1
|
Zhang Z, Qu Y, Ma F, Lv Q, Zhu X, Guo G, Li M, Yang W, Que B, Zhang Y, He T, Qiu X, Deng H, Song J, Liu Q, Wang B, Ke Y, Bai S, Li J, Lv L, Li R, Wang K, Li H, Feng H, Huang J, Yang W, Zhou Y, Song CP. Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat. THE NEW PHYTOLOGIST 2024; 243:1758-1775. [PMID: 38992951 DOI: 10.1111/nph.19942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 07/13/2024]
Abstract
Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Qian Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Xiaojing Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Mengmeng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Wei Yang
- School of Computer and Information Engineering, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Beibei Que
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Yun Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Tiantian He
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hui Deng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Jingyan Song
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Baoqi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Youlong Ke
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Linlin Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Ranzhe Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| |
Collapse
|
2
|
Xu D, Hao Q, Yang T, Lv X, Qin H, Wang Y, Jia C, Liu W, Dai X, Zeng J, Zhang H, He Z, Xia X, Cao S, Ma W. Impact of "Green Revolution" gene Rht-B1b on coleoptile length of wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1147019. [PMID: 36938052 PMCID: PMC10017974 DOI: 10.3389/fpls.2023.1147019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Wheat coleoptile is a sheath-like structure that helps to deliver the first leaf from embryo to the soil surface. Here, a RIL population consisting of 245 lines derived from Zhou 8425B × Chinese Spring cross was genotyped by the high-density Illumina iSelect 90K assay for coleoptile length (CL) QTL mapping. Three QTL for CL were mapped on chromosomes 2BL, 4BS and 4DS. Of them, two major QTL QCL.qau-4BS and QCL.qau-4DS were detected, which could explain 9.1%-22.2% of the phenotypic variances across environments on Rht-B1 and Rht-D1 loci, respectively. Several studies have reported that Rht-B1b may reduce the length of wheat CL but no study has been carried out at molecular level. In order to verify that the Rht-B1 gene is the functional gene for the 4B QTL, an overexpression line Rht-B1b-OE and a CRISPR/SpCas9 line Rht-B1b-KO were studied. The results showed that Rht-B1b overexpression could reduce the CL, while loss-of-function of Rht-B1b would increase the CL relative to that of the null transgenic plants (TNL). To dissect the underlying regulatory mechanism of Rht-B1b on CL, comparative RNA-Seq was conducted between Rht-B1b-OE and TNL. Transcriptome profiles revealed a few key pathways involving the function of Rht-B1b in coleoptile development, including phytohormones, circadian rhythm and starch and sucrose metabolism. Our findings may facilitate wheat breeding for longer coleoptiles to improve seedling early vigor for better penetration through the soil crust in arid regions.
Collapse
Affiliation(s)
- Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qianlin Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tingzhi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xinru Lv
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Huimin Qin
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yalin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chenfei Jia
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Hongsheng Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuanghe Cao
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Schierenbeck M, Alqudah AM, Thabet SG, Lohwasser U, Simón MR, Börner A. Association mapping unravels the genetics controlling seedling drought stress tolerance in winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1061845. [PMID: 36818842 PMCID: PMC9933780 DOI: 10.3389/fpls.2023.1061845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Drought is a major constraint in wheat (Triticum aestivum L.) grain yield. The present work aimed to identify quantitative trait nucleotides (QTNs)/ candidate genes influencing drought tolerance-related traits at the seedling stage in 261 accessions of a diverse winter wheat panel. Seeds from three consecutive years were exposed to polyethylene glycol 12% (PEG-6000) and a control treatment (distilled water). The Farm-CPU method was used for the association analysis with 17,093 polymorphic SNPs. PEG treatment reduced shoot length (SL) (-36.3%) and root length (RL) (-11.3%) compared with control treatments, while the coleoptile length (CL) was increased by 11% under drought conditions, suggesting that it might be considered as an indicator of stress-tolerance. Interestingly, we revealed 70 stable QTN across 17 chromosomes. Eight QTNs related to more than one trait were detected on chromosomes 1B, 2A (2), 2B, 2D, 4B, 7A, and 7B and located nearby or inside candidate genes within the linkage disequilibrium (LD) interval. For instance, the QTN on chromosome 2D is located inside the gene TraesCS2D02G133900 that controls the variation of CL_S and SL_C. The allelic variation at the candidate genes showed significant influence on the associated traits, demonstrating their role in controlling the natural variation of multi-traits of drought stress tolerance. The gene expression of these candidate genes under different stress conditions validates their biological role in stress tolerance. Our findings offer insight into understanding the genetic factors and diverse mechanisms in response to water shortage conditions that are important for wheat improvement and adaptation at early developmental stages.
