1
|
Yang Y, Guan W, Sheng XM, Gu HJ. Role of Semaphorin 3A in common psychiatric illnesses such as schizophrenia, depression, and anxiety. Biochem Pharmacol 2024; 226:116358. [PMID: 38857830 DOI: 10.1016/j.bcp.2024.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
With societal development and an ageing population, psychiatric disorders have become a common cause of severe and long-term disability and socioeconomic burdens worldwide. Semaphorin 3A (Sema-3A) is a secreted glycoprotein belonging to the semaphorin family. Sema-3A is well known as an axon guidance factor in the neuronal system and a potent immunoregulator at all stages of the immune response. It is reported to have various biological functions and is involved in many human diseases, including autoimmune diseases, angiocardiopathy, osteoporosis, and tumorigenesis. The signals of sema-3A involved in the pathogenesis of these conditions, are transduced through its cognate receptors and diverse downstream signalling pathways. An increasing number of studies show that sema-3A plays important roles in synaptic and dendritic development, which are closely associated with the pathophysiological mechanisms of psychiatric disorders, including schizophrenia, depression, and autism, suggesting the involvement of sema-3A in the pathogenesis of mental diseases. This indicates that mutations in sema-3A and alterations in its receptors and signalling may compromise neurodevelopment and predispose patients to these disorders. However, the role of sema-3A in psychiatric disorders, particularly in regulating neurodevelopment, remains elusive. In this review, we summarise the recent progress in understanding sema-3A in the pathogenesis of mental diseases and highlight sema-3A as a potential target for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, China
| | - Hai-Juan Gu
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, China.
| |
Collapse
|
2
|
Zhao T, Huang C, Zhang Y, Zhu Y, Chen X, Wang T, Shao J, Meng X, Huang Y, Wang H, Wang H, Wang B, Xu D. Prenatal 1-Nitropyrene Exposure Causes Autism-Like Behavior Partially by Altering DNA Hydroxymethylation in Developing Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306294. [PMID: 38757379 PMCID: PMC11267330 DOI: 10.1002/advs.202306294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/13/2024] [Indexed: 05/18/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social communication disability and stereotypic behavior. This study aims to investigate the impact of prenatal exposure to 1-nitropyrene (1-NP), a key component of motor vehicle exhaust, on autism-like behaviors in a mouse model. Three-chamber test finds that prenatal 1-NP exposure causes autism-like behaviors during the weaning period. Patch clamp shows that inhibitory synaptic transmission is reduced in medial prefrontal cortex of 1-NP-exposed weaning pups. Immunofluorescence finds that prenatal 1-NP exposure reduces the number of prefrontal glutamate decarboxylase 67 (GAD67) positive interneurons in fetuses and weaning pups. Moreover, prenatal 1-NP exposure retards tangential migration of GAD67-positive interneurons and downregulates interneuron migration-related genes, such as Nrg1, Erbb4, and Sema3F, in fetal forebrain. Mechanistically, prenatal 1-NP exposure reduces hydroxymethylation of interneuron migration-related genes through inhibiting ten-eleven translocation (TET) activity in fetal forebrain. Supplement with alpha-ketoglutarate (α-KG), a cofactor of TET enzyme, reverses 1-NP-induced hypohydroxymethylation at specific sites of interneuron migration-related genes. Moreover, α-KG supplement alleviates 1-NP-induced migration retardation of interneurons in fetal forebrain. Finally, maternal α-KG supplement improves 1-NP-induced autism-like behaviors in weaning offspring. In conclusion, prenatal 1-NP exposure causes autism-like behavior partially by altering DNA hydroxymethylation of interneuron migration-related genes in developing brain.
