1
|
Wang H, Qu H, Yang A, Guo D, Quan L, Liu Z, Shi X, Zhao X, Feng Y, Liu T, Pan H. Morphometric analysis of the female reproductive tract: influence of long-term inhalation of trace amounts of sevoflurane. J Mol Histol 2024; 56:44. [PMID: 39673680 DOI: 10.1007/s10735-024-10309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/04/2024] [Indexed: 12/16/2024]
Abstract
Sevoflurane is extensively employed as an inhalation anesthetic in medical practices, due to its promising pharmacokinetics. Conversely, the data regarding effects of prolonged exposure to trace amounts of sevoflurane on the female reproductive system is obscure. Therefore, this study aimed to investigate the reproductive toxicity and underlying mechanism of long-term sevoflurane inhalation in female rats. A total 60 SPF grade SD female rats were randomly alienated into four equal groups as control group (A), 50 ppm sevoflurane group (B), 150 ppm sevoflurane group (C), and 300 ppm sevoflurane groups (D). Ovaries and uterine organs were collected for gross as well as histopathological analysis, western blotting, and immuno-histochemistry evaluation. Results revealed that pregnancy rate, number of fetuses (fetal mice) and general body weight of group B, C, and D were substantially lower (P < 0.05), while were compared with control. On the contrary, estrous period in groups B, C, D was shortened noticeably (P < 0.05), and estrus interval and cycle were significantly longer (P < 0.05). In fact, the ovarian and uterine coefficients of group B, C and D were significantly reduced as compared with control. However, ovarian and uterine histomorphology remained normal in control group, while obvious pathological alterations were detected in groups B, C, and D. Although, the expression of SOD protein in the ovarian and uterine tissues of groups B, C, and D was significantly reduced (P < 0.05), in contrast to group A. However, the MDA protein expression increased significantly (P < 0.05) as compared with group A. While expression of apoptosis-related genes (Bcl2 and Bax) and humoral immunity related genes (IL-6, IL-10 and TNF-α) showed highest elevation in groups exposure with sevoflurane (p < 0.001) in comparison to control. Conclusively, long-term inhalation of trace amounts of sevoflurane is toxic to female reproductive system and can severely affect reproductive organs and fertility by induction of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Haili Wang
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Haibo Qu
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Ailing Yang
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Daru Guo
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Lili Quan
- Department of Gynecology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Zhaodong Liu
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Xiaoli Shi
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Xibo Zhao
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Yuanbo Feng
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Tao Liu
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China
| | - Hua Pan
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, 472000, Henan, China.
| |
Collapse
|
2
|
Qiu L, Li H, Li B, Ek J, Zhang X, Chen Y, Shao Z, Zhang J, Zhang J, Lin H, Zhu C, Xu Y, Wang X. Sevoflurane exposure in early life: mitochondrial dysfunction and neurotoxicity in immature rat brains without long-term memory loss. Sci Rep 2024; 14:28747. [PMID: 39567567 PMCID: PMC11579499 DOI: 10.1038/s41598-024-79150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Neurotoxic effects of general anesthetics, particularly sevoflurane, on pediatric neurodevelopment are a global concern. This study investigated the molecular and metabolic impacts of repeated short exposures to sevoflurane in neonatal rats. Metabolomics analysis revealed significant changes in fatty acid and mitochondrial energy metabolism. Transcriptomic analysis identified altered gene expression related to neurodevelopment and mitochondrial function. Various analyses emphasized upregulation in oxidative phosphorylation and DNA repair pathways. Weighted gene co-expression network analysis (WGCNA) identified key gene modules associated with sevoflurane exposure. Despite these acute changes, no significant long-term memory impairments were detected. These findings highlight the impact of sevoflurane on mitochondrial energy metabolism, oxidative stress, and neuroinflammation, emphasizing its relevance to pediatric neurodevelopment. The absence of substantial long-term memory impairments provides insights into the safety and implications of sevoflurane use in pediatric anesthesia, calling for further research.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Anesthesia, Henan Provincial People's Hospital, Department of Anesthesia of Central China Fuwai Hospital, Central China Fu Wai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, 450052, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Joakim Ek
- Perinatal Center, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zehua Shao
- Department of Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jie Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiaqiang Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Hongqi Lin
- Department of Anesthesia, Henan Provincial People's Hospital, Department of Anesthesia of Central China Fuwai Hospital, Central China Fu Wai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Perinatal Center, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, 40530, Sweden.
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41685, Sweden.
| |
Collapse
|
3
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
4
|
Ju LS, Morey TE, Seubert CN, Martynyuk AE. Intergenerational Perioperative Neurocognitive Disorder. BIOLOGY 2023; 12:biology12040567. [PMID: 37106766 PMCID: PMC10135810 DOI: 10.3390/biology12040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Accelerated neurocognitive decline after general anesthesia/surgery, also known as perioperative neurocognitive disorder (PND), is a widely recognized public health problem that may affect millions of patients each year. Advanced age, with its increasing prevalence of heightened stress, inflammation, and neurodegenerative alterations, is a consistent contributing factor to the development of PND. Although a strong homeostatic reserve in young adults makes them more resilient to PND, animal data suggest that young adults with pathophysiological conditions characterized by excessive stress and inflammation may be vulnerable to PND, and this altered phenotype may be passed to future offspring (intergenerational PND). The purpose of this narrative review of data in the literature and the authors' own experimental findings in rodents is to draw attention to the possibility of intergenerational PND, a new phenomenon which, if confirmed in humans, may unravel a big new population that may be affected by parental PND. In particular, we discuss the roles of stress, inflammation, and epigenetic alterations in the development of PND. We also discuss experimental findings that demonstrate the effects of surgery, traumatic brain injury, and the general anesthetic sevoflurane that interact to induce persistent dysregulation of the stress response system, inflammation markers, and behavior in young adult male rats and in their future offspring who have neither trauma nor anesthetic exposure (i.e., an animal model of intergenerational PND).