Collapse
Affiliation(s)
- Matías Schierenbeck
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
- Cereals, Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina
- CONICET CCT La Plata, La Plata, Argentina
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha, Qatar
| | - Samar G. Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ulrike Lohwasser
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
| | - María Rosa Simón
- Cereals, Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina
- CONICET CCT La Plata, La Plata, Argentina
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
| |
Collapse
|
4
|
Devate NB, Krishna H, Parmeshwarappa SKV, Manjunath KK, Chauhan D, Singh S, Singh JB, Kumar M, Patil R, Khan H, Jain N, Singh GP, Singh PK. Genome-wide association mapping for component traits of drought and heat tolerance in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:943033. [PMID: 36061792 PMCID: PMC9429996 DOI: 10.3389/fpls.2022.943033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 06/01/2023]
Abstract
Identification of marker trait association is a prerequisite for marker-assisted breeding. To find markers linked with traits under heat and drought stress in bread wheat (Triticum aestivum L.), we performed a genome-wide association study (GWAS). GWAS mapping panel used in this study consists of advanced breeding lines from the IARI stress breeding programme produced by pairwise and complex crosses. Phenotyping was done at multi locations namely New Delhi, Karnal, Indore, Jharkhand and Pune with augmented-RCBD design under different moisture and heat stress regimes, namely timely sown irrigated (IR), timely sown restricted irrigated (RI) and late sown (LS) conditions. Yield and its component traits, viz., Days to Heading (DH), Days to Maturity (DM), Normalized Difference Vegetation Index (NDVI), Chlorophyll Content (SPAD), Canopy temperature (CT), Plant Height (PH), Thousand grain weight (TGW), Grain weight per spike (GWPS), Plot Yield (PLTY) and Biomass (BMS) were phenotyped. Analysis of variance and descriptive statistics revealed significant differences among the studied traits. Genotyping was done using the 35k SNP Wheat Breeder's Genotyping Array. Population structure and diversity analysis using filtered 10,546 markers revealed two subpopulations with sufficient diversity. A large whole genome LD block size of 7.15 MB was obtained at half LD decay value. Genome-wide association search identified 57 unique markers associated with various traits across the locations. Twenty-three markers were identified to be stable, among them nine pleiotropic markers were also identified. In silico search of the identified markers against the IWGSC ref genome revealed the presence of a majority of the SNPs at or near the gene coding region. These SNPs can be used for marker-assisted transfer of genes/QTLs after validation to develop climate-resilient cultivars.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jang Bahadur Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Monu Kumar
- Division of Genetics and Plant Breeding, ICAR-Indian Agricultural Research Institute, Gauria Karma, India
| | - Ravindra Patil
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, India
| | - Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Okubara PA, Mahoney AK, Kumar S, Hulbert SH. Rhizoctonia Resistance Is Negatively Correlated to Early Root Growth Rate in Synthetic Hexaploid Wheat Derivatives. PHYTOPATHOLOGY 2022; 112:1134-1140. [PMID: 35378055 DOI: 10.1094/phyto-07-21-0287-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to the soilborne fungal pathogen Rhizoctonia solani AG-8 is desirable in adapted wheat and barley but remains an elusive trait for prebreeders and breeders. In a previous study, we observed that emergence and root growth was faster in the Rhizoctonia-susceptible 'Scarlet' than in its resistant counterpart, 'Scarlet-Rz1'. The objective of the current study was to quantify early root growth rate and total root length in resistant and susceptible synthetic hexaploid wheat lines, including parental lines and 22 recombinant inbred lines derived crosses between parental lines. In Petri dish assays, the susceptible lines displayed a faster rate of root growth during the first 40 h of root emergence compared with resistant lines. This growth differential was observed in 14-day and 48-h greenhouse assays, in which the total root length of susceptible parental lines was significantly (P < 0.05) greater than that of resistant parental lines. However, the resistant lines sustained less root loss compared with susceptible lines when R. solani AG-8 was present in the soil. Early root growth rate and total root length were not correlated to freezing tolerance in a set of wheat cultivars selected for cold tolerance. The findings indicated that early root growth was negatively correlated to R. solani AG-8 damage in resistant synthetic wheat lines developed for the Pacific Northwest, United States, and suggested that the dynamics of root emergence affect resistance to this soilborne pathogen.