Collapse
Affiliation(s)
- Ting Zhao
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Cheng‐Qing Huang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Yi‐Hao Zhang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yan‐Yan Zhu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiao‐Xi Chen
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Jing Shao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiu‐Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yichao Huang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hua Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hui‐Li Wang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Bo Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - De‐Xiang Xu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| |
Collapse
|
3
|
Li YJ, Li CY, Li CY, Hu DX, Xv ZB, Zhang SH, Li Q, Zhang P, Tian B, Lan XL, Chen XQ. KMT2E Haploinsufficiency Manifests Autism-Like Behaviors and Amygdala Neuronal Development Dysfunction in Mice. Mol Neurobiol 2023; 60:1609-1625. [PMID: 36534336 DOI: 10.1007/s12035-022-03167-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental disorders characterized by impaired social interaction skills. Whole exome sequencing has identified loss-of-function mutations in lysine methyltransferase 2E (KMT2E, also named MLL5) in ASD patients and it is listed as an ASD high-risk gene in humans. However, experimental evidence of KMT2E in association with ASD-like manifestations or neuronal function is still missing. Relying on KMT2E+/- mice, through animal behavior analyses, positron emission tomography (PET) imaging, and neuronal morphological analyses, we explored the role of KMT2E haploinsufficiency in ASD-like symptoms. Behavioral results revealed that KMT2E haploinsufficiency was sufficient to produce social deficit, accompanied by anxiety in mice. Whole-brain 18F-FDG-PET analysis identified that relative amygdala glycometabolism was selectively decreased in KMT2E+/- mice compared to wild-type mice. The numbers and soma sizes of amygdala neurons in KMT2E+/- mice were prominently increased. Additionally, KMT2E mRNA levels in human amygdala were significantly decreased after birth during brain development. Our findings support a causative role of KMT2E in ASD development and suggest that amygdala neuronal development abnormality is likely a major underlying mechanism.
Collapse
Affiliation(s)
- Yuan-Jun Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Chun-Yan Li
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun-Yang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Dian-Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Zhi-Bo Xv
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Shu-Han Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Xiao-Li Lan
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
4
|
Jahan MS, Tsuzuki T, Ito T, Bhuiyan MER, Takahashi I, Takamatsu H, Kumanogoh A, Negishi T, Yukawa K. PlexinA1-deficient mice exhibit decreased cell density and augmented oxidative stress in parvalbumin-expressing interneurons in the medial prefrontal cortex. IBRO Neurosci Rep 2022; 13:500-512. [DOI: 10.1016/j.ibneur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
|
5
|
Li Y, Tong F, Zhang Y, Cai Y, Ding J, Wang Q, Wang X. Neuropilin-2 Signaling Modulates Mossy Fiber Sprouting by Regulating Axon Collateral Formation Through CRMP2 in a Rat Model of Epilepsy. Mol Neurobiol 2022; 59:6817-6833. [PMID: 36044155 PMCID: PMC9525442 DOI: 10.1007/s12035-022-02995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed neural circuit formation constitutes the foundation for normal brain functions. Axon guidance cues play crucial roles in neural circuit establishment during development. Whether or how they contribute to maintaining the stability of networks in mature brains is seldom studied. Upon injury, neural rewiring could happen in adulthood, of which mossy fiber sprouting (MFS) is a canonical example. Here, we uncovered a novel role of axon guidance molecule family Sema3F/Npn-2 signaling in MFS and epileptogenesis in a rat model of epilepsy. Dentate gyrus-specific Npn-2 knockdown increased seizure activity in epileptic animals along with increased MFS. Hippocampal culture results suggested that Npn-2 signaling modulates MFS via regulating axon outgrowth and collateral formation. In addition, we discovered that Sema3F/Npn-2 signal through CRMP2 by regulating its phosphorylation in the process of MFS. Our work illustrated that Npn-2 signaling in adult epilepsy animals could potentially modulate seizure activity by controlling MFS. MFS constitutes the structural basis for abnormal electric discharge of neurons and recurrent seizures. Therapies targeting Npn-2 signaling could potentially have disease-modifying anti-epileptogenesis effects in epilepsy treatment.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
The role of ciliopathy-associated type 3 adenylyl cyclase in infanticidal behavior in virgin adult male mice. iScience 2022; 25:104534. [PMID: 35754726 PMCID: PMC9218507 DOI: 10.1016/j.isci.2022.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for infanticide in male mice, the role of the MOS in infanticide remains unknown. Herein, by producing lesions via ZnSO4 perfusion and N-methyl-D-aspartic acid stereotactic injection, we demonstrated that the main olfactory epithelium (MOE), anterior olfactory nucleus (AON), or ventromedial hypothalamus (VMH) is crucial for infanticide in adult males. By using CRISPR-Cas9 coupled with adeno-associated viruses to induce specific knockdown of type 3 adenylyl cyclase (AC3) in these tissues, we further demonstrated that AC3, a ciliopathy-associated protein, in the MOE and the expression of related proteins in the AON or VMH are necessary for infanticidal behavior in virgin adult male mice. MOE lesions and knockdown of AC3 in the MOE result in abnormal infanticidal behavior The infanticidal behavior of male mice is impaired by lesioning of the AON or VMH AC3 knockdown in the AON or VMH affects the infanticidal behavior of male mice
