1
|
Makhlouf M, Souza DG, Kurian S, Bellaver B, Ellis H, Kuboki A, Al-Naama A, Hasnah R, Venturin GT, Costa da Costa J, Venugopal N, Manoel D, Mennella J, Reisert J, Tordoff MG, Zimmer ER, Saraiva LR. Short-term consumption of highly processed diets varying in macronutrient content impair the sense of smell and brain metabolism in mice. Mol Metab 2024; 79:101837. [PMID: 37977411 PMCID: PMC10724696 DOI: 10.1016/j.molmet.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Food processing greatly contributed to increased food safety, diversity, and accessibility. However, the prevalence of highly palatable and highly processed food in our modern diet has exacerbated obesity rates and contributed to a global health crisis. While accumulating evidence suggests that chronic consumption of such foods is detrimental to sensory and neural physiology, it is unclear whether its short-term intake has adverse effects. Here, we assessed how short-term consumption (<2 months) of three diets varying in composition and macronutrient content influence olfaction and brain metabolism in mice. METHODS The diets tested included a grain-based standard chow diet (CHOW; 54% carbohydrate, 32% protein, 14% fat; #8604 Teklad Rodent diet , Envigo Inc.), a highly processed control diet (hpCTR; 70% carbohydrate, 20% protein, 10% fat; #D12450B, Research Diets Inc.), and a highly processed high-fat diet (hpHFD; 20% carbohydrate, 20% protein, 60% fat; #D12492, Research Diets Inc.). We performed behavioral and metabolic phenotyping, electro-olfactogram (EOG) recordings, brain glucose metabolism imaging, and mitochondrial respirometry in different brain regions. We also performed RNA-sequencing (RNA-seq) in the nose and across several brain regions, and conducted differential expression analysis, gene ontology, and network analysis. RESULTS We show that short-term consumption of the two highly processed diets, but not the grain-based diet, regardless of macronutrient content, adversely affects odor-guided behaviors, physiological responses to odorants, transcriptional profiles in the olfactory mucosa and brain regions, and brain glucose metabolism and mitochondrial respiration. CONCLUSIONS Even short periods of highly processed food consumption are sufficient to cause early olfactory and brain abnormalities, which has the potential to alter food choices and influence the risk of developing metabolic disease.
Collapse
Affiliation(s)
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hillary Ellis
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Akihito Kuboki
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | | - Reem Hasnah
- Sidra Medicine, PO Box 26999, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Gianina Teribele Venturin
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Julie Mennella
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Michael G Tordoff
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Pharmacology, UFRGS, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil; McGill Centre for Studies in Aging, Montreal, Canada.
| | - Luis R Saraiva
- Sidra Medicine, PO Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
Dos Santos RAL, de Lima Reis SR, Gibbert PC, de Arruda CM, Doneda DL, de Matos YAV, Viola GG, Rios Santos F, de Lima E, da Silva Buss Z, Vandresen-Filho S. Guanosine treatment prevents lipopolysaccharide-induced depressive-like behavior in mice. J Psychiatr Res 2023; 164:296-303. [PMID: 37392719 DOI: 10.1016/j.jpsychires.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.
Collapse
Affiliation(s)
- Rozielly Aparecida Lemes Dos Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Silvia Regina de Lima Reis
- Laboratório de Investigação, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Patrícia Cristiane Gibbert
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Cristina Maria de Arruda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Diego Luiz Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Yohan Alves Victor de Matos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | | | - Fabrício Rios Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Eliângela de Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Ziliani da Silva Buss
- Laboratório de Pesquisa em Imunologia, Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Samuel Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
3
|
Jia YL, Wang W, Han N, Sun HL, Dong FM, Song YX, Feng RF, Wang JH. The mitochondria-targeted small molecule SS31 delays progression of behavioral deficits by attenuating β-amyloid plaque formation and mitochondrial/synaptic deterioration in APP/PS1 mice. Biochem Biophys Res Commun 2023; 658:36-43. [PMID: 37018887 DOI: 10.1016/j.bbrc.2023.02.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by progressive cognitive dysfunction and an impaired ability to carry out daily life functions. Mitochondrial dysfunction and β-amyloid (Aβ) deposition are the most common causes of AD. Antioxidants have been shown to delay brain aging and AD development; however, it remains unknown whether the antioxidant peptide SS31 can protect mitochondrial and synaptic function and delay the progression of behavioral deficits in early-stage AD in vivo. Therefore, in this study we compared mitochondrial and synaptic changes, as well as the protective effects of SS31, in APP/PS1 transgenic mice and C57BL/6J control mice. The APP/PS1 transgenic mice exhibited elevated expression of Aβ40/Aβ42 and mitochondrial fission protein DLP1 and reduced expression of synaptophysin (SYN) and postsynaptic density protein 95 (PSD95) reductions, as well as increased levels of neuronal apoptosis and ROS in the hippocampus, and long-term treatment with SS31 reversed these effects. Furthermore, the cognitive impairments observed in APP/PS1 transgenic mice were reversed by SS31 treatment. Our findings show that SS31 lowers ROS and Aβ levels, protecting mitochondrial homeostasis and synaptic integrity, and ultimately improving behavioral deficits in early-stage AD. This suggests that SS31 is a potential pharmacological agent for treating or slowing the progression of AD.