Collapse
Affiliation(s)
- Patricia A Okubara
- U.S. Department of Agriculture Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - Aaron K Mahoney
- Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164-1030
| | - Sonika Kumar
- U.S. Department of Agriculture Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - Scot H Hulbert
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420
| |
Collapse
|
6
|
Huang S, Liu M, Chen G, Si F, Fan F, Guo Y, Yuan L, Yang F, Li S. Favorable QTLs from Oryza longistaminata improve rice drought resistance. BMC PLANT BIOLOGY 2022; 22:136. [PMID: 35321642 PMCID: PMC8941802 DOI: 10.1186/s12870-022-03516-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Drought is the major abiotic stress to rice grain production under unpredictable changing climatic environments. Wild rice of O. longistaminata show diverse responses and strong tolerance to stress environments. In order to identify whether the O. longistaminata can improve the rice drought resistance or not, a BIL population of 143 BC2F20 lines derived from the cross between the cultivar rice 9311 and O. longistaminata were assessed under stress of 20% PEG6000. RESULTS In total, 28 QTLs related to drought resistance based on eight agronomic traits of seedlings were identified. Of which, thirteen QTLs including two QTLs for leaf drying, one QTL for leaf rolling, one QTL for leaf number, five QTLs for dry weight of root, two QTLs for dry weight of shoot, one QTL for maximum root length and two QTLs for maximum shoot length were derived from O. longistaminata. What's more, qDWR8.1 for dry weight of root was repeatedly detected and fine-mapped to an interval about 36.2 Kb. The unique allele of MH08g0242800 annotated as ATP-dependent Clp protease proteolytic subunit from O. longistaminata was suggested as the candidate gene for drought resistance. Further, six representative BIL lines were stably characterized showing significantly stronger drought resistance than 9311 based on principle component analysis, they each contained 2 ~ 5 QTLs including qDWR8.1 from O. longistaminata. CONCLUSIONS Together, our results indicate that the QTLs from O. longistaminata can effectively enhance the drought tolerance of rice, showing great potential value in breeding of elite rice varieties, which will lay a novel insight into the genetic network for drought tolerance of rice.
Collapse
Affiliation(s)
- Shaoying Huang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Manman Liu
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Gaili Chen
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Fengfeng Si
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Yu Guo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Lei Yuan
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China.
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Satrio RD, Fendiyanto MH, Supena EDJ, Suharsono S, Miftahudin M. Genome-wide SNP discovery, linkage mapping, and analysis of QTL for morpho-physiological traits in rice during vegetative stage under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2635-2650. [PMID: 34924715 PMCID: PMC8639969 DOI: 10.1007/s12298-021-01095-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Drought tolerance in rice is controlled by several genes and is inherited quantitatively. Low genetic map density and the use of phenotypic traits that do not reflect the corresponding tolerance level have been obstacles in genetic analyses performed to identify genes that control drought-tolerant traits in rice. The current study aimed to construct a genetic map from high-density single-nucleotide polymorphism (SNP) markers generated from genome sequences of recombinant inbred lines (RILs), derived from IR64 × Hawara Bunar. Moreover, it sought to analyze the quantitative trait loci (QTL) and identify the drought tolerance candidate genes. A linkage map along 1980 cM on the 12 rice chromosomes was constructed employing 55,205 SNP markers resulting from the RIL genome sequences. A total of 175 morpho-physiological traits pertaining to drought stress were determined. A total of 41 QTLs were detected in 13 regions on rice chromosomes 1, 3, 6, 8, 9, and 12. Moreover, three hotspot QTL regions were found on chromosomes 6 and 8, along with two major QTL on chromosome 9. Differential gene expression for the loci within the QTL physical map intervals revealed many potential candidate genes. The markers tightly linked to the QTL and their candidate genes can potentially be used for pyramiding in marker-assisted breeding in order to achieve genetic improvement concerning the tolerance of rice to drought stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01095-y.