Collapse
|
7
|
Jagadapillai R, Qiu X, Ojha K, Li Z, El-Baz A, Zou S, Gozal E, Barnes GN. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022; 11:2211. [PMID: 35883654 PMCID: PMC9315816 DOI: 10.3390/cells11142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a common pediatric neurobiological disorder with up to 80% of genetic etiologies. Systems biology approaches may make it possible to test novel therapeutic strategies targeting molecular pathways to alleviate ASD symptoms. A clinical database of autism subjects was queried for individuals with a copy number variation (CNV) on microarray, Vineland, and Parent Concern Questionnaire scores. Pathway analyses of genes from pathogenic CNVs yielded 659 genes whose protein-protein interactions and mRNA expression mapped 121 genes with maximal antenatal expression in 12 brain regions. A Research Domain Criteria (RDoC)-derived neural circuits map revealed significant differences in anxiety, motor, and activities of daily living skills scores between altered CNV genes and normal microarrays subjects, involving Positive Valence (reward), Cognition (IQ), and Social Processes. Vascular signaling was identified as a biological process that may influence these neural circuits. Neuroinflammation, microglial activation, iNOS and 3-nitrotyrosine increase in the brain of Semaphorin 3F- Neuropilin 2 (Sema 3F-NRP2) KO, an ASD mouse model, agree with previous reports in the brain of ASD individuals. Signs of platelet deposition, activation, release of serotonin, and albumin leakage in ASD-relevant brain regions suggest possible blood brain barrier (BBB) deficits. Disruption of neurovascular signaling and BBB with neuroinflammation may mediate causative pathophysiology in some ASD subgroups. Although preliminary, these data demonstrate the potential for developing novel therapeutic strategies based on clinically derived data, genomics, cognitive neuroscience, and basic neuroscience methods.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Xiaolu Qiu
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Kshama Ojha
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville Speed School, Louisville, KY 40292, USA;
| | - Shipu Zou
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gregory N. Barnes
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Khdour HY, Kondabolu K, Khadka A, Assous M, Tepper JM, Tran TS, Polack PO. Neuropilin 2/Plexin-A3 Receptors Regulate the Functional Connectivity and the Excitability in the Layers 4 and 5 of the Cerebral Cortex. J Neurosci 2022; 42:4828-4840. [PMID: 35534225 PMCID: PMC9188426 DOI: 10.1523/jneurosci.1965-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The functions of cortical networks are progressively established during development by series of events shaping the neuronal connectivity. Synaptic elimination, which consists of removing the supernumerary connections generated during the earlier stages of cortical development, is one of the latest stages in neuronal network maturation. The semaphorin 3F coreceptors neuropilin 2 (Nrp2) and plexin-A3 (PlxnA3) may play an important role in the functional maturation of the cerebral cortex by regulating the excess dendritic spines on cortical excitatory neurons. Yet, the identity of the connections eliminated under the control of Nrp2/PlxnA3 signaling is debated, and the importance of this synaptic refinement for cortical functions remains poorly understood. Here, we show that Nrp2/PlxnA3 controls the spine densities in layer 4 (L4) and on the apical dendrite of L5 neurons of the sensory and motor cortices. Using a combination of neuroanatomical, ex vivo electrophysiology, and in vivo functional imaging techniques in Nrp2 and PlxnA3 KO mice of both sexes, we disprove the hypothesis that Nrp2/PlxnA3 signaling is required to maintain the ectopic thalamocortical connections observed during embryonic development. We also show that the absence of Nrp2/PlxnA3 signaling leads to the hyperexcitability and excessive synchronization of the neuronal activity in L5 and L4 neuronal networks, suggesting that this system could participate in the refinement of the recurrent corticocortical connectivity in those layers. Altogether, our results argue for a role of semaphorin-Nrp2/PlxnA3 signaling in the proper maturation and functional connectivity of the cerebral cortex, likely by controlling the refinement of recurrent corticocortical connections.SIGNIFICANCE STATEMENT The function of a neuronal circuit is mainly determined by the connections that neurons establish with one another during development. Understanding the mechanisms underlying the establishment of the functional connectivity is fundamental to comprehend how network functions are implemented, and to design treatments aiming at restoring damaged neuronal circuits. Here, we show that the cell surface receptors for the family of semaphorin guidance cues neuropilin 2 (Nrp2) and plexin-A3 (PlxnA3) play an important role in shaping the functional connectivity of the cerebral cortex likely by trimming the recurrent connections in layers 4 and 5. By removing the supernumerary inputs generated during early development, Nrp2/PlxnA3 signaling reduces the neuronal excitability and participates in the maturation of the cortical network functions.
