1
|
Rodriguez-Zas SL, Nowak RA, Antonson AM, Rund L, Bhamidi S, Gomez AN, Southey BR, Johnson RW. Immune and metabolic challenges induce changes in pain sensation and related pathways in the hypothalamus. Physiol Genomics 2024; 56:343-359. [PMID: 38189117 PMCID: PMC11283907 DOI: 10.1152/physiolgenomics.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
The hypothalamic molecular processes participate in the regulation of the neuro-immune-endocrine system, including hormone, metabolite, chemokine circulation, and corresponding physiological and behavioral responses. RNA-sequencing profiles were analyzed to understand the effect of juvenile immune and metabolic distress 100 days after virally elicited maternal immune activation during gestation in pigs. Over 1,300 genes exhibited significant additive or interacting effects of gestational immune activation, juvenile distress, and sex. One-third of these genes presented multiple effects, emphasizing the complex interplay of these factors. Key functional categories enriched among affected genes included sensory perception of pain, steroidogenesis, prolactin, neuropeptide, and inflammatory signaling. These categories underscore the intricate relationship between gestational immune activation during gestation, distress, and the response of hypothalamic pathways to insults. These effects were sex-dependent for many genes, such as Prdm12, Oprd1, Isg20, Prl, Oxt, and Vip. The prevalence of differentially expressed genes annotated to proinflammatory and cell cycle processes suggests potential implications for synaptic plasticity and neuronal survival. The gene profiles affected by immune activation, distress, and sex pointed to the action of transcription factors SHOX2, STAT1, and REST. These findings underscore the importance of considering sex and postnatal challenges when studying causes of neurodevelopmental disorders and highlight the complexity of the "two-hit" hypothesis in understanding their etiology. Our study furthers the understanding of the intricate molecular responses in the hypothalamus to gestational immune activation and subsequent distress, shedding light on the sex-specific effects and the potential long-lasting consequences on pain perception, neuroendocrine regulation, and inflammatory processes.NEW & NOTEWORTHY The interaction of infection during gestation and insults later in life influences the molecular mechanisms in the hypothalamus that participate in pain sensation. The response of the hypothalamic transcriptome varies between sexes and can also affect synapses and immune signals. The findings from this study assist in the identification of agonists or antagonists that can guide pretranslational studies to ameliorate the effects of gestational insults interacting with postnatal challenges on physiological or behavioral disorders.
Collapse
Affiliation(s)
- Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Adrienne M Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Sreelaya Bhamidi
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andrea N Gomez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
2
|
Luo Q, Luo J, Wang X, Gan S. Restoration of the Activity of the Prefrontal Cortex to the Nucleus Accumbens Core Pathway Relieves Fentanyl-Induced Hyperalgesia in Male Rats. J Pain Res 2024; 17:1243-1256. [PMID: 38524691 PMCID: PMC10961020 DOI: 10.2147/jpr.s442765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Functional connectivity between the prelimbic medial prefrontal cortex (PL-mPFC) and the core of the nucleus accumbens (NAc core) predicts pain chronification. Inhibiting the apoptosis of oligodendrocytes in the PL-mPFC prevents fentanyl-induced hyperalgesia in rats. However, the role of prefrontal cortex (PFC)-NAc projections in opioid-induced hyperalgesia (OIH) remains unclear. Herein, we explored the role of the PL-NAc core circuit in fentanyl-induced hyperalgesia. Methods An OIH rat model was established, and patch-clamp recording, immunofluorescence, optogenetics, and chemogenetic methods were employed for neuron excitability detection and nociceptive behavioral assessment. Results Our results showed decreased activity of the right PL-mPFC layer V output neurons in rats with OIH. Similarly, the excitability of the NAc core neurons receiving glutamatergic projections from the PL-mPFC decreased in OIH rats, observed by the light-evoked excitatory postsynaptic currents/light-excited inhibitory postsynaptic currents ratio (eEPSC/eIPSC ratio). Fentanyl-induced hyperalgesia was reversed by optogenetic activation of the PL-NAc core pathway, and chemogenetic suppression of this pathway induced hyperalgesia in control (saline-treated) rats. However, behavioral hyperalgesia was not aggravated by this chemogenetic suppression in OIH (fentanyl-treated) rats. Conclusion Our findings indicate that inactivation of the PL-NAc core pathway may be a cause of OIH and restoring the activity of this pathway may provide a strategy for OIH treatment.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jing Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xixi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Sifei Gan