Collapse
Affiliation(s)
- Rizky Dwi Satrio
- Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
- Department of Biology, Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University (Unhan RI), Komplek Indonesia Peace and Security Center (IPSC) Sentul, Bogor, 16810 Indonesia
| | - Miftahul Huda Fendiyanto
- Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
- Department of Biology, Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University (Unhan RI), Komplek Indonesia Peace and Security Center (IPSC) Sentul, Bogor, 16810 Indonesia
| | - Ence Darmo Jaya Supena
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
- Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University (Unhan RI), Komplek Indonesia Peace and Security Center (IPSC) Sentul, Bogor, 16810 Indonesia
| | - Sony Suharsono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
| | - Miftahudin Miftahudin
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Kampus IPB Dramaga, Bogor, 16680 Indonesia
| |
Collapse
|
8
|
Li C, Li L, Reynolds MP, Wang J, Chang X, Mao X, Jing R. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5117-5133. [PMID: 33783492 DOI: 10.1093/jxb/erab124] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/09/2023]
Abstract
Improving drought tolerance in wheat is crucial for maintaining productivity and food security. Roots are responsible for the uptake of water from soil, and a number of root traits are associated with drought tolerance. Studies have revealed many quantitative trait loci and genes controlling root development in plants. However, the genetic dissection of root traits in response to drought in wheat is still unclear. Here, we review crop root traits associated with drought, key genes governing root development in plants, and quantitative trait loci and genes regulating root system architecture under water-limited conditions in wheat. Deep roots, optimal root length density and xylem diameter, and increased root surface area are traits contributing to drought tolerance. In view of the diverse environments in which wheat is grown, the balance among root and shoot traits, as well as individual and population performance, are discussed. The known functions of key genes provide information for the genetic dissection of root development of wheat in a wide range of conditions, and will be beneficial for molecular marker development, marker-assisted selection, and genetic improvement in breeding for drought tolerance.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Lou H, Zhang R, Liu Y, Guo D, Zhai S, Chen A, Zhang Y, Xie C, You M, Peng H, Liang R, Ni Z, Sun Q, Li B. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:399-418. [PMID: 33155062 DOI: 10.1007/s00122-020-03704-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/08/2020] [Indexed: 05/20/2023]
Abstract
We identified genomic regions associated with six quality-related traits in wheat under two sowing conditions and analyzed the effects of multienvironment-significant SNPs on the stability of these traits. Grain quality affects the nutritional and commercial value of wheat (Triticum aestivum L.) and is a critical factor influencing consumer preferences for specific wheat varieties. Climate change is predicted to increase environmental stress and thereby reduce wheat quality. Here, we performed a genotyping assay involving the use of the wheat 90 K array in a genome-wide association study of six quality-related traits in 486 wheat accessions under two sowing conditions (normal and late sowing) over 4 years. We identified 64 stable quantitative trait loci (QTL), including 10 for grain protein content, 9 for wet gluten content, 4 for grain starch content, 14 for water absorption, 15 for dough stability time and 12 for grain hardness in wheat under two sowing conditions. These QTL harbored 175 single nucleotide polymorphisms (SNPs), explaining approximately 3-13% of the phenotypic variation in multiple environments. Some QTL on chromosomes 6A and 5D were associated with multiple traits simultaneously, and two (QNGPC.cau-6A, QNGH.cau-5D) harbored known genes, such as NAM-A1 for grain protein content and Pinb for grain hardness, whereas other QTL could facilitate gene discovery. Forty-three SNPs that were detected under late or both normal and late sowing conditions appear to be related to phenotypic stability. The effects of these SNP alleles were confirmed in the association population. The results of this study will be useful for further dissecting the genetic basis of quality-related traits in wheat and developing new wheat cultivars with desirable alleles to improve the stability of grain quality.
Collapse
Affiliation(s)
- Hongyao Lou
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Runqi Zhang
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Yitong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dandan Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Shanshan Zhai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Aiyan Chen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Yufeng Zhang
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Rongqi Liang
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Baoyun Li
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Khadka K, Raizada MN, Navabi A. Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1149. [PMID: 32849707 PMCID: PMC7417477 DOI: 10.3389/fpls.2020.01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Abstract
There is a need to increase wheat productivity to meet the food demands of the ever-growing human population. However, accelerated development of high yielding varieties is hindered by drought, which is worsening due to climate change. In this context, germplasm diversity is central to the development of drought-tolerant wheat. Extensive collections of these genetic resources are conserved in national and international genebanks. In addition to phenotypic assessments, the use of advanced molecular techniques (e.g., genotype by sequencing) to identify quantitative trait loci (QTLs) for drought tolerance related traits is useful for genome- and marker-assisted selection based approaches. Therefore, to assist wheat breeders at a critical time, we searched the recent peer-reviewed literature (2011-current), first, to identify wheat germplasm observed to be useful genetic sources for drought tolerance, and second, to report QTLs associated with drought tolerance. Though many breeders limit the parents used in breeding programs to a familiar core collection, the results of this review show that larger germplasm collections have been sources of useful genes for drought tolerance in wheat. The review also demonstrates that QTLs for drought tolerance in wheat are associated with diverse physio-morphological traits, at different growth stages. Here, we also briefly discuss the potential of genome engineering/editing to improve drought tolerance in wheat. The use of CRISPR-Cas9 and other gene-editing technologies can be used to fine-tune the expression of genes controlling drought adaptive traits, while high throughput phenotyping (HTP) techniques can potentially accelerate the selection process. These efforts are empowered by wheat researcher consortia.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
11
|
Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP, Rai A, Tiwari R, Kumar D. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep 2019; 9:13917. [PMID: 31558740 PMCID: PMC6763491 DOI: 10.1038/s41598-019-49915-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/12/2019] [Indexed: 01/08/2023] Open
Abstract
Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Amandeep Kaur
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Monika Saroha
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - G P Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India.