Collapse
Affiliation(s)
- Hussain Y Khdour
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102
| | - Krishnakanth Kondabolu
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| | - Alina Khadka
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| | - Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| | - Tracy S Tran
- Department of Biological Sciences, Rutgers University-Newark, Newark, New Jersey 07102
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| |
Collapse
|
9
|
Li Y, Tong F, Liu L, Su Z, Ding J, Wang Q, Wang X. CRMP2 modulates mossy fiber sprouting in dentate gyrus of pilocarpine induced rat model of epilepsy. Biochem Biophys Res Commun 2022; 605:141-147. [PMID: 35334412 DOI: 10.1016/j.bbrc.2022.03.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
As a hallmark of epilepsy, mossy fiber sprouting was regarded as an ideal mode to study neural rewiring upon injury. The process of mossy fiber sprouting constitutes key steps for neural circuit formation, including axon collateral formation and outgrowth, reversed pathfinding and synapse connection. The canonical function of CRMP2 is to promote neurite/axon outgrowth via binding to tubulin heterodimers, which is mainly regulated by its phosphorylation state. CRMP2 expression and phosphorylation were reported to change in medial temporal epilepsy patients and animal modes of epilepsy. As a novel anti-epilepsy drug, Lacosamide is able to impair CRMP2 mediated tubulin polymerization. Previous studies suggested possible roles of CRMP2 in mossy fiber sprouting. Here, we provide direct evidence to support the role of CRMP2 in the process of mossy fiber sprouting in an animal model of epilepsy. We found that CRMP2 phosphorylation was downregulated specifically in the hippocampus during latent phase of epileptic rats. In addition, with the reduction of CRMP2 expression levels in dentate gyrus by CRMP2 shRNA, we observed decreased mossy fiber sprouting in these CRMP2 knockdown rats. Our results demonstrated that CRMP2 modulates mossy fiber sprouting in dentate gyrus of pilocarpine induced rat model of epilepsy.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongqian Su
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of the State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Ogawa B, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment starting from late gestation in a rat autism model induced by postnatal injection of lipopolysaccharides. Chem Biol Interact 2022; 351:109767. [PMID: 34863679 DOI: 10.1016/j.cbi.2021.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023]
Abstract
The present study investigated the role of neuroinflammation and brain oxidative stress induced by neonatal treatment with lipopolysaccharides (LPS) on the development of autism spectrum disorder (ASD)-like behaviors and disruptive hippocampal neurogenesis in rats by exploring the chemopreventive effects of alpha-glycosyl isoquercitrin (AGIQ) as an antioxidant. AGIQ was dietary administered to dams at 0.25% or 0.5% (w/w) from gestational day 18 until postnatal day (PND) 21 on weaning and then to pups until the adult stage on PND 77. The pups were intraperitoneally injected with LPS (1 mg/kg body weight) on PND 3. At PND 6, LPS alone increased Iba1+ and CD68+ cell numbers without changing the CD163+ cell number and strongly upregulated pro-inflammatory cytokine gene expression (Il1a, Il1b, Il6, Nfkb1, and Tnf) in the hippocampus, and increased brain malondialdehyde levels. At PND 10, pups decreased ultrasonic vocalization (USV), suggesting the induction of pro-inflammatory responses and oxidative stress to trigger communicative deficits. By contrast, LPS alone upregulated Nfe2l2 expression at PND 6, increased Iba1+, CD68+, and CD163+ cell numbers, and upregulated Tgfb1 at PND 21, suggesting anti-inflammatory responses until the weaning period. However, LPS alone disrupted hippocampal neurogenesis at weaning and suppressed social interaction parameters and rate of freezing time at fear acquisition and extinction during the adolescent stage. On PND 77, neuroinflammatory responses had mostly disappeared; however, disruptive neurogenesis and fear memory deficits were sustained. AGIQ ameliorated most changes on acute pro-inflammatory responses and oxidative stress at PND 6, and the effects on USVs at PND 10 and neurogenesis and behavioral parameters throughout the adult stage. These results suggested that neonatal LPS treatment induced acute but transient neuroinflammation, triggering the progressive disruption of hippocampal neurogenesis leading to abnormal behaviors in later life. AGIQ treatment was effective for ameliorating LPS-induced progressive changes by critically suppressing initial pro-inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Bunichiro Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan.