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Timothy E Morey
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Christoph N Seubert
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Anatoly E Martynyuk
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
- Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Ju LS, Zhu J, Brant JO, Morey TE, Gravenstein N, Seubert CN, Vasilopoulos T, Setlow B, Martynyuk AE. Intergenerational Perioperative Neurocognitive Disorder in Young Adult Male Rats with Traumatic Brain Injury. Anesthesiology 2023; 138:388-402. [PMID: 36637480 PMCID: PMC10411496 DOI: 10.1097/aln.0000000000004496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The authors tested the hypothesis that the effects of traumatic brain injury, surgery, and sevoflurane interact to induce neurobehavioral abnormalities in adult male rats and in their offspring (an animal model of intergenerational perioperative neurocognitive disorder). METHODS Sprague-Dawley male rats (assigned generation F0) underwent a traumatic brain injury on postnatal day 60 that involved craniectomy (surgery) under 3% sevoflurane for 40 min followed by 2.1% sevoflurane for 3 h on postnatal days 62, 64, and 66 (injury group). The surgery group had craniectomy without traumatic brain injury, whereas the sevoflurane group had sevoflurane only. On postnatal day 90, F0 males and control females were mated to generate offspring (assigned generation F1). RESULTS Acutely, F0 injury rats exhibited the greatest increases in serum corticosterone and interleukin-1β and -6, and activation of the hippocampal microglia. Long-term, compared to controls, F0 injury rats had the most exacerbated corticosterone levels at rest (mean ± SD, 2.21 ± 0.64 vs. 7.28 ± 1.95 ng/ml, n = 7 - 8; P < 0.001) and 10 min after restraint (133.12 ± 33.98 vs. 232.83 ± 40.71 ng/ml, n = 7 - 8; P < 0.001), increased interleukin-1β and -6, and reduced expression of hippocampal glucocorticoid receptor (Nr3c1; 0.53 ± 0.08 fold change relative to control, P < 0.001, n = 6) and brain-derived neurotrophic factor genes. They also exhibited greater behavioral deficiencies. Similar abnormalities were evident in their male offspring, whereas F1 females were not affected. The reduced Nr3c1 expression in F1 male, but not female, hippocampus was accompanied by corresponding Nr3c1 promoter hypermethylated CpG sites in F0 spermatozoa and F1 male, but not female, hippocampus. CONCLUSIONS These findings in rats suggest that young adult males with traumatic brain injury are at an increased risk of developing perioperative neurocognitive disorder, as are their unexposed male but not female offspring. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Jason O Brant
- Department of Biostatistics, University of Florida, College of Medicine, Gainesville, Florida
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Christoph N Seubert
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Terrie Vasilopoulos
- Departments of Anesthesiology, Orthopedic Surgery and Sports Medicine, University of Florida, College of Medicine, Gainesville, Florida
| | - Barry Setlow
- Department of Psychiatry and the McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida
| | - Anatoly E Martynyuk
- Department of Anesthesiology and the McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida
| |
Collapse
|
6
|
Useinovic N, Near M, Cabrera OH, Boscolo A, Milosevic A, Harvey R, Newson A, Chastain-Potts S, Quillinan N, Jevtovic-Todorovic V. Neonatal sevoflurane exposure induces long-term changes in dendritic morphology in juvenile rats and mice. Exp Biol Med (Maywood) 2023; 248:641-655. [PMID: 37309741 PMCID: PMC10350807 DOI: 10.1177/15353702231170003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 06/14/2023] Open
Abstract
General anesthetics are potent neurotoxins when given during early development, causing apoptotic deletion of substantial number of neurons and persistent neurocognitive and behavioral deficits in animals and humans. The period of intense synaptogenesis coincides with the peak of susceptibility to deleterious effects of anesthetics, a phenomenon particularly pronounced in vulnerable brain regions such as subiculum. With steadily accumulating evidence confirming that clinical doses and durations of anesthetics may permanently alter the physiological trajectory of brain development, we set out to investigate the long-term consequences on dendritic morphology of subicular pyramidal neurons and expression on genes regulating the complex neural processes such as neuronal connectivity, learning, and memory. Using a well-established model of anesthetic neurotoxicity in rats and mice neonatally exposed to sevoflurane, a volatile general anesthetic commonly used in pediatric anesthesia, we report that a single 6 h of continuous anesthesia administered at postnatal day (PND) 7 resulted in lasting dysregulation in subicular mRNA levels of cAMP responsive element modulator (Crem), cAMP responsive element-binding protein 1 (Creb1), and Protein phosphatase 3 catalytic subunit alpha, a subunit of calcineurin (Ppp3ca) (calcineurin) when examined during juvenile period at PND28. Given the critical role of these genes in synaptic development and neuronal plasticity, we deployed a set of histological measurements to investigate the implications of anesthesia-induced dysregulation of gene expression on morphology and complexity of surviving subicular pyramidal neurons. Our results indicate that neonatal exposure to sevoflurane induced lasting rearrangement of subicular dendrites, resulting in higher orders of complexity and increased branching with no significant effects on the soma of pyramidal neurons. Correspondingly, changes in dendritic complexity were paralleled by the increased spine density on apical dendrites, further highlighting the scope of anesthesia-induced dysregulation of synaptic development. We conclude that neonatal sevoflurane induced persistent genetic and morphological dysregulation in juvenile rodents, which could indicate heightened susceptibility toward cognitive and behavioral disorders we are beginning to recognize as sequelae of early-in-life anesthesia.