Collapse
|
4
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
5
|
Huang L, Lu Z, Zhang H, Wen H, Li Z, Liu Q, Wang R. A Novel Strategy for Alzheimer's Disease Based on the Regulatory Effect of Amyloid-β on Gut Flora. J Alzheimers Dis 2023; 94:S227-S239. [PMID: 36336932 PMCID: PMC10473151 DOI: 10.3233/jad-220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Collapse
Affiliation(s)
- Li Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia /First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Hexin Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hongyong Wen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zongji Li
- Laboratory Department, Clinical College of Ningxia Medical University, Yinchuan, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Rui Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Guanosine Prevents Spatial Memory Impairment and Hippocampal Damage Following Amyloid-β 1-42 Administration in Mice. Metabolites 2022; 12:metabo12121207. [PMID: 36557245 PMCID: PMC9780960 DOI: 10.3390/metabo12121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative illness responsible for cognitive impairment and dementia. Accumulation of amyloid-beta (Aβ) peptides in neurons and synapses causes cell metabolism to unbalance, and the production of reactive oxygen species (ROS), leading to neuronal death and cognitive damage. Guanosine is an endogenous nucleoside recognized as a neuroprotective agent since it prevents glutamate-induced neurotoxicity by a mechanism not yet completely elucidated. In this study, we evaluated behavioral and biochemical effects in the hippocampus caused by the intracerebroventricular (i.c.v.) infusion of Aβ1-42 peptide (400 pmol/site) in mice, and the neuroprotective effect of guanosine (8 mg/kg, i.p.). An initial evaluation on the eighth day after Aβ1-42 infusion showed no changes in the tail suspension test, although ex vivo analyses in hippocampal slices showed increased ROS production. In the second protocol, on the tenth day following Aβ1-42 infusion, no effect was observed in the sucrose splash test, but a reduction in the recognition index in the object location test showed impaired spatial memory. Analysis of hippocampal slices showed no ROS production and mitochondrial membrane potential alteration, but a tendency to increase glutamate release and a significant lactate release, pointing to a metabolic alteration. Those effects were accompanied by decreased cell viability and increased membrane damage. Guanosine treatment prevented behavioral and biochemical alterations evoked by Aβ1-42, suggesting a potential role against behavioral and biochemical damage evoked by Aβ in the hippocampus.
Collapse
|
7
|
Protection against Amyloid-β Oligomer Neurotoxicity by Small Molecules with Antioxidative Properties: Potential for the Prevention of Alzheimer’s Disease Dementia. Antioxidants (Basel) 2022; 11:antiox11010132. [PMID: 35052635 PMCID: PMC8773221 DOI: 10.3390/antiox11010132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Soluble oligomeric assemblies of amyloid β-protein (Aβ), called Aβ oligomers (AβOs), have been recognized as primary pathogenetic factors in the molecular pathology of Alzheimer’s disease (AD). AβOs exert neurotoxicity and synaptotoxicity and play a critical role in the pathological progression of AD by aggravating oxidative and synaptic disturbances and tau abnormalities. As such, they are important therapeutic targets. From a therapeutic standpoint, it is not only important to clear AβOs or prevent their formation, it is also beneficial to reduce their neurotoxicity. In this regard, recent studies have reported that small molecules, most with antioxidative properties, show promise as therapeutic agents for reducing the neurotoxicity of AβOs. In this mini-review, we briefly review the significance of AβOs and oxidative stress in AD and summarize studies on small molecules with AβO-neurotoxicity-reducing effects. We also discuss mechanisms underlying the effects of these compounds against AβO neurotoxicity as well as their potential as drug candidates for the prevention and treatment of AD.