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
11
|
Mansouri S, Hosseini M, Beheshti F, Sobhanifar MA, Rakhshandeh H, Anaeigoudari A. Neuroprotective effects of Pinus eldarica in a mouse model of pentylenetetrazole-induced seizures. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:610-621. [PMID: 34804898 PMCID: PMC8588953 DOI: 10.22038/ajp.2021.18562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022]
Abstract
Objective: Oxidative stress has pernicious effects on the brain. Pinus eldarica has antioxidant properties. We explored neuroprotective effect of P. eldarica against pentylenetetrazole (PTZ)-induced seizures. Materials and Methods: Male mice (BALB/c) were grouped as control, PTZ, Soxhlet (Sox) 100, Sox 200, Macerated (Mac) 100 and Mac 200 groups. Sox and Mac extracts (100 and 200 mg/kg) were injected during 7 days. Delay in onset of minimal clonic seizure (MCS) and generalized tonic- clonic seizure (GTCS) was measured. Number of dark neurons (DN) and levels of oxidative stress indicators in the hippocampus were evaluated. Results: Onset of MCS and GTCS was later in groups treated with the extracts than the PTZ group (p<0.01 and p<0.001). Number of DN in the hippocampus in the PTZ group was higher than the control group (p<0.001) while in the extract groups, was lower than the PTZ group (p<0.05, p<0.01 and p<0.001). MDA level was higher whereas total thiol level and activity of SOD and CAT were lower (p<0.001) in the PTZ group than the control group. MDA level in the Sox 100 (p<0.01), Sox 200 (p<0.001) and Mac 200 (p<0.01) groups was less than the PTZ group. Total thiol level in the Sox 200 (p<0.001), SOD in the Sox 100 (p<0.05), Sox 200, and Mac 200 and CAT in the Sox 200 (p<0.001) groups were higher than the PTZ group. Conclusion: P. eldarica prevented neuronal death and reduced seizures caused by PTZ via improving brain oxidative stress.
Collapse
Affiliation(s)
- Somaieh Mansouri
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad-Ali Sobhanifar
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
12
|
Reduced hippocampal inhibition and enhanced autism-epilepsy comorbidity in mice lacking neuropilin 2. Transl Psychiatry 2021; 11:537. [PMID: 34663783 PMCID: PMC8523694 DOI: 10.1038/s41398-021-01655-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with autism spectrum disorder (ASD). Nrp2-deficient mice show autism-like behavioral deficits and propensity to develop seizures. In order to determine the pathophysiology in Nrp2 deficiency, we examined the hippocampal numbers of interneuron subtypes and inhibitory regulation of hippocampal CA1 pyramidal neurons in mice lacking one or both copies of Nrp2. Immunostaining for interneuron subtypes revealed that Nrp2-/- mice have a reduced number of parvalbumin, somatostatin, and neuropeptide Y cells, mainly in CA1. Whole-cell recordings identified reduced firing and hyperpolarized shift in resting membrane potential in CA1 pyramidal neurons from Nrp2+/- and Nrp2-/- mice compared to age-matched wild-type controls indicating decrease in intrinsic excitability. Simultaneously, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) are reduced in Nrp2-deficient mice. A convulsive dose of kainic acid evoked electrographic and behavioral seizures with significantly shorter latency, longer duration, and higher severity in Nrp2-/- compared to Nrp2+/+ animals. Finally, Nrp2+/- and Nrp2-/- but not Nrp2+/+, mice have impaired cognitive flexibility demonstrated by reward-based reversal learning, a task associated with hippocampal circuit function. Together these data demonstrate a broad reduction in interneuron subtypes and compromised inhibition in CA1 of Nrp2-/- mice, which could contribute to the heightened seizure susceptibility and behavioral deficits consistent with an ASD/epilepsy phenotype.
Collapse
|
13
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021. [PMID: 34169527 DOI: 10.1111/jnc.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. Cover Image for this issue: https://doi.org/10.1111/jnc.15081.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
14
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021; 159:15-28. [PMID: 34169527 DOI: 10.1111/jnc.15460] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
15
|
Modelling and Refining Neuronal Circuits with Guidance Cues: Involvement of Semaphorins. Int J Mol Sci 2021; 22:ijms22116111. [PMID: 34204060 PMCID: PMC8201269 DOI: 10.3390/ijms22116111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.