Collapse
Affiliation(s)
- Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michelle Near
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Omar Hoseá Cabrera
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Annalisa Boscolo
- Institute of Anesthesia and Intensive Care, Padua University Hospital, Padua 35128. Italy
- Department of Medicine (DIMED), University of Padua, Padua 35128, Italy
| | - Andjelko Milosevic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel Harvey
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Adre Newson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shelby Chastain-Potts
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Jiang Y, Zhou Y, Tan S, Xu C, Ma J. Role of posttranslational modifications in memory and cognitive impairments caused by neonatal sevoflurane exposure. Front Pharmacol 2023; 14:1113345. [PMID: 36992831 PMCID: PMC10040769 DOI: 10.3389/fphar.2023.1113345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
With the advancement of technology, increasingly many newborns are receiving general anesthesia at a young age for surgery, other interventions, or clinical assessment. Anesthetics cause neurotoxicity and apoptosis of nerve cells, leading to memory and cognitive impairments. The most frequently used anesthetic in infants is sevoflurane; however, it has the potential to be neurotoxic. A single, short bout of sevoflurane exposure has little impact on cognitive function, but prolonged or recurrent exposure to general anesthetics can impair memory and cognitive function. However, the mechanisms underlying this association remain unknown. Posttranslational modifications (PTMs), which can be described roughly as the regulation of gene expression, protein activity, and protein function, have sparked enormous interest in neuroscience. Posttranslational modifications are a critical mechanism mediating anesthesia-induced long-term modifications in gene transcription and protein functional deficits in memory and cognition in children, according to a growing body of studies in recent years. Based on these recent findings, our paper reviews the effects of sevoflurane on memory loss and cognitive impairment, discusses how posttranslational modifications mechanisms can contribute to sevoflurane-induced neurotoxicity, and provides new insights into the prevention of sevoflurane-induced memory and cognitive impairments.
Collapse
Affiliation(s)
- Yongliang Jiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Siwen Tan
- Outpatient Department, West China Hospital of Sichuan University, Chengdu, China
| | - Chongxi Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Junpeng Ma,
| |
Collapse
|
8
|
Cabrera OH, Useinovic N, Maksimovic S, Near M, Quillinan N, Todorovic SM, Jevtovic-Todorovic V. Neonatal ketamine exposure impairs infrapyramidal bundle pruning and causes lasting increase in excitatory synaptic transmission in hippocampal CA3 neurons. Neurobiol Dis 2022; 175:105923. [PMID: 36371060 PMCID: PMC9831613 DOI: 10.1016/j.nbd.2022.105923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Preclinical models demonstrate that nearly all anesthetics cause widespread neuroapoptosis in the developing brains of infant rodents and non-human primates. Anesthesia-induced developmental apoptosis is succeeded by prolonged neuropathology in the surviving neurons and lasting cognitive impairments, suggesting that anesthetics interfere with the normal developmental trajectory of the brain. However, little is known about effects of anesthetics on stereotyped axonal pruning, an important developmental algorithm that sculpts neural circuits for proper function. Here, we proposed that neonatal ketamine exposure may interfere with stereotyped axonal pruning of the infrapyramidal bundle (IPB) of the hippocampal mossy fiber system and that impaired pruning may be associated with alterations in the synaptic transmission of CA3 neurons. To test this hypothesis, we injected postnatal day 7 (PND7) mouse pups with ketamine or vehicle over 6 h and then studied them at different developmental stages corresponding to IPB pruning (PND20-40). Immunohistochemistry with synaptoporin (a marker of mossy fibers) revealed that in juvenile mice treated with ketamine at PND7, but not in vehicle-treated controls, positive IPB fibers extended farther into the stratum pyramidale of CA3 region. Furthermore, immunofluorescent double labeling for synaptoporin and PSD-95 strongly suggested that the unpruned IPB caused by neonatal ketamine exposure makes functional synapses. Importantly, patch-clamp electrophysiology for miniature excitatory postsynaptic currents (mEPSCs) in acute brain slices ex vivo revealed increased frequency and amplitudes of mEPSCs in hippocampal CA3 neurons in ketamine-treated groups when compared to vehicle controls. We conclude that neonatal ketamine exposure interferes with normal neural circuit development and that this interference leads to lasting increase in excitatory synaptic transmission in hippocampus.