Collapse
|
8
|
Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. Front Neurosci 2021; 15:718188. [PMID: 34594185 PMCID: PMC8477582 DOI: 10.3389/fnins.2021.718188] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The accumulation of protein aggregates in human tissues is a hallmark of more than 40 diseases called amyloidoses. In seven of these disorders, the aggregation is associated with neurodegenerative processes in the central nervous system such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The aggregation occurs when certain soluble proteins lose their physiological function and become toxic amyloid species. The amyloid assembly consists of protein filament interactions, which can form fibrillar structures rich in β-sheets. Despite the frequent incidence of these diseases among the elderly, the available treatments are limited and at best palliative, and new therapeutic approaches are needed. Among the many natural compounds that have been evaluated for their ability to prevent or delay the amyloidogenic process is epigallocatechin-3-gallate (EGCG), an abundant and potent polyphenolic molecule present in green tea that has extensive biological activity. There is evidence for EGCG’s ability to inhibit the aggregation of α-synuclein, amyloid-β, and huntingtin proteins, respectively associated with PD, AD, and HD. It prevents fibrillogenesis (in vitro and in vivo), reduces amyloid cytotoxicity, and remodels fibrils to form non-toxic amorphous species that lack seed propagation. Although it is an antioxidant, EGCG in an oxidized state can promote fibrils’ remodeling through formation of Schiff bases and crosslinking the fibrils. Moreover, microparticles to drug delivery were synthesized from oxidized EGCG and loaded with a second anti-amyloidogenic molecule, obtaining a synergistic therapeutic effect. Here, we describe several pre-clinical and clinical studies involving EGCG and neurodegenerative diseases and their related mechanisms.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thyago R Cardim-Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Massari CM, Zuccarini M, Di Iorio P, Tasca CI. Guanosine Mechanisms of Action: Toward Molecular Targets. Front Pharmacol 2021; 12:653146. [PMID: 33867993 PMCID: PMC8044438 DOI: 10.3389/fphar.2021.653146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- Caio M Massari
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| | - Mariachiara Zuccarini
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Carla I Tasca
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
10
|
Zhu L, Lu F, Jia X, Yan Q, Zhang X, Mu P. Amyloid-β (25-35) regulates neuronal damage and memory loss via SIRT1/Nrf2 in the cortex of mice. J Chem Neuroanat 2021; 114:101945. [PMID: 33716102 DOI: 10.1016/j.jchemneu.2021.101945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/30/2021] [Accepted: 03/09/2021] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. AD is pathologically characterized by synaptic dysfunction and cognitive decline due to the aggregation of a large amount of amyloid-β (Aβ) protein in the brain. However, recent studies have discovered that the Aβ is produced as an antimicrobial peptide that acts against bacteria and viruses. This has renewed interest in the effect of Aβ on AD. Thus, in this study, we investigated the different concentrations of Aβ25-35 on neuroprotection and further explore the related mechanisms. Firstly, we detected the cognitive function using the Y-maze test, novel object recognition memory task and Morris water maze test. Then, we analyzed the ultrastructure of synapses and mitochondria, in addition to evaluating SOD levels. We also examined the effect of Aβ25-35 on the viability and structure of the primary neurons. The western blot analysis was used to measure the protein levels. The results showed that mice treated with high concentration of Aβ25-35 impaired the learning-memory ability and disordered the structure of neurons and mitochondria. Meanwhile, high concentration of Aβ25-35 decreased the SIRT1/Nrf2 related antioxidant capacity and induced apoptosis. In contrast, mice treated with low concentration of Aβ25-35 increased SOD levels and SIRT1/Nrf2 expressions, and induced autophagy. Our data suggest that low concentration of Aβ25-35 may increase SOD levels through SIRT1/Nrf2 and induce autophagy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Center for Precision Medicine, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Key Laboratory of Environment Pollution and Microecology, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Fangjin Lu
- Department of Pharmacology, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Xiaoyu Jia
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Qiuying Yan
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Xiaoran Zhang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Ping Mu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Center for Precision Medicine, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Key Laboratory of Environment Pollution and Microecology, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China.
| |
Collapse
|
11
|
Choi GE, Han HJ. Glucocorticoid impairs mitochondrial quality control in neurons. Neurobiol Dis 2021; 152:105301. [PMID: 33609641 DOI: 10.1016/j.nbd.2021.105301] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Neurons are particularly vulnerable to mitochondrial dysfunction due to high energy demand and an inability to proliferate. Therefore, dysfunctional mitochondria cause various neuropathologies. Mitochondrial damage induces maintenance pathways to repair or eliminate damaged organelles. This mitochondrial quality control (MQC) system maintains appropriate morphology, localization, and removal/replacement of mitochondria to sustain brain homeostasis and counter progression of neurological disorders. Glucocorticoid release is an essential response to stressors for adaptation; however, it often culminates in maladaptation if neurons are exposed to chronic and severe stress. Long-term exposure to high levels of glucocorticoids induces mitochondrial dysfunction via genomic and nongenomic mechanisms. Glucocorticoids induce abnormal mitochondrial morphology and dysregulate fusion and fission. Moreover, mitochondrial trafficking is arrested by glucocorticoids and dysfunctional mitochondria are subsequently accumulated around the soma. These alterations lead to energy deficiency, particularly for synaptic transmission that requires large amounts of energy. Glucocorticoids also impair mitochondrial clearance by preventing mitophagy of damaged organelle and suppress mitochondrial biogenesis, resulting in the reduced number of healthy mitochondria. Failure to maintain MQC degrades brain function and contributes to neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, mechanisms of glucocorticoid action on the regulation of MQC during chronic stress conditions are not well understood. The present review discusses pathways involved in the impairment of MQC and the clinical significance of high glucocorticoid blood levels for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|