- Department of Anesthesiology, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
3
|
Liu X, Zhao J. Circadian rhythms in opioid-induced hyperalgesia: call for comprehensive research. Comment on Br J Anaesth 2023; 131: 1072-81. Br J Anaesth 2024; 132:440-441. [PMID: 38071151 DOI: 10.1016/j.bja.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 01/21/2024] Open
Affiliation(s)
- Xiaowen Liu
- Department of Anaesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Zhao
- Department of Anaesthesiology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
4
|
Shu B, Liu H, Zheng X, He J, Wu Y, Chen J, Chen Y, Tian H, Ju D, Huang H, Duan G. Opioid infusions at different times of the day produce varying degrees of opioid-induced hyperalgesia. Br J Anaesth 2023; 131:1072-1081. [PMID: 37821342 DOI: 10.1016/j.bja.2023.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Opioids are metabolised by enzymes the activities of which vary with the circadian rhythm. We examined whether opioid infusions administered at different times of the day produce varying degrees of opioid-induced hyperalgesia (OIH) in animal experiments and clinical studies. METHODS Male Sprague-Dawley rats received remifentanil infusions (1 μg kg-1·min-1 for 1 h) at Zeitgeber times (ZT) 0, 4, 8, 12, 16, or 20 h. Rhythmicity of mechanical hypersensitivity was assayed after the infusion. Mechanical hypersensitivity, drug concentration, and metabolic enzyme activity of Wistar rats that received sufentanil (10 μg kg-1; four consecutive i.p. injections at 15-min intervals) or remifentanil infusion at ZT0 or ZT8 were assayed. Sixty patients who underwent abdominal laparoscopic surgery under general anaesthesia received remifentanil infusion (0.15 μg kg-1 min-1) and sufentanil injection (0.2 μg kg-1) at induction and skin incision, respectively. Postoperative pressure pain sensitivity, pain Numeric Rating Scale (NRS), drug concentrations, and nonspecific esterase activity were assessed. RESULTS Sprague-Dawley rats that received remifentanil infusion exhibited a robust rhythmic paw withdrawal threshold (JTK_CYCLE: P=0.001, Q=0.001, Phase=26). Wistar rats infused with remifentanil or sufentanil at ZT8 exhibited greater OIH (P<0.001) than those infused at ZT0, with higher blood concentrations (P<0.001) and lower metabolic enzyme activities (P=0.026 and P=0.028, respectively). Patients in the afternoon group exhibited higher pressure pain sensitivity at forearm (P=0.002), higher NRS (P<0.05), higher drug concentrations (sufentanil: P=0.037, remifentanil: P=0.005), and lower nonspecific esterase activity (P=0.024) than the morning group. CONCLUSIONS Opioid infusions administered at different times of day produced varying degrees of OIH, possibly related to circadian rhythms of metabolic enzyme activities. CLINICAL TRIAL REGISTRATION NCT05234697.
Collapse
Affiliation(s)
- Bin Shu
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huiting Liu
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Anaesthesiology, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuemei Zheng
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianrong He
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingcai Wu
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanjing Chen
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongni Tian
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dapeng Ju
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - He Huang
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangyou Duan
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Ketchesin KD, Becker-Krail DD, Xue X, Wilson RS, Lam TT, Williams KR, Nairn AC, Tseng GC, Logan RW. Differential Effects of Cocaine and Morphine on the Diurnal Regulation of the Mouse Nucleus Accumbens Proteome. J Proteome Res 2023. [PMID: 37311105 PMCID: PMC10392613 DOI: 10.1021/acs.jproteome.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Substance use disorders are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based quantitative proteomics, along with a data-independent acquisition analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveal cocaine and morphine differentially alter diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between the phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome. The proteomics data in this study are available via ProteomeXchange with identifier PXD042043.