Collapse
|
16
|
Tabeshian R, Nezakat-Alhosseini M, Movahedi A, Zehr EP, Faramarzi S. The Effect of Tai Chi Chuan Training on Stereotypic Behavior of Children with Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:2180-2186. [PMID: 34085151 DOI: 10.1007/s10803-021-05090-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 11/25/2022]
Abstract
This quasi-experimental study investigated effects of Tai Chi Chuan training on stereotypic behavior of children with autism spectrum disorder. Twenty-three participants (mean age = 9.60 ± 1.40 years) were assigned to experimental (N = 12) and control (N = 11) groups. The experimental group received 12 weeks of Tai Chi training and all participants had pre, post, and one-month follow-up assessments. Stereotypic behavior measured using Gilliam Autism Rating Scale 2 Scores, was significantly altered by ~ 25% in the Tai Chi Chuan group. Behavioral change was maintained at follow up since there was no significant difference between that and the posttest. In conclusion, Tai Chi Chuan training is a useful and appropriate intervention to modulate behavior in individuals with autism spectrum disorder.
Collapse
Affiliation(s)
- Roza Tabeshian
- Department of Motor Behavior, University of Isfahan, Isfahan, Iran
| | | | | | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
- Human Discovery Science, International Collaboration On Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Salar Faramarzi
- Department of Children With Special Needs, University of Isfahan, Isfahan, Iran
| |
Collapse
|
17
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
18
|
Xiaozhen S, Fan Y, Fang Y, Xiaoping L, Jia J, Wuhen X, Xiaojun T, Jun S, Yucai C, Hong Z, Guang H, Shengnan W. Novel Truncating and Missense Variants in SEMA6B in Patients With Early-Onset Epilepsy. Front Cell Dev Biol 2021; 9:633819. [PMID: 34017830 PMCID: PMC8129541 DOI: 10.3389/fcell.2021.633819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Progressive myoclonic epilepsy (PME) is a rare neurodegenerative disease, characterized by myoclonic seizures and tonic clonic seizures, with genetical and phenotypical heterogeneity. The semaphorin 6B (SEMA6B) gene has been recently reported a causal gene of PME. Independent studies are warranted to further support these findings. Here we report that one nonsense variant in NM_032108.3 exon17 c.2056C > T (p.Gln686∗) and one missense variant in exon14 c.1483G > T (p.Gly495Trp) of SEMA6B, both occurring de novo, underlie early-onset epilepsy with variable severity and different response to treatment in two patients. In vitro analyses have demonstrated that the nonsense variant, p.Gln686∗, results in a truncated protein with remarkably increased expression compared to that of the wild type. The truncated protein presented more homogeneous and failed to locate in the plasma membrane. The missense variant p.Gly495Trp affects evolutionarily conserved amino acid and is located in the sema domain, a key functional domain of SEMA6B. It was predicted to perturb the SEMA6B function by altering the tertiary structure of mutant protein, although neither change of protein length and expression nor difference of cellular distribution was observed. Co-immunoprecipitation studies have demonstrated that both variants influence protein binding of SEMA6B and PlxnA2 with varying degrees. Our results provide further evidence to support the initial findings of SEMA6B being causal to epilepsy and indicate that mediating Semaphorin/Plexin signaling is the potential mechanism of the SEMA6B-related disease.
Collapse
Affiliation(s)
- Song Xiaozhen
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fan
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Xiaoping
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Jia
- Fuxiang Gene Engineering Research Institute, Shanghai, China
| | - Xu Wuhen
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tang Xiaojun
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Jun
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chen Yucai
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhang Hong
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - He Guang
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Wu Shengnan
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Jahan MS, Ito T, Ichihashi S, Masuda T, Bhuiyan MER, Takahashi I, Takamatsu H, Kumanogoh A, Tsuzuki T, Negishi T, Yukawa K. PlexinA1 deficiency in BALB/cAJ mice leads to excessive self-grooming and reduced prepulse inhibition. IBRO Rep 2020; 9:276-289. [PMID: 33163687 PMCID: PMC7607060 DOI: 10.1016/j.ibror.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
PlexinA1 (PlxnA1) is a transmembrane receptor for semaphorins, a large family of proteins that act as axonal guidance cues during nervous system development. However, there are limited studies on PlxnA1 function in neurobehavior. The present study examined if PlxnA1 deficiency leads to behavioral abnormalities in BALB/cAJ mice. PlxnA1 knockout (KO) mice were generated by homologous recombination and compared to wild type (WT) littermates on a comprehensive battery of behavioral tests, including open field assessment of spontaneous ambulation, state anxiety, and grooming, home cage grooming, the wire hang test of muscle strength, motor coordination on the rotarod task, working memory on the Y maze alternation task, cued and contextual fear conditioning, anxiety on the elevated plus maze, sociability to intruders, and sensory processing as measured by prepulse inhibition (PPI). Measures of motor performance, working memory, fear memory, and sociability did not differ significantly between genotypes, while PlxnA1 KO mice displayed excessive self-grooming, impaired PPI, and slightly lower anxiety. These results suggest a crucial role for PlxnA1 in the development and function of brain regions controlling self-grooming and sensory gating. PlxnA1 KO mice may be a valuable model to investigate the repetitive behaviors and information processing deficits characteristic of many neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Mst Sharifa Jahan
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takuji Ito
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Sachika Ichihashi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takanobu Masuda
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | - Ikuko Takahashi
- Radioisotope Center, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takamasa Tsuzuki
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takayuki Negishi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazunori Yukawa
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Corresponding author.