| |
Collapse
|
12
|
Soriano JM, Alvaro F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 2019; 9:10537. [PMID: 31332216 PMCID: PMC6646344 DOI: 10.1038/s41598-019-47038-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/09/2019] [Indexed: 11/25/2022] Open
Abstract
Root system architecture is crucial for wheat adaptation to drought stress, but phenotyping for root traits in breeding programmes is difficult and time-consuming owing to the belowground characteristics of the system. Identifying quantitative trait loci (QTLs) and linked molecular markers and using marker-assisted selection is an efficient way to increase selection efficiency and boost genetic gains in breeding programmes. Hundreds of QTLs have been identified for different root traits in the last few years. In the current study, consensus QTL regions were identified through QTL meta-analysis. First, a consensus map comprising 7352 markers was constructed. For the meta-analysis, 754 QTLs were retrieved from the literature and 634 of them were projected onto the consensus map. Meta-analysis grouped 557 QTLs in 94 consensus QTL regions, or meta-QTLs (MQTLs), and 18 QTLs remained as singletons. The recently published genome sequence of wheat was used to search for gene models within the MQTL peaks. As a result, gene models for 68 of the 94 Root_MQTLs were found, 35 of them related to root architecture and/or drought stress response. This work will facilitate QTL cloning and pyramiding to develop new cultivars with specific root architecture for coping with environmental constraints.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain.
| | - Fanny Alvaro
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| |
Collapse
|
13
|
Kidane YG, Gesesse CA, Hailemariam BN, Desta EA, Mengistu DK, Fadda C, Pè ME, Dell'Acqua M. A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1380-1393. [PMID: 30575264 PMCID: PMC6576139 DOI: 10.1111/pbi.13062] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 05/11/2023]
Abstract
The Ethiopian plateau hosts thousands of durum wheat (Triticum turgidum subsp. durum) farmer varieties (FV) with high adaptability and breeding potential. To harness their unique allelic diversity, we produced a large nested association mapping (NAM) population intercrossing fifty Ethiopian FVs with an international elite durum wheat variety (Asassa). The Ethiopian NAM population (EtNAM) is composed of fifty interconnected bi-parental families, totalling 6280 recombinant inbred lines (RILs) that represent both a powerful quantitative trait loci (QTL) mapping tool, and a large pre-breeding panel. Here, we discuss the molecular and phenotypic diversity of the EtNAM founder lines, then we use an array featuring 13 000 single nucleotide polymorphisms (SNPs) to characterize a subset of 1200 EtNAM RILs from 12 families. Finally, we test the usefulness of the population by mapping phenology traits and plant height using a genome wide association (GWA) approach. EtNAM RILs showed high allelic variation and a genetic makeup combining genetic diversity from Ethiopian FVs with the international durum wheat allele pool. EtNAM SNP data were projected on the fully sequenced AB genome of wild emmer wheat, and were used to estimate pairwise linkage disequilibrium (LD) measures that reported an LD decay distance of 7.4 Mb on average, and balanced founder contributions across EtNAM families. GWA analyses identified 11 genomic loci individually affecting up to 3 days in flowering time and more than 1.6 cm in height. We argue that the EtNAM is a powerful tool to support the production of new durum wheat varieties targeting local and global agriculture.
Collapse
Affiliation(s)
- Yosef G. Kidane
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Bioversity InternationalAddis AbabaEthiopia
| | - Cherinet A. Gesesse
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Amhara Regional Agricultural Research Institute (ARARI)Adet Agricultural Research CenterBahir DarEthiopia
| | | | - Ermias A. Desta
- Amhara Regional Agricultural Research Institute (ARARI)Adet Agricultural Research CenterBahir DarEthiopia
| | - Dejene K