Collapse
Affiliation(s)
- Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Darius D Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, 300 George Street, New Haven, Connecticut 06511, United States
- W.M. Keck Biotechnology Mass Spectrometry (MS) & Proteomics Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06511, United States
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, 300 George Street, New Haven, Connecticut 06511, United States
- W.M. Keck Biotechnology Mass Spectrometry (MS) & Proteomics Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06511, United States
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, 300 George Street, New Haven, Connecticut 06511, United States
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, 300 George Street, New Haven, Connecticut 06511, United States
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut 06511, United States
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
6
|
Alsegehy S, Southey BR, Rund L, Johnson RW, Rodriguez-Zas SL. Genes Participating in the Ensheathment of Neurons Are Affected by Postnatal Stress and Maternal Immune Activation in the Pituitary Gland. Genes (Basel) 2023; 14:1007. [PMID: 37239367 PMCID: PMC10218591 DOI: 10.3390/genes14051007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Immune challenges during gestation are associated with neurodevelopmental disorders and can interact with stress later in life. The pituitary gland participates in endocrine- and immune-related processes that influence development, growth, and reproduction and can modulate physiological and behavioral responses to challenges. The objective of this study was to investigate the effect of stressors at different time points on the molecular mechanisms of the pituitary gland and detect sex differences. RNA sequencing was used to profile the pituitary glands of female and male pigs exposed to weaning stress and virally induced maternal immune activation (MIA), relative to unchallenged groups. Significant effects (FDR-adjusted p-value < 0.05) of MIA and weaning stress were detected in 1829 and 1014 genes, respectively. Of these, 1090 genes presented significant interactions between stressors and sex. The gene ontology biological process of the ensheathment of neurons (GO:0007272), substance abuse, and immuno-related pathways, including the measles disease (ssc05162), encompasses many genes with profiles impacted by MIA and weaning stress. A gene network analysis highlighted the under-expression of myelin protein zero (Mpz) and inhibitors of DNA binding 4 (Id4) among the non-stressed males exposed to MIA, relative to the control and non-MIA males exposed to weaning stress, relative to non-stressed pigs. The detection of changes in the molecular mechanisms of the pituitary gland could advance our understanding of disruptions in the formation of the myelin sheath and the transmission of neuron-to-neuron signals in behavioral disorders associated with maternal immune activation and stress.
Collapse
Affiliation(s)
- Samah Alsegehy
- School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sandra L. Rodriguez-Zas
- School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
7
|
Ketchesin KD, Becker-Krail DD, Xue X, Wilson RS, Lam TT, Williams KR, Nairn AC, Tseng GC, Logan RW. Differential Effects of Cocaine and Morphine on the Diurnal Regulation of the Mouse Nucleus Accumbens Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530696. [PMID: 36909659 PMCID: PMC10002738 DOI: 10.1101/2023.03.01.530696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Substance use disorders (SUDs) are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based (LC-MS/MS) quantitative proteomics, along with a data-independent acquisition (DIA) analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveals cocaine and morphine differentially alters diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome.
Collapse
|
8
|
Fan XL, Song Y, Qin DX, Lin PY. Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression. Int Rev Immunol 2023; 42:101-112. [PMID: 34544330 DOI: 10.1080/08830185.2021.1931170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circadian locomotor output cycles kaput (Clock) and brain and muscle ARNT-like 1 (Bmal1) are two core circadian clock genes. They form a heterodimer that can bind to the E-box element in the promoters of Period circadian protein (Per) and Cryptochrome (Cry) genes, thereby inducing the rhythmic expression of circadian clock control genes. Toll-like receptors (TLRs) are type I transmembrane proteins belonging to the pattern recognition receptor (PRR) family. They can recognize a variety of pathogens and play an important role in innate immunity and adaptive immune responses. Recent studies have found that the circadian clock is closely associated with the immune system. TLRs have a certain correlation with the circadian rhythms; Bmal1 seems to be the central mediator connecting the circadian clock and the immune system. Research on Bmal1 and TLRs has made some progress, but the specific relationship between TLRs and Bmal1 remains unclear. Understanding the relationship between TLRs and Clock/Bmal1 genes is increasingly important for basic research and clinical treatment.