Collapse
Affiliation(s)
- Omar Hoseá Cabrera
- University of Colorado School of Medicine at Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA
| | - Nemanja Useinovic
- University of Colorado School of Medicine at Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA
| | - Stefan Maksimovic
- University of Colorado School of Medicine at Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA
| | - Michelle Near
- University of Colorado School of Medicine at Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA
| | - Nidia Quillinan
- University of Colorado School of Medicine at Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA,University of Colorado School of Medicine at Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO, USA
| | - Slobodan M. Todorovic
- University of Colorado School of Medicine at Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA,University of Colorado School of Medicine at Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO, USA
| | - Vesna Jevtovic-Todorovic
- University of Colorado School of Medicine at Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA,University of Colorado School of Medicine at Anschutz Medical Campus, Department of Pharmacology, Aurora, CO, USA,Corresponding author. (V. Jevtovic-Todorovic)
| |
Collapse
|
9
|
Escher J, Yan W, Rissman EF, Wang HLV, Hernandez A, Corces VG. Beyond Genes: Germline Disruption in the Etiology of Autism Spectrum Disorders. J Autism Dev Disord 2022; 52:4608-4624. [PMID: 34596807 PMCID: PMC9035896 DOI: 10.1007/s10803-021-05304-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/31/2023]
Abstract
Investigations into the etiology of autism spectrum disorders have been largely confined to two realms: variations in DNA sequence and somatic developmental exposures. Here we suggest a third route-disruption of the germline epigenome induced by exogenous toxicants during a parent's gamete development. Similar to cases of germline mutation, these molecular perturbations may produce dysregulated transcription of brain-related genes during fetal and early development, resulting in abnormal neurobehavioral phenotypes in offspring. Many types of exposures may have these impacts, and here we discuss examples of anesthetic gases, tobacco components, synthetic steroids, and valproic acid. Alterations in parental germline could help explain some unsolved phenomena of autism, including increased prevalence, missing heritability, skewed sex ratio, and heterogeneity of neurobiology and behavior.
Collapse
Affiliation(s)
- Jill Escher
- Escher Fund for Autism, 1590 Calaveras Avenue, San Jose, CA, USA.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emilie F Rissman
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Arturo Hernandez
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Epigenetic Mechanisms of Postoperative Cognitive Impairment Induced by Anesthesia and Neuroinflammation. Cells 2022; 11:cells11192954. [PMID: 36230916 PMCID: PMC9563723 DOI: 10.3390/cells11192954] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment after surgery is a common problem, affects mainly the elderly, and can be divided into postoperative delirium and postoperative cognitive dysfunction. Both phenomena are accompanied by neuroinflammation; however, the precise molecular mechanisms underlying cognitive impairment after anesthesia are not yet fully understood. Anesthesiological drugs can have a longer-term influence on protein transcription, thus, epigenetics is a possible mechanism that impacts on cognitive function. Epigenetic mechanisms may be responsible for long-lasting effects and may implicate novel therapeutic approaches. Hence, we here summarize the existing literature connecting postoperative cognitive impairment to anesthesia. It becomes clear that anesthetics alter the expression of DNA and histone modifying enzymes, which, in turn, affect epigenetic markers, such as methylation, histone acetylation and histone methylation on inflammatory genes (e.g., TNF-alpha, IL-6 or IL1 beta) and genes which are responsible for neuronal development (such as brain-derived neurotrophic factor). Neuroinflammation is generally increased after anesthesia and neuronal growth decreased. All these changes can induce cognitive impairment. The inhibition of histone deacetylase especially alleviates cognitive impairment after surgery and might be a novel therapeutic option for treatment. However, further research with human subjects is necessary because most findings are from animal models.
Collapse
|
11
|
Mokini Z, Cama A, Forget P. Anesthetics and Long Term Cancer Outcomes: May Epigenetics Be the Key for Pancreatic Cancer? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1102. [PMID: 36013569 PMCID: PMC9414834 DOI: 10.3390/medicina58081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Knowledge shows a divergence of results between preclinical and clinical studies regarding anesthesia and postoperative progression of cancer. While laboratory and animal data from then 2000s onwards raised much enthusiasm in this field of research leading to several clinical investigations worldwide, data from randomized trials seem to have killed off hope for many scientists. However several aspects of the actual knowledge should be reevaluated and there is space for new strategies of investigation. In this paper, we perform a critical review of actual knowledge and propose new research strategies with a special focus on anesthetic management and repurposed anesthetic adjuvants for pancreatic cancer.
Collapse
Affiliation(s)
- Zhirajr Mokini
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
- The European Platform for Research Outcomes after PerIoperative Interventions in Surgery for Cancer Research Group (Euro-Periscope): The Onco-Anaesthesiology Research Group (RG), BE-1000 Brussels, Belgium
| | - Alessandro Cama
- The European Platform for Research Outcomes after PerIoperative Interventions in Surgery for Cancer Research Group (Euro-Periscope): The Onco-Anaesthesiology Research Group (RG), BE-1000 Brussels, Belgium
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrice Forget
- The European Platform for Research Outcomes after PerIoperative Interventions in Surgery for Cancer Research Group (Euro-Periscope): The Onco-Anaesthesiology Research Group (RG), BE-1000 Brussels, Belgium
- Epidemiology Group, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anaesthesia, National Health Service (NHS) Grampian, Aberdeen AB25 2ZD, UK
| |
Collapse
|
12
|
Cheng Y, Liu S, Zhang L, Jiang H. Identification of Prefrontal Cortex and Amygdala Expressed Genes Associated With Sevoflurane Anesthesia on Non-human Primate. Front Integr Neurosci 2022; 16:857349. [PMID: 35845920 PMCID: PMC9286018 DOI: 10.3389/fnint.2022.857349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Clinical trials and animal studies have indicated that long-term use or multiple administrations of anesthesia may lead to fine motor impairment in the developing brain. Most studies on anesthesia-induced neurotoxicity have focused on the hippocampus and prefrontal cortex (PFC); however, the role of other vital encephalic regions, such as the amygdala, is still unclear. Herein, we focused on sevoflurane, the most commonly used volatile anesthetic in infants, and performed a transcriptional analysis of the PFC and amygdala of macaques after multiple exposures to the anesthetic by RNA sequencing. The overall, overlapping, and encephalic region-specific transcriptional patterns were separately analyzed to reveal their functions and differentially expressed gene sets that were influenced by sevoflurane. Specifically, functional, protein–protein interaction, neighbor gene network, and gene set enrichment analyses were performed. Further, we built the basic molecular feature of the amygdala by comparing it to the PFC. In comparison with the amygdala’s changing pattern following sevoflurane exposure, functional annotations of the PFC were more enriched in glial cell-related biological functions than in neuron and synapsis development. Taken together, transcriptional studies and bioinformatics analyses allow for an improved understanding of the primate PFC and amygdala.