| |
Collapse
|
20
|
Neurobiological Mechanisms of Autism Spectrum Disorder and Epilepsy, Insights from Animal Models. Neuroscience 2020; 445:69-82. [DOI: 10.1016/j.neuroscience.2020.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 02/09/2023]
|
21
|
Fard D, Tamagnone L. Semaphorins in health and disease. Cytokine Growth Factor Rev 2020; 57:55-63. [PMID: 32900601 DOI: 10.1016/j.cytogfr.2020.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022]
Abstract
Cell-cell communication is pivotal to guide embryo development, as well as to maintain adult tissues homeostasis and control immune response. Among extracellular factors responsible for this function, are the Semaphorins, a broad family of around 20 different molecular cues conserved in evolution and widely expressed in all tissues. The signaling cascades initiated by semaphorins depend on a family of conserved receptors, called Plexins, and on several additional molecules found in the receptor complexes. Moreover, multiple intracellular pathways have been described to act downstream of semaphorins, highlighting significant diversity in the signaling cascades controlled by this family. Notably, semaphorin expression is altered in many human diseases, such as immunopathologies, neurodegenerative diseases and cancer. This underscores the importance of semaphorins as regulatory factors in the tissue microenvironment and has prompted growing interest for assessing their potential relevance in medicine. This review article surveys the main contexts in which semaphorins have been found to regulate developing and healthy adult tissues, and the signaling cascades implicated in these functions. Vis a vis, we will highlight the main pathological processes in which semaphorins are thought to have a role thereof.
Collapse
Affiliation(s)
- Damon Fard
- University of Torino School of Medicine, Torino, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
22
|
Mazzocco JC, Jagadapillai R, Gozal E, Kong M, Xu Q, Barnes GN, Freedman JH. Disruption of essential metal homeostasis in the brain by cadmium and high-fat diet. Toxicol Rep 2020; 7:1164-1169. [PMID: 32983904 PMCID: PMC7494587 DOI: 10.1016/j.toxrep.2020.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Whole-life exposure to cadmium leads to elevated metal levels in the brain that further increases in high-fat diet fed mice. Female animals accumulate more cadmium in the brain than males, under all treatment conditions. Cadmium exposure is associated with changes in the levels of several essential metals. Cadmium and high fat diet increase levels of superoxide anion in the cortex, amygdala and hippocampus.
Analyses of human cohort data support the roles of cadmium and obesity in the development of several neurocognitive disorders. To explore the effects of cadmium exposure in the brain, mice were subjected to whole life oral cadmium exposure. There were significant increases in cadmium levels with female animals accumulating more metal than males (p < 0.001). Both genders fed a high fat diet showed significant increases in cadmium levels compared to low fat diet fed mice (p < 0.001). Cadmium and high fat diet significantly affected the levels of several essential metals, including magnesium, potassium, chromium, iron, cobalt, copper, zinc and selenium. Additionally, these treatments resulted in increased superoxide levels within the cortex, amygdala and hippocampus. These findings support a model where cadmium and high fat diet affect the levels of redox-active, essential metal homeostasis. This phenomenon may contribute to the underlying mechanism(s) responsible for the development of neurocognitive disorders.