Collapse
Affiliation(s)
- Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Dong-Xu Qin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
9
|
Bertels Z, Mangutov E, Siegersma K, Cropper HC, Tipton A, Pradhan AA. PACAP-PAC1 receptor inhibition is effective in opioid induced hyperalgesia and medication overuse headache models. iScience 2023; 26:105950. [PMID: 36756376 PMCID: PMC9900514 DOI: 10.1016/j.isci.2023.105950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Opioids prescribed for pain and migraine can produce opioid-induced hyperalgesia (OIH) or medication overuse headache (MOH). We previously demonstrated that pituitary adenylate cyclase activating polypeptide (PACAP) is upregulated in OIH and chronic migraine models. Here we determined if PACAP acts as a bridge between opioids and pain chronification. We tested PACAP-PAC1 receptor inhibition in novel models of opioid-exacerbated trigeminovascular pain. The PAC1 antagonist, M65, reversed chronic allodynia in a model which combines morphine with the migraine trigger, nitroglycerin. Chronic opioids also exacerbated cortical spreading depression, a correlate of migraine aura; and M65 inhibited this augmentation. In situ hybridization showed MOR and PACAP co-expression in trigeminal ganglia, and near complete overlap between MOR and PAC1 in the trigeminal nucleus caudalis and periaqueductal gray. PACAPergic mechanisms appear to facilitate the transition to chronic headache following opioid use, and strategies targeting this system may be particularly beneficial for OIH and MOH.
Collapse
Affiliation(s)
- Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizaveta Mangutov
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kendra Siegersma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Haley C. Cropper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alycia Tipton
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA,Corresponding author
| |
Collapse
|
10
|
Knezevic NN, Nader A, Pirvulescu I, Pynadath A, Rahavard BB, Candido KD. Circadian pain patterns in human pain conditions - A systematic review. Pain Pract 2023; 23:94-109. [PMID: 35869813 PMCID: PMC10086940 DOI: 10.1111/papr.13149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronobiology is the science of how physiological processes in the body follow a pattern of time. Pain has been shown to follow a circadian rhythm, with different types of pain having variable expression along this rhythm. OBJECTIVE This article reviews the nature of diurnal variations in pain along with a discussion of the mechanisms of circadian rhythm of pain. EVIDENCE REVIEW We conducted a literature search on the PubMed and Google Scholar electronic databases, through April 2022. Publications were screened for English language, full-text availability, and human subjects. Randomized controlled trials and observational trials were included. Data were extracted from studies on patients with acute or chronic pain phenotypes, which provide pain severity data and corresponding diurnal time points. FINDINGS The literature search led to the inclusion of 39 studies. A circadian pattern of pain was found to be present in nociceptive, neuropathic, central, and mixed pain states. Postoperative pain, fibromyalgia, trigeminal neuralgia, and migraines were associated with higher pain scores in the morning. Temporomandibular joint pain, neuropathic pain, labor pain, biliary colic, and cluster headaches increased throughout the day to reach a peak in the evening or night. Arthritis and cancer pain were not associated with any circadian rhythmicity. Furthermore, the circadian rhythm of pain was not found to be altered in patients on analgesics. CONCLUSION The results of this review suggest that an understanding of diurnal variation may help improve therapeutic strategies in pain management, for instance through analgesic titration.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA.,Department of Anesthesiology, University of Illinois, Chicago, Illinois, USA.,Department of Surgery, University of Illinois, Chicago, Illinois, USA
| | - Anthony Nader
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Iulia Pirvulescu
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Aby Pynadath
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Behnoosh B Rahavard
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA.,Department of Anesthesiology, University of Illinois, Chicago, Illinois, USA.,Department of Surgery, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
11
|
Prefrontal Cortex Response to Prenatal Insult and Postnatal Opioid Exposure. Genes (Basel) 2022; 13:genes13081371. [PMID: 36011282 PMCID: PMC9407090 DOI: 10.3390/genes13081371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
The influence of proinflammatory challenges, such as maternal immune activation (MIA) or postnatal exposure to drugs of abuse, on brain molecular pathways has been reported. On the other hand, the simultaneous effects of MIA and drugs of abuse have been less studied and sometimes offered inconsistent results. The effects of morphine exposure on a pig model of viral-elicited MIA were characterized in the prefrontal cortex of males and females using RNA-sequencing and gene network analysis. Interacting and main effects of morphine, MIA, and sex were detected in approximately 2000 genes (false discovery rate-adjusted p-value < 0.05). Among the enriched molecular categories (false discovery rate-adjusted p-value < 0.05 and −1.5 > normalized enrichment score > 1.5) were the cell adhesion molecule pathways associated with inflammation and neuronal development and the long-term depression pathway associated with synaptic strength. Gene networks that integrate gene connectivity and expression profiles displayed the impact of morphine-by-MIA interaction effects on the pathways. The cell adhesion molecules and long-term depression networks presented an antagonistic effect between morphine and MIA. The differential expression between the double-challenged group and the baseline saline-treated Controls was less extreme than the individual challenges. The previous findings advance the knowledge about the effects of prenatal MIA and postnatal morphine exposure on the prefrontal cortex pathways.