Collapse
|
13
|
Maksimovic S, Useinovic N, Quillinan N, Covey DF, Todorovic SM, Jevtovic-Todorovic V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031889. [PMID: 35163810 PMCID: PMC8836828 DOI: 10.3390/ijms23031889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.
Collapse
Affiliation(s)
- Stefan Maksimovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Correspondence:
| | - Nemanja Useinovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Useinovic N, Maksimovic S, Near M, Quillinan N, Jevtovic-Todorovic V. Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? Int J Mol Sci 2022; 23:ijms23031128. [PMID: 35163060 PMCID: PMC8834847 DOI: 10.3390/ijms23031128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Since its invention, general anesthesia has been an indispensable component of modern surgery. While traditionally considered safe and beneficial in many pathological settings, hundreds of preclinical studies in various animal species have raised concerns about the detrimental and long-lasting consequences that general anesthetics may cause to the developing brain. Clinical evidence of anesthetic neurotoxicity in humans continues to mount as we continue to contemplate how to move forward. Notwithstanding the alarming evidence, millions of children are being anesthetized each year, setting the stage for substantial healthcare burdens in the future. Hence, furthering our knowledge of the molecular underpinnings of anesthesia-induced developmental neurotoxicity is crucially important and should enable us to develop protective strategies so that currently available general anesthetics could be safely used during critical stages of brain development. In this mini-review, we provide a summary of select strategies with primary focus on the mechanisms of neuroprotection and potential for clinical applicability. First, we summarize a diverse group of chemicals with the emphasis on intracellular targets and signal-transduction pathways. We then discuss epigenetic and transgenerational effects of general anesthetics and potential remedies, and also anesthesia-sparing or anesthesia-delaying approaches. Finally, we present evidence of a novel class of anesthetics with a distinct mechanism of action and a promising safety profile.
Collapse
Affiliation(s)
- Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Correspondence:
| | - Stefan Maksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Michelle Near
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Sun M, Xie Z, Zhang J, Leng Y. Mechanistic insight into sevoflurane-associated developmental neurotoxicity. Cell Biol Toxicol 2022; 38:927-943. [PMID: 34766256 PMCID: PMC9750936 DOI: 10.1007/s10565-021-09677-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. 1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects.
2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop.
3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mingyang Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000 ,Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Yufang Leng
- Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000
| |
Collapse
|
16
|
Zhang D, Liu J, Zhu T, Zhou C. Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System. Curr Neuropharmacol 2021; 20:55-71. [PMID: 34503426 PMCID: PMC9199548 DOI: 10.2174/1570159x19666210909150200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| |
Collapse
|
17
|
Cabrera OH, Useinovic N, Jevtovic-Todorovic V. Neonatal Anesthesia and dysregulation of the Epigenome. Biol Reprod 2021; 105:720-734. [PMID: 34258621 DOI: 10.1093/biolre/ioab136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
Each year, millions of infants and children are anesthetized for medical and surgical procedures. Yet, a substantial body of preclinical evidence suggests that anesthetics are neurotoxins that cause rapid and widespread apoptotic cell death in the brains of infant rodents and non-human primates. These animals have persistent impairments in cognition and behavior many weeks or months after anesthesia exposure, leading us to hypothesize that anesthetics do more than simply kill brain cells. Indeed, anesthetics cause chronic neuropathology in neurons that survive the insult, which then interferes with major aspects of brain development, synaptic plasticity, and neuronal function. Understanding the phenomenon of anesthesia-induced developmental neurotoxicity is of critical public health importance because clinical studies now report that anesthesia in human infancy is associated with cognitive and behavioral deficits. In our search for mechanistic explanations for why a young and pliable brain cannot fully recover from a relatively brief period of anesthesia, we have accumulated evidence that neonatal anesthesia can dysregulate epigenetic tags that influence gene transcription such as histone acetylation and DNA methylation. In this review, we briefly summarize the phenomenon of anesthesia-induced developmental neurotoxicity. We then discuss chronic neuropathology caused by neonatal anesthesia, including disturbances in cognition, socio-affective behavior, neuronal morphology, and synaptic plasticity. Finally, we present evidence of anesthesia-induced genetic and epigenetic dysregulation within the developing brain that may be transmitted intergenerationally to anesthesia-naïve offspring.
Collapse
Affiliation(s)
- Omar Hoseá Cabrera
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| |
Collapse
|
18
|
Martynyuk AE, Ju LS, Morey TE. The potential role of stress and sex steroids in heritable effects of sevoflurane. Biol Reprod 2021; 105:735-746. [PMID: 34192761 DOI: 10.1093/biolre/ioab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Most surgical procedures require general anesthesia, which is a reversible deep sedation state lacking all perception. The induction of this state is possible because of complex molecular and neuronal network actions of general anesthetics (GAs) and other pharmacological agents. Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when administered at the extremes of ages, are an increasingly recognized health concern and the subject of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic GAs), can also extend to future unexposed offspring. Importantly, experimental findings show that GABAergic GAs may induce heritable effects when administered from the early postnatal period to at least young adulthood, covering nearly all age groups that may have children after exposure to anesthesia. More studies are needed to understand when and how the clinical use of GAs in a large and growing population of patients can result in lower resilience to diseases in the even larger population of their unexposed offspring. This minireview is focused on the authors' published results and data in the literature supporting the notion that GABAergic GAs, in particular sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of genes that are essential for the functioning of these steroid systems. The authors hypothesize that stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
19
|
Escher J. How Family Histories Can Inform Research About Germ Cell Exposures: The Example of Autism. Biol Reprod 2021; 105:767-773. [PMID: 33959752 DOI: 10.1093/biolre/ioab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Throughout the scientific literature, heritable traits are routinely presumed to be genetic in origin. However, as emerging evidence from the realms of genetic toxicology and epigenomics demonstrate, heritability may be better understood as encompassing not only DNA sequence passed down through generations, but also disruptions to the parental germ cells causing de novo mutations or epigenetic alterations, with subsequent shifts in gene expression and functions in offspring. The Beyond Genes conference highlighted advances in understanding these aspects at molecular, experimental and epidemiological levels. In this commentary I suggest that future research on this topic could be inspired by collecting parents' germ cell exposure histories, with particular attention to cases of families with multiple children suffering idiopathic disorders. In so doing I focus on the endpoint of autism spectrum disorders (ASD). Rates of this serious neurodevelopment disability have climbed around the world, a growing crisis that cannot be explained by diagnostic shifts. ASD's strong heritability has prompted a research program largely focused on DNA sequencing to locate rare and common variants, but decades of this gene-focused research have revealed surprisingly little about the molecular origins of the disorder. Based on my experience as the mother of two children with idiopathic autism, and as a research philanthropist and autism advocate, I suggest ways researchers might probe parental germ cell exposure histories to develop new hypotheses that may ultimately reveal sources of non-genetic heritability in a subset of idiopathic heritable pathologies.
Collapse
|
20
|
Fan XY, Shi G, Zhao P. Neonatal Sevoflurane Exposure Impairs Learning and Memory by the Hypermethylation of Hippocampal Synaptic Genes. Mol Neurobiol 2021; 58:895-904. [PMID: 33052583 DOI: 10.1007/s12035-020-02161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
Sevoflurane anesthesia is widely used in pediatric patients. Clinical studies report memory impairment in those exposed to general anesthesia early in life. DNA methylation is essential for the modulation of synaptic plasticity through regulating the transcription of synaptic genes. Therefore, we tested whether neonatal sevoflurane exposure affects learning and memory underlying the hippocampal DNA methylation of synaptic genes. Male Sprague-Dawley rats were exposed to 3% sevoflurane or air for 2 h daily from postnatal day 7 (P7) to P9. 5-aza-2-deoxycytidine (5-AZA), an inhibitor of DNA methyltransferases (DNMTs), was intraperitoneally injected 30 min before sevoflurane or air exposure on P7-9. The rats were euthanized 6, 12, 24 h, and 28 days after the last sevoflurane exposure, followed by the determination of global and gene-specific DNA methylation. The expression of synaptic proteins and synaptic density and the transcription of Dnmts and ten eleven translocations (Tets) in the hippocampus were measured. The ability of learning and memory was assessed using Morris water maze, novel object recognition, and intruder tests. Repeated neonatal sevoflurane exposure impaired cognitive, social, and spatial memory. The memory impairment was associated with the increased Dnmt1, Dnmt3a, and 5-methylcytosine level and the decreased Tet1 and 5-hydromethylcytosine level. Sevoflurane subsequently induced hypermethylation of Shank2, Psd95, Syn1, and Syp gene and down-regulated the expression of synaptic proteins, which finally led to the decrease of synaptic density in a time-dependent manner. Notably, 5-AZA pretreatment ameliorated learning and memory in sevoflurane-treated rats. In conclusion, neonatal exposure to sevoflurane can impair learning and memory through DNA methylation of synaptic genes.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Guang Shi
- Department of Neurology, Liaoning Provincial People's Hospital, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
21
|
Androgenic Modulation of the Chloride Transporter NKCC1 Contributes to Age-dependent Isoflurane Neurotoxicity in Male Rats. Anesthesiology 2020; 133:852-866. [PMID: 32930727 DOI: 10.1097/aln.0000000000003437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive deficits after perinatal anesthetic exposure are well established outcomes in animal models. This vulnerability is sex-dependent and associated with expression levels of the chloride transporters NKCC1 and KCC2. The hypothesis was that androgen signaling, NKCC1 function, and the age of isoflurane exposure are critical for the manifestation of anesthetic neurotoxicity in male rats. METHODS Flutamide, an androgen receptor antagonist, was administered to male rats on postnatal days 2, 4, and 6 before 6 h of isoflurane on postnatal day 7 (ntotal = 26). Spatial and recognition memory were subsequently tested in adulthood. NKCC1 and KCC2 protein levels were measured from cortical lysates by Western blot on postnatal day 7 (ntotal = 20). Bumetanide, an NKCC1 antagonist, was injected immediately before isoflurane exposure (postnatal day 7) to study the effect of NKCC1 inhibition (ntotal = 48). To determine whether male rats remain vulnerable to anesthetic neurotoxicity as juveniles, postnatal day 14 animals were exposed to isoflurane and assessed as adults (ntotal = 30). RESULTS Flutamide-treated male rats exposed to isoflurane successfully navigated the spatial (Barnes maze probe trial F[1, 151] = 78; P < 0.001; mean goal exploration ± SD, 6.4 ± 3.9 s) and recognition memory tasks (mean discrimination index ± SD, 0.09 ± 0.14; P = 0.003), unlike isoflurane-exposed controls. Flutamide changed expression patterns of NKCC1 (mean density ± SD: control, 1.49 ± 0.69; flutamide, 0.47 ± 0.11; P < 0.001) and KCC2 (median density [25th percentile, 75th percentile]: control, 0.23 [0.13, 0.49]; flutamide, 1.47 [1.18,1.62]; P < 0.001). Inhibiting NKCC1 with bumetanide was protective for spatial memory (probe trial F[1, 162] = 6.6; P = 0.011; mean goal time, 4.6 [7.4] s). Delaying isoflurane exposure until postnatal day 14 in males preserved spatial memory (probe trial F[1, 140] = 28; P < 0.001; mean goal time, 6.1 [7.0] s). CONCLUSIONS Vulnerability to isoflurane neurotoxicity is abolished by blocking the androgen receptor, disrupting the function of NKCC1, or delaying the time of exposure to at least 2 weeks of age in male rats. These results support a dynamic role for androgens and chloride transporter proteins in perinatal anesthetic neurotoxicity. EDITOR’S PERSPECTIVE
Collapse
|
22
|
Xu N, Lei L, Lin Y, Ju LS, Morey TE, Gravenstein N, Yang J, Martynyuk AE. A Methyltransferase Inhibitor (Decitabine) Alleviates Intergenerational Effects of Paternal Neonatal Exposure to Anesthesia With Sevoflurane. Anesth Analg 2020; 131:1291-1299. [PMID: 32925350 PMCID: PMC7593836 DOI: 10.1213/ane.0000000000005097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neonatal exposure to sevoflurane induces neurobehavioral and neuroendocrine abnormalities in exposed male rats (generation F0) and neurobehavioral, but not neuroendocrine, abnormalities in their male, but not female, offspring (generation F1). These effects of sevoflurane are accompanied by a hypermethylated neuron-specific K-2Cl (Kcc2) Cl exporter gene in the F0 spermatozoa and the F1 male hypothalamus, while the gene's expression is reduced in the F0 and F1 hypothalamus. We investigated whether inhibition of deoxyribonucleic acid methyltransferases (DNMTs) before paternal sevoflurane exposure could alleviate the anesthetic's F0 and F1 effects. METHODS Sprague-Dawley male rats were anesthetized with 2.1% sevoflurane for 5 hours on postnatal day (P) 5 and mated with control females on P90 to generate offspring. The nonselective DNMT inhibitor decitabine (0.5 mg/kg, intraperitoneally) was administered 30 minutes before sevoflurane exposure. The F0 and F1 male rats were evaluated in in vivo and in vitro tests in adulthood. RESULTS Paternal exposure to sevoflurane induced impaired prepulse inhibition of the acoustic startle response and exacerbated corticosterone responses to stress in F0 males and impaired prepulse inhibition of the startle responses in F1 males. These effects were accompanied in both generations by reduced and increased expressions of hypothalamic Kcc2 and Dnmt3a/b, respectively. Decitabine deterred the effects of paternal exposure to sevoflurane in F0 and F1 males. CONCLUSIONS These results suggest that similar decitabine-sensitive mechanisms regulating expression of multiple genes are involved in the mediation of neurobehavioral abnormalities in sires neonatally exposed to sevoflurane and in their future unexposed male offspring.
Collapse
Affiliation(s)
- Ning Xu
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Lei Lei
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Yunan Lin
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Timothy E. Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anatoly E. Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
23
|
Ni C, Qian M, Geng J, Qu Y, Tian Y, Yang N, Li S, Zheng H. DNA Methylation Manipulation of Memory Genes Is Involved in Sevoflurane Induced Cognitive Impairments in Aged Rats. Front Aging Neurosci 2020; 12:211. [PMID: 33013350 PMCID: PMC7461785 DOI: 10.3389/fnagi.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an essential epigenetic mechanism involving in gene transcription modulation. An age-related increase in promoter methylation has been observed for neuronal activity and memory genes, and participates in neurological disorders. However, the position and precise mechanism of DNA methylation for memory gene modulation in anesthesia related cognitive impairment remained to be determined. Here, we studied the effects of sevoflurane anesthesia on the transcription of memory genes in the aged rat hippocampus. Then, we investigated changes in DNA methylation of involved genes and verified whether dysregulated DNA methylation would contribute to anesthesia induced cognitive impairment. The results indicated that sevoflurane anesthesia down-regulated the mRNA and protein levels of three memory genes, Arc, Bdnf, and Reln, which were accompanied with promoter hypermethylation and increased Dnmt1, Dnmt3a, and Mecp2 expression, and finally impaired hippocampus dependent memory. Furthermore, inhibition of DNA hypermethylation by 5-Aza rescued sevoflurane induced memory gene expression decrease and cognitive impairment. These findings provide an epigenetic understanding for the pathophysiology of cognitive impairment induced by general anesthesia in aged brain.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Qian
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jiao Geng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Martynyuk AE, Ju LS, Morey TE, Zhang JQ. Neuroendocrine, epigenetic, and intergenerational effects of general anesthetics. World J Psychiatry 2020; 10:81-94. [PMID: 32477904 PMCID: PMC7243620 DOI: 10.5498/wjp.v10.i5.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023] Open
Abstract
The progress of modern medicine would be impossible without the use of general anesthetics (GAs). Despite advancements in refining anesthesia approaches, the effects of GAs are not fully reversible upon GA withdrawal. Neurocognitive deficiencies attributed to GA exposure may persist in neonates or endure for weeks to years in the elderly. Human studies on the mechanisms of the long-term adverse effects of GAs are needed to improve the safety of general anesthesia but they are hampered not only by ethical limitations specific to human research, but also by a lack of specific biological markers that can be used in human studies to safely and objectively study such effects. The latter can primarily be attributed to an insufficient understanding of the full range of the biological effects induced by GAs and the molecular mechanisms mediating such effects even in rodents, which are far more extensively studied than any other species. Our most recent experimental findings in rodents suggest that GAs may adversely affect many more people than is currently anticipated. Specifically, we have shown that anesthesia with the commonly used GA sevoflurane induces in exposed animals not only neuroendocrine abnormalities (somatic effects), but also epigenetic reprogramming of germ cells (germ cell effects). The latter may pass the neurobehavioral effects of parental sevoflurane exposure to the offspring, who may be affected even at levels of anesthesia that are not harmful to the exposed parents. The large number of patients who require general anesthesia, the even larger number of their future unexposed offspring whose health may be affected, and a growing number of neurodevelopmental disorders of unknown etiology underscore the translational importance of investigating the intergenerational effects of GAs. In this mini review, we discuss emerging experimental findings on neuroendocrine, epigenetic, and intergenerational effects of GAs.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology and the McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jia-Qiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
25
|
Chinn GA, Pearn ML, Vutskits L, Mintz CD, Loepke AW, Lee JJ, Chen J, Bosnjak ZJ, Brambrink AM, Jevtovic-Todorovic V, Sun LS, Sall JW. Standards for preclinical research and publications in developmental anaesthetic neurotoxicity: expert opinion statement from the SmartTots preclinical working group. Br J Anaesth 2020; 124:585-593. [PMID: 32145876 PMCID: PMC7424895 DOI: 10.1016/j.bja.2020.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
In March 2019, SmartTots, a public-private partnership between the US Food and Drug Administration and the International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal editors, and government agency representatives to discuss the continued need for rigorous preclinical research and the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to answer some of the field's largest questions. The attendees concluded that summarising the benefits and disadvantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new experiments and interpreting results across laboratories. This expert opinion report is a summary of these discussions, and includes a focused review of current animal models and reporting standards for the field of perinatal anaesthetic neurotoxicity. This will serve as a practical guide and road map for novel and rigorous experimental work.
Collapse
Affiliation(s)
- Gregory A Chinn
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Matthew L Pearn
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Laszlo Vutskits
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Cyrus D Mintz
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas W Loepke
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer J Lee
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jerri Chen
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Lena S Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jeffrey W Sall
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
26
|
Cabrera OH, Gulvezan T, Symmes B, Quillinan N, Jevtovic-Todorovic V. Sex differences in neurodevelopmental abnormalities caused by early-life anaesthesia exposure: a narrative review. Br J Anaesth 2020; 124:e81-e91. [PMID: 31980157 DOI: 10.1016/j.bja.2019.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 01/12/2023] Open
Abstract
Exposure to anaesthetic drugs during the fetal or neonatal period induces widespread neuronal apoptosis in the brains of rodents and non-human primates. Hundreds of published preclinical studies and nearly 20 clinical studies have documented cognitive and behavioural deficits many months or years later, raising the spectre that early life anaesthesia exposure is a long-term, perhaps permanent, insult that might affect the quality of life of millions of humans. Although the phenomenon of anaesthesia-induced developmental neurotoxicity is well characterised, there are important and lingering questions pertaining to sex differences and neurodevelopmental sequelae that might occur differentially in females and males. We review the relevant literature on sex differences in the field of anaesthesia-induced developmental neurotoxicity, and present an emerging pattern of potential sex-dependent neurodevelopmental abnormalities in rodent models of human infant anaesthesia exposure.
Collapse
Affiliation(s)
- Omar H Cabrera
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Thomas Gulvezan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Breanna Symmes
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
27
|
Escher J, Ford LD. General anesthesia, germ cells and the missing heritability of autism: an urgent need for research. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa007. [PMID: 32704384 PMCID: PMC7368377 DOI: 10.1093/eep/dvaa007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
Agents of general anesthesia (GA) are commonly employed in surgical, dental and diagnostic procedures to effectuate global suppression of the nervous system, but in addition to somatic targets, the subject's germ cells-from the embryonic primordial stage to the mature gametes-may likewise be exposed. Although GA is generally considered safe for most patients, evidence has accumulated that various compounds, in particular the synthetic volatile anesthetic gases (SVAGs) such as sevoflurane, can exert neurotoxic, genotoxic and epigenotoxic effects, with adverse consequences for cellular and genomic function in both somatic and germline cells. The purpose of this paper is to review the evidence demonstrating that GA, and in particular, SVAGs, may in some circumstances adversely impact the molecular program of germ cells, resulting in brain and behavioral pathology in the progeny born of the exposed cells. Further, we exhort the medical and scientific communities to undertake comprehensive experimental and epidemiological research programs to address this critical gap in risk assessment.
Collapse
Affiliation(s)
- Jill Escher
- Correspondence address. Escher Fund for Autism, 1590 Calaveras Avenue, San Jose, CA 95126, USA. E-mail:
| | | |
Collapse
|