Collapse
Affiliation(s)
- John C Mazzocco
- Department of Pediatrics, University of Louisville School of Medicine, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, University of Louisville School of Medicine, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, USA
| | - Qian Xu
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, USA
| | - Gregory N Barnes
- Department of Neurology, University of Louisville School of Medicine, USA
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, USA
| |
Collapse
|
23
|
Expression of Genes Involved in Axon Guidance: How Much Have We Learned? Int J Mol Sci 2020; 21:ijms21103566. [PMID: 32443632 PMCID: PMC7278939 DOI: 10.3390/ijms21103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuronal axons are guided to their target during the development of the brain. Axon guidance allows the formation of intricate neural circuits that control the function of the brain, and thus the behavior. As the axons travel in the brain to find their target, they encounter various axon guidance cues, which interact with the receptors on the tip of the growth cone to permit growth along different signaling pathways. Although many scientists have performed numerous studies on axon guidance signaling pathways, we still have an incomplete understanding of the axon guidance system. Lately, studies on axon guidance have shifted from studying the signal transduction pathways to studying other molecular features of axon guidance, such as the gene expression. These new studies present evidence for different molecular features that broaden our understanding of axon guidance. Hence, in this review we will introduce recent studies that illustrate different molecular features of axon guidance. In particular, we will review literature that demonstrates how axon guidance cues and receptors regulate local translation of axonal genes and how the expression of guidance cues and receptors are regulated both transcriptionally and post-transcriptionally. Moreover, we will highlight the pathological relevance of axon guidance molecules to specific diseases.
Collapse
|
24
|
Ohira K. Dopamine as a growth differentiation factor in the mammalian brain. Neural Regen Res 2020; 15:390-393. [PMID: 31571646 PMCID: PMC6921355 DOI: 10.4103/1673-5374.266052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The catecholamine, dopamine, plays an important role in the central nervous system of mammals, including executive functions, motor control, motivation, arousal, reinforcement, and reward. Dysfunctions of the dopaminergic system lead to diseases of the brains, such as Parkinson's disease, Tourette's syndrome, and schizophrenia. In addition to its fundamental role as a neurotransmitter, there is evidence for a role as a growth differentiation factor during development. Recent studies suggest that dopamine regulates the development of γ-aminobutyric acidergic interneurons of the cerebral cortex. Moreover, in adult brains, dopamine increases the production of new neurons in the hippocampus, suggesting the promoting effect of dopamine on proliferation and differentiation of neural stem cells and progenitor cells in the adult brains. In this mini-review, I center my attention on dopaminergic functions in the cortical interneurons during development and further discuss cell therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Koji Ohira
- Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
25
|
Ziak J, Weissova R, Jeřábková K, Janikova M, Maimon R, Petrasek T, Pukajova B, Kleisnerova M, Wang M, Brill MS, Kasparek P, Zhou X, Alvarez-Bolado G, Sedlacek R, Misgeld T, Stuchlik A, Perlson E, Balastik M. CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling. EMBO Rep 2020; 21:e48512. [PMID: 31919978 DOI: 10.15252/embr.201948512] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022] Open
Abstract
Regulation of axon guidance and pruning of inappropriate synapses by class 3 semaphorins are key to the development of neural circuits. Collapsin response mediator protein 2 (CRMP2) has been shown to regulate axon guidance by mediating semaphorin 3A (Sema3A) signaling; however, nothing is known about its role in synapse pruning. Here, using newly generated crmp2-/- mice we demonstrate that CRMP2 has a moderate effect on Sema3A-dependent axon guidance in vivo, and its deficiency leads to a mild defect in axon guidance in peripheral nerves and the corpus callosum. Surprisingly, crmp2-/- mice display prominent defects in stereotyped axon pruning in hippocampus and visual cortex and altered dendritic spine remodeling, which is consistent with impaired Sema3F signaling and with models of autism spectrum disorder (ASD). We demonstrate that CRMP2 mediates Sema3F signaling in primary neurons and that crmp2-/- mice display ASD-related social behavior changes in the early postnatal period as well as in adults. Together, we demonstrate that CRMP2 mediates Sema3F-dependent synapse pruning and its dysfunction shares histological and behavioral features of ASD.
Collapse
Affiliation(s)
- Jakub Ziak
- Department of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Romana Weissova
- Department of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Kateřina Jeřábková
- Department of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Janikova
- Department of Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Roy Maimon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tomas Petrasek
- Department of Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Pukajova
- Department of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Marie Kleisnerova
- Department of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Monika S Brill
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Petr Kasparek
- Department of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Xunlei Zhou
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Radislav Sedlacek
- Department of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases and Munich Cluster for Systems Neurology, Munich, Germany
| | - Ales Stuchlik
- Department of Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Martin Balastik
- Department of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|