Collapse
|
12
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Babenko R, Kudryavtseva N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes (Basel) 2021; 13:genes13010021. [PMID: 35052361 PMCID: PMC8774333 DOI: 10.3390/genes13010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.
Collapse
Affiliation(s)
- Vladimir Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Correspondence:
| | - Olga Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Dmitry Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Irina Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Anna Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Roman Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Natalia Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
13
|
Caputi FF, Carboni L, Rullo L, Alessandrini I, Balzani E, Melotti RM, Romualdi P, Candeletti S, Fanelli A. An Exploratory Pilot Study of Changes in Global DNA Methylation in Patients Undergoing Major Breast Surgery Under Opioid-Based General Anesthesia. Front Pharmacol 2021; 12:733577. [PMID: 34621169 PMCID: PMC8491974 DOI: 10.3389/fphar.2021.733577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of −68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Irene Alessandrini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Eleonora Balzani
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Rita Maria Melotti
- Department of Surgical and Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Fanelli
- Anesthesiology and Pain Therapy Unit, AOSP S.Orsola Hospital, Bologna, Italy
| |
Collapse
|
14
|
Zhang P, Perez OC, Southey BR, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Alternative Splicing Mechanisms Underlying Opioid-Induced Hyperalgesia. Genes (Basel) 2021; 12:1570. [PMID: 34680965 PMCID: PMC8535871 DOI: 10.3390/genes12101570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic glutamate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Olivia C. Perez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Sandra L. Rodriguez-Zas
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Borrelli KN, Yao EJ, Yen WW, Phadke RA, Ruan QT, Chen MM, Kelliher JC, Langan CR, Scotellaro JL, Babbs RK, Beierle JC, Logan RW, Johnson WE, Wachman EM, Cruz-Martín A, Bryant CD. Sex Differences in Behavioral and Brainstem Transcriptomic Neuroadaptations following Neonatal Opioid Exposure in Outbred Mice. eNeuro 2021; 8:ENEURO.0143-21.2021. [PMID: 34479978 PMCID: PMC8454922 DOI: 10.1523/eneuro.0143-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
The opioid epidemic led to an increase in the number of neonatal opioid withdrawal syndrome (NOWS) cases in infants born to opioid-dependent mothers. Hallmark features of NOWS include weight loss, severe irritability, respiratory problems, and sleep fragmentation. Mouse models provide an opportunity to identify brain mechanisms that contribute to NOWS. Neonatal outbred Swiss Webster Cartworth Farms White (CFW) mice were administered morphine (15 mg/kg, s.c.) twice daily from postnatal day 1 (P1) to P14, an approximation of the third trimester of human gestation. Female and male mice underwent behavioral testing on P7 and P14 to determine the impact of opioid exposure on anxiety and pain sensitivity. Ultrasonic vocalizations (USVs) and daily body weights were also recorded. Brainstems containing pons and medulla were collected during morphine withdrawal on P14 for RNA sequencing. Morphine induced weight loss from P2 to P14, which persisted during adolescence (P21) and adulthood (P50). USVs markedly increased at P7 in females, emerging earlier than males. On P7 and P14, both morphine-exposed female and male mice displayed hyperalgesia on the hot plate and tail-flick assays, with females showing greater hyperalgesia than males. Morphine-exposed mice exhibited increased anxiety-like behavior in the open-field arena on P21. Transcriptome analysis of the brainstem, an area implicated in opioid withdrawal and NOWS, identified pathways enriched for noradrenergic signaling in females and males. We also found sex-specific pathways related to mitochondrial function and neurodevelopment in females and circadian entrainment in males. Sex-specific transcriptomic neuroadaptations implicate unique neurobiological mechanisms underlying NOWS-like behaviors.
