1
|
Rani A, Bean L, Budamagunta V, Kumar A, Foster TC. Failure of senolytic treatment to prevent cognitive decline in a female rodent model of aging. Front Aging Neurosci 2024; 16:1384554. [PMID: 38813533 PMCID: PMC11133672 DOI: 10.3389/fnagi.2024.1384554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
There are sex differences in vulnerability and resilience to the stressors of aging and subsequent age-related cognitive decline. Cellular senescence occurs as a response to damaging or stress-inducing stimuli. The response includes a state of irreversible growth arrest, the development of a senescence-associated secretory phenotype, and the release of pro-inflammatory cytokines associated with aging and age-related diseases. Senolytics are compounds designed to eliminate senescent cells. Our recent work indicates that senolytic treatment preserves cognitive function in aging male F344 rats. The current study examined the effect of senolytic treatment on cognitive function in aging female rats. Female F344 rats (12 months) were treated with dasatinib (1.2 mg/kg) + quercetin (12 mg/kg) or ABT-263 (12 mg/kg) or vehicle for 7 months. Examination of the estrus cycle indicated that females had undergone estropause during treatment. Senolytic treatment may have increased sex differences in behavioral stress responsivity, particularly for the initial training on the cued version of the watermaze. However, pre-training on the cue task reduced stress responsivity for subsequent spatial training and all groups learned the spatial discrimination. In contrast to preserved memory observed in senolytic-treated males, all older females exhibited impaired episodic memory relative to young (6-month) females. We suggest that the senolytic treatment may not have been able to compensate for the loss of estradiol, which can act on aging mechanisms for anxiety and memory independent of cellular senescence.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Linda Bean
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Vivekananda Budamagunta
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Hirao A, Hojo Y, Murakami G, Ito R, Hashizume M, Murakoshi T, Uozumi N. Effects of systemic inflammation on the network oscillation in the anterior cingulate cortex and cognitive behavior. PLoS One 2024; 19:e0302470. [PMID: 38701101 PMCID: PMC11068183 DOI: 10.1371/journal.pone.0302470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 μg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 μM of KA, theta band (3-8 Hz); 3.0 μM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.
Collapse
Affiliation(s)
- Ayumi Hirao
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Gen Murakami
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Rina Ito
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Miki Hashizume
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Naonori Uozumi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| |
Collapse
|
3
|
Shishkina GT, Kalinina TS, Lanshakov DA, Bulygina VV, Komysheva NP, Bannova AV, Drozd US, Dygalo NN. Genes Involved by Dexamethasone in Prevention of Long-Term Memory Impairment Caused by Lipopolysaccharide-Induced Neuroinflammation. Biomedicines 2023; 11:2595. [PMID: 37892969 PMCID: PMC10604440 DOI: 10.3390/biomedicines11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory activation within the brain is linked to a decrease in cognitive abilities; however, the molecular mechanisms implicated in the development of inflammatory-related cognitive dysfunction and its prevention are poorly understood. This study compared the responses of hippocampal transcriptomes 3 months after the striatal infusion of lipopolysaccharide (LPS; 30 µg), resulting in memory loss, or with dexamethasone (DEX; 5 mg/kg intraperitoneal) pretreatment, which abolished the long-term LPS-induced memory impairment. After LPS treatment, a significant elevation in the expression of immunity/inflammatory-linked genes, including chemokines (Cxcl13), cytokines (Il1b and Tnfsf13b), and major histocompatibility complex (MHC) class II members (Cd74, RT1-Ba, RT1-Bb, RT1-Da, and RT1-Db1) was observed. DEX pretreatment did not change the expression of these genes, but significantly affected the expression of genes encoding ion channels, primarily calcium and potassium channels, regulators of glutamate (Slc1a2, Grm5, Grin2a), and GABA (Gabrr2, Gabrb2) neurotransmission, which enriched in such GO biological processes as "Regulation of transmembrane transport", "Cognition", "Learning", "Neurogenesis", and "Nervous system development". Taken together, these data suggest that (1) pretreatment with DEX did not markedly affect LPS-induced prolonged inflammatory response; (2) DEX pretreatment can affect processes associated with glutamatergic signaling and nervous system development, possibly involved in the recovery of memory impairment induced by LPS.
