination model cuprizone as well as a combination of metabolic and autoimmune myelin injury (i.e., Cup/EAE) to investigate AQP4 pathology. We show that during toxin-induced demyelination, diffuse AQP4 expression increases, while polarized AQP4 expression at the astrocyte endfeet decreases. The diffuse increased expression of AQP4 was verified in chronic-active multiple sclerosis lesions. Around inflammatory brain lesions, AQP4 expression dramatically decreased, especially at sites where peripheral immune cells penetrate the brain parenchyma. Humoral immune responses appear not to be involved in this process since no anti-AQP4 antibodies were detected in the serum of the experimental mice. We provide strong evidence that the diffuse increase in anti-AQP4 staining intensity is due to a metabolic injury to the brain, whereas the focal, perivascular loss of anti-AQP4 immunoreactivity is mediated by peripheral immune cells.
Collapse
|
8
|
The Cuprizone Model: Dos and Do Nots. Cells 2020; 9:cells9040843. [PMID: 32244377 PMCID: PMC7226799 DOI: 10.3390/cells9040843] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Various pre-clinical models with different specific features of the disease are available to study MS pathogenesis and to develop new therapeutic options. During the last decade, the model of toxic demyelination induced by cuprizone has become more and more popular, and it has contributed substantially to our understanding of distinct yet important aspects of the MS pathology. Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls should be avoided.
Collapse
|
9
|
Nellessen A, Nyamoya S, Zendedel A, Slowik A, Wruck C, Beyer C, Fragoulis A, Clarner T. Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. Metab Brain Dis 2020; 35:353-362. [PMID: 31529356 DOI: 10.1007/s11011-019-00488-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a pathophysiological hallmark of many CNS diseases, among multiple sclerosis (MS). Accordingly, boosting the astrocytic transcription factor nuclear factor E2-related factor 2 (Nrf2) system in an MS mouse model efficiently ameliorates oligodendrocyte loss, neuroinflammation and axonal damage. Moreover, Dimethylfumarate, an efficient activator of Nrf2, has recently been approved as therapeutic option in MS treatment. Here, we use the cuprizone mouse model of MS to induce oxidative stress, selective oligodendrocyte loss, microglia and astrocyte activation as well as axonal damage in both wild type and Nrf2-deficient mice. We found increased oligodendrocyte apoptosis and loss, pronounced neuroinflammation and higher levels of axonal damage in cuprizone-fed Nrf2-deficient animals when compared to wild type controls. In addition, Nrf2-deficient animals showed a higher susceptibility towards cuprizone within the commissura anterior white matter tract, a structure that is relatively insensitive to cuprizone in wild type animals. Our data highlight the cuprizone model as a suitable tool to study the complex interplay of oxidative stress, neuroinflammation and axonal damage. Further studies will have to show whether distinct expression patterns of Nrf2 are involved in the variable susceptibility towards cuprizone in the mouse.
Collapse
Affiliation(s)
- Anna Nellessen
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
- Faculty of Medicine, LMU Munich, Department of Anatomy, Neuroanatomy, Pettenkoferstr. 11, 80336, Munich, Germany
- Rostock University Medical Center, Rostock, Institut für Anatomie, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Laquinimod ameliorates secondary brain inflammation. Neurobiol Dis 2019; 134:104675. [PMID: 31731041 DOI: 10.1016/j.nbd.2019.104675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that a degenerative processes within the brain can trigger the formation of new, focal inflammatory lesions in Multiple Sclerosis (MS). Here, we used a novel pre-clinical MS animal model to test whether the amelioration of degenerative brain events reduces the secondary recruitment of peripheral immune cells and, in consequence, inflammatory lesion development. Neural degeneration was induced by a 3 weeks cuprizone intoxication period. To mitigate the cuprizone-induced pathology, animals were treated with Laquinimod (25 mg/kg) during the cuprizone-intoxication period. At the beginning of week 6, encephalitogenic T cell development in peripheral lymphoid organs was induced by the immunization with myelin oligodendrocyte glycoprotein 35-55 peptide (i.e., Cup/EAE). Demyelination, axonal injury and reactive gliosis were determined by immunohistochemistry. Positron emission tomography (PET) imaging was performed to analyze glia activation in vivo. Vehicle-treated cuprizone mice displayed extensive callosal demyelination, glia activation and enhanced TSPO-ligand binding. This cuprizone-induced pathology was profoundly ameliorated in mice treated with Laquinimod. In vehicle-treated Cup/EAE mice, the cuprizone-induced pathology triggered massive peripheral immune cell recruitment into the forebrain, evidenced by multifocal perivascular inflammation, glia activation and neuro-axonal injury. While anti myelin oligodendrocyte glycoprotein 35-55 peptide immune responses were comparable in vehicle- and Laquinimod-treated Cup/EAE mice, the cuprizone-triggered immune cell recruitment was ameliorated by the Laquinimod treatment. This study clearly illustrates that amelioration of a primary brain-intrinsic degenerative process secondary halts peripheral immune cell recruitment and, in consequence, inflammatory lesion development. These findings have important consequences for the interpretation of the results of clinical studies.
Collapse
|
11
|
Stereological Investigation of Regional Brain Volumes after Acute and Chronic Cuprizone-Induced Demyelination. Cells 2019; 8:cells8091024. [PMID: 31484353 PMCID: PMC6770802 DOI: 10.3390/cells8091024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 02/03/2023] Open
Abstract
Brain volume measurement is one of the most frequently used biomarkers to establish neuroprotective effects during pre-clinical multiple sclerosis (MS) studies. Furthermore, whole-brain atrophy estimates in MS correlate more robustly with clinical disability than traditional, lesion-based metrics. However, the underlying mechanisms leading to brain atrophy are poorly understood, partly due to the lack of appropriate animal models to study this aspect of the disease. The purpose of this study was to assess brain volumes and neuro-axonal degeneration after acute and chronic cuprizone-induced demyelination. C57BL/6 male mice were intoxicated with cuprizone for up to 12 weeks. Brain volume, as well as total numbers and densities of neurons, were determined using design-based stereology. After five weeks of cuprizone intoxication, despite severe demyelination, brain volumes were not altered at this time point. After 12 weeks of cuprizone intoxication, a significant volume reduction was found in the corpus callosum and diverse subcortical areas, particularly the internal capsule and the thalamus. Thalamic volume loss was accompanied by glucose hypermetabolism, analyzed by [18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography. This study demonstrates region-specific brain atrophy of different subcortical brain regions after chronic cuprizone-induced demyelination. The chronic cuprizone demyelination model in male mice is, thus, a useful tool to study the underlying mechanisms of subcortical brain atrophy and to investigate the effectiveness of therapeutic interventions.
Collapse
|