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Emily J Yao
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - William W Yen
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Rhushikesh A Phadke
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
- Molecular Biology, Cell Biology, and Biochemistry (MCBB), Boston University, Boston, Massachusetts 02215
| | - Qiu T Ruan
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carly R Langan
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Julia L Scotellaro
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Undergraduate Research Opportunity Program, Boston University, Boston, Massachusetts 02118
| | - Richard K Babbs
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jacob C Beierle
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ryan W Logan
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine 04609
| | - William Evan Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Elisha M Wachman
- Department of Pediatrics, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts 02118
| | - Alberto Cruz-Martín
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
16
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
17
|
Zhang P, Southey BR, Sweedler JV, Pradhan A, Rodriguez-Zas SL. Enhanced Understanding of Molecular Interactions and Function Underlying Pain Processes Through Networks of Transcript Isoforms, Genes, and Gene Families. Adv Appl Bioinform Chem 2021; 14:49-69. [PMID: 33633454 PMCID: PMC7901473 DOI: 10.2147/aabc.s284986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Molecular networks based on the abundance of mRNA at the gene level and pathway networks that relate families or groups of paralog genes have supported the understanding of interactions between molecules. However, multiple molecular mechanisms underlying health and behavior, such as pain signal processing, are modulated by the abundances of the transcript isoforms that originate from alternative splicing, in addition to gene abundances. Alternative splice variants of growth factors, ion channels, and G-protein-coupled receptors can code for proteoforms that can have different effects on pain and nociception. Therefore, networks inferred using abundance from more agglomerative molecular units (eg, gene family, or gene) have limitations in capturing interactions at a more granular level (eg, gene, or transcript isoform, respectively) do not account for changes in the abundance at the transcript isoform level. Objective The objective of this study was to evaluate the relative benefits of network inference using abundance patterns at various aggregate levels. Methods Sparse networks were inferred using Gaussian Markov random fields and a novel aggregation criterion was used to aggregate network edges. The relative advantages of network aggregation were evaluated on two molecular systems that have different dimensions and connectivity, circadian rhythm and Toll-like receptor pathways, using RNA-sequencing data from mice representing two pain level groups, opioid-induced hyperalgesia and control, and two central nervous system regions, the nucleus accumbens and the trigeminal ganglia. Results The inferred networks were benchmarked against the Kyoto Encyclopedia of Genes and Genomes reference pathways using multiple criteria. Networks inferred using more granular information performed better than networks inferred using more aggregate information. The advantage of granular inference varied with the pathway and data set used. Discussion The differences in inferred network structure between data sets highlight the differences in OIH effect between central nervous system regions. Our findings suggest that inference of networks using alternative splicing variants can offer complementary insights into the relationship between genes and gene paralog groups.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amynah Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sandra L Rodriguez-Zas
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
18
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Liu YL, Gong SY, Xia ST, Wang YL, Peng H, Shen Y, Liu CF. Light therapy: a new option for neurodegenerative diseases. Chin Med J (Engl) 2020; 134:634-645. [PMID: 33507006 PMCID: PMC7990011 DOI: 10.1097/cm9.0000000000001301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Given the increasing incidence of neurodegenerative disease (ND), recent research efforts have intensified the search for curative treatments. Despite significant research, however, existing therapeutic options for ND can only slow down the progression of the disease, but not provide a cure. Light therapy (LT) has been used to treat some mental and sleep disorders. This review illustrates recent studies of the use of LT in patients with ND and highlights its potential for clinical applications. The literature was collected from PubMed through June 2020. Selected studies were primarily English articles or articles that could be obtained with English abstracts and Chinese main text. Articles were not limited by type. Additional potential publications were also identified from the bibliographies of identified articles and the authors' reference libraries. The identified literature suggests that LT is a safe and convenient physical method of treatment. It may alleviate sleep disorders, depression, cognitive function, and other clinical symptoms. However, some studies have reported limited or no effects. Therefore, LT represents an attractive therapeutic approach for further investigation in ND. LT is an effective physical form of therapy and a new direction for research into treatments for ND. However, it requires further animal experiments to elucidate mechanisms of action and large, double-blind, randomized, and controlled trials to explore true efficacy in patients with ND.