Collapse
Affiliation(s)
- Galina T. Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; (T.S.K.); (D.A.L.); (V.V.B.); (N.P.K.); (A.V.B.); (U.S.D.); (N.N.D.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Yegla B, Rani A, Kumar A. Viral vector-mediated upregulation of serine racemase expression in medial prefrontal cortex improves learning and synaptic function in middle age rats. Aging (Albany NY) 2023; 15:2433-2449. [PMID: 37052995 PMCID: PMC10120901 DOI: 10.18632/aging.204652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
An age-associated decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic function contributes to impaired synaptic plasticity and is associated with cognitive impairments. Levels of serine racemase (SR), an enzyme that synthesizes D-serine, an NMDAR co-agonist, decline with age. Thus, enhancing NMDAR function via increased SR expression in middle age, when subtle declines in cognition emerge, was predicted to enhance performance on a prefrontal cortex-mediated task sensitive to aging. Middle-aged (~12 mo) male Fischer-344 rats were injected bilaterally in the medial prefrontal cortex (mPFC) with viral vector (LV), SR (LV-SR) or control (LV-GFP). Rats were trained on the operant attentional set-shift task (AST) to examine cognitive flexibility and attentional function. LV-SR rats exhibited a faster rate of learning compared to controls during visual discrimination of the AST. Extradimensional set shifting and reversal were not impacted. Immunohistochemical analyses demonstrated that LV-SR significantly increased SR expression in the mPFC. Electrophysiological characterization of synaptic transmission in the mPFC slices obtained from LV-GFP and LV-SR animals indicated a significant increase in isolated NMDAR-mediated synaptic responses in LV-SR slices. Thus, results of the current study demonstrated that prefrontal SR upregulation in middle age rats can improve learning of task contingencies for visual discrimination and increase glutamatergic synaptic transmission, including NMDAR activity.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Zaichenko MI, Philenko P, Sidorina V, Grigoryan GA. Acute and Chronic Lipopolysaccharide-Induced Stress Changes Expression of Proinflammatory Cytokine Genes in the Rat Brain Region-Specifically and Affects Learning and Memory. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:526-538. [PMID: 37080938 DOI: 10.1134/s0006297923040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Goal of the current work was to conduct comparative analysis of the effects of acute and chronic lipopolysaccharide-induced stress on the behavior of rats in the Morris water maze test and on expression of mRNA of proinflammatory cytokines and BDNF in different brain structures. Relevance of this study is related to poor understanding of the effects of acute and chronic stress on manifestation of cognitive brain functions, as well as ambiguity of the literature data on the effects of both stresses on hypothalamic pituitary axis and expression of the proinflammatory cytokine genes. In the experiments with rats, acute lipopolysaccharide (LPS)-induced stress improved learning in the Morris water maze. For the period of learning, the rats under acute stress swam on average less distance to reach a hidden platform, spent less time in the peripheral zone of the pool (thigmotaxis), and had low speed compared to the control animals and to the group of rats under chronic LPS-induced stress. In the test without a platform in the pool there were no significant differences between the groups on the time spent in the platform quadrant and distance swum. Acute stress caused substantial increase of the TNF-α and IL-1β mRNA concentrations in the hippocampus and amygdala, but not in the frontal lobe in comparison with the control animals. Although chronic stress increased the levels of the TNF-α and IL-1β mRNA in the amygdala and hippocampus compared to the control groups, significance between the groups was only marginal and BDNF concentration did not differ from the control animals in any of the brain structures mentioned. Expression of the IL-6 mRNA only marginally increased in the amygdala of the animals under the acute LPS-induced stress and marginally decreased in the animals under chronic LPS stress in the hippocampus relative to the control groups. In total, the most pronounced molecular-biochemical changes occurred in the amygdala and hippocampus, where increase of the expression of the TNF-α and IL-1β interleukins mRNAs were observed in the animals under acute and chronic LPS-induced stress and no changes in the BDNF mRNA concentration were observed in the frontal lobe.