Collapse
Affiliation(s)
- Yu-Lu Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Si-Yi Gong
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Ting Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yun Shen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology, Suqian First Hospital, Suqian, Jiangsu 223800, China
| |
Collapse
|
20
|
Zeng XS, Geng WS, Wang ZQ, Jia JJ. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1. Front Pharmacol 2020; 11:82. [PMID: 32153403 PMCID: PMC7047156 DOI: 10.3389/fphar.2020.00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Long-term administration of morphine for the management of chronic pain will result in tolerance to its analgesic effect and could even cause drug dependence. Numerous studies have demonstrated significant redox alteration in morphine dependence and addiction. Thioredoxin-1 (Trx-1) play important roles in controlling the cellular redox balance. In recent years, several recent studies have demonstrated that Trx-1 may be a promising novel therapeutic target for morphine addiction. In this article, we firstly review the redox alteration in morphine addiction. We also summarize the expression and the protective roles of Trx-1 in morphine dependence. We further highlight the protection of geranylgeranylacetone (GGA), a noncytotoxic pharmacological inducer of Trx-1, in morphine-induced conditioned place preference. In conclusion, Trx-1 may be very promising for clinical therapy of morphine addiction in the future.
Collapse
Affiliation(s)
- Xian-Si Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Jin-Jing Jia
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
21
|
Brandão AF, Bonet IJM, Pagliusi M, Zanetti GG, Pho N, Tambeli CH, Parada CA, Vieira AS, Sartori CR. Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice. Front Neurosci 2020; 13:1453. [PMID: 32038148 PMCID: PMC6987254 DOI: 10.3389/fnins.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
Collapse
Affiliation(s)
- Arthur Freitas Brandão
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ivan José Magayewski Bonet
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriel Gerardini Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Nam Pho
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
22
|
Zhang P, Southey BR, Rodriguez-Zas SL. Co-expression networks uncover regulation of splicing and transcription markers of disease. PROCEEDINGS OF THE ... ANNUAL INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2020; 70:119-128. [PMID: 35047432 DOI: 10.29007/rl4h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene co-expression networks based on gene expression data are usually used to capture biologically significant patterns, enabling the discovery of biomarkers and interpretation of regulatory relationships. However, the coordination of numerous splicing changes within and across genes can exert a substantial impact on the function of these genes. This is particularly impactful in studies of the properties of the nervous system, which can be masked in the networks that only assess the correlation between gene expression levels. A bioinformatics approach was developed to uncover the role of alternative splicing and associated transcriptional networks using RNA-seq profiles. Data from 40 samples, including control and two treatments associated with sensitivity to stimuli across two central nervous system regions that can present differential splicing, were explored. The gene expression and relative isoform levels were integrated into a transcriptome-wide matrix, and then Graphical Lasso was applied to capture the interactions between genes and isoforms. Next, functional enrichment analysis enabled the discovery of pathways dysregulated at the isoform or gene levels and the interpretation of these interactions within a central nervous region. In addition, a Bayesian biclustering strategy was used to reconstruct treatment-specific networks from gene expression profile, allowing the identification of hub molecules and visualization of highly connected modules of isoforms and genes in specific conditions. Our bioinformatics approach can offer comparable insights into the discovery of biomarkers and therapeutic targets for a wide range of diseases and conditions.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, the U.S.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, the U.S
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, the U.S
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, the U.S.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, the U.S.,Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, the U.S
| |
Collapse
|
23
|
|