Collapse
Affiliation(s)
- Mariya I Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Pavel Philenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Viktoriya Sidorina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Grigory A Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
6
|
Rani A, Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Moldawer LL, Efron PA, Foster TC. Influence of age and sex on microRNA response and recovery in the hippocampus following sepsis. Aging (Albany NY) 2022; 14:728-746. [PMID: 35094981 PMCID: PMC8833110 DOI: 10.18632/aging.203868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar manner across age or sex and these few miR were generally associated with neuroprotection against inflammation. Similar to previous work examining transcription, young females exhibited a better recovery of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4 were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or resilience to cognitive impairment due to sepsis.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Stortz
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - McKenzie Hollen
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Dina Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.,Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Adulthood systemic inflammation accelerates the trajectory of age-related cognitive decline. Aging (Albany NY) 2021; 13:22092-22108. [PMID: 34587117 PMCID: PMC8507275 DOI: 10.18632/aging.203588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
In order to understand the long-term effects of systemic inflammation, it is important to distinguish inflammation-induced changes in baseline cognitive function from changes that interact with aging to influence the trajectory of cognitive decline. Lipopolysaccharide (LPS; 1 mg/kg) or vehicle was administered to young adult (6 months) male rats via intraperitoneal injections, once a week for 7 weeks. Longitudinal effects on cognitive decline were examined 6 and 12 months after the initial injections. Repeated LPS treatment, in adults, resulted in a long-term impairment in memory, examined in aged animals (age 18 months), but not in middle-age (age 12 months). At 12 months following injections, LPS treatment was associated with a decrease in N-methyl-D-aspartate receptor-mediated component of synaptic transmission and altered expression of genes linked to the synapse and to regulation of the response to inflammatory signals. The results of the current study suggest that the history of systemic inflammation is one component of environmental factors that contribute to the resilience or susceptibility to age-related brain changes and associated trajectory of cognitive decline.
Collapse
|
8
|
Yegla B, Boles J, Kumar A, Foster TC. Partial microglial depletion is associated with impaired hippocampal synaptic and cognitive function in young and aged rats. Glia 2021; 69:1494-1514. [PMID: 33586813 DOI: 10.1002/glia.23975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The role of microglia in mediating age-related changes in cognition and hippocampal synaptic function was examined by microglial depletion and replenishment using PLX3397. We observed age-related differences in microglial number and morphology, as well as increased Iba-1 expression, indicating microglial activation. PLX3397 treatment decreased microglial number, with aged rats exhibiting the lowest density. Young rats exhibited increased expression of pro-inflammatory cytokines during depletion and repopulation and maintenance of Iba-1 levels despite reduced microglial number. For aged rats, several cytokines increased with depletion and recovered during repopulation; however, aged rats did not fully recover microglial cell number or Iba-1 expression during repopulation, with a recovery comparable to young control levels rather than aged controls. Hippocampal CA3-CA1 synaptic transmission was impaired with age, and microglial depletion was associated with decreased total synaptic transmission in young and aged rats. A robust decline in N-methyl-d-aspartate-receptor-mediated synaptic transmission arose in young depleted rats specifically. Microglial replenishment normalized depletion-induced synaptic function to control levels; however, recovery of aged animals did not mirror young. Microglial depletion was associated with decreased context-object discrimination memory in both age groups, which recovered with microglial repopulation. Aged rats displayed impaired contextual and cued fear memory, and microglial replenishment did not recover their memory to the level of young. The current study indicates that cognitive function and synaptic transmission benefit from the support of aged microglia and are hindered by removal of these cells. Replenishment of microglia in aging did not ameliorate age-related cognitive impairments or senescent synaptic function.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jake Boles
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics Program, University of Florida, Gainesville, Florida, USA
| |
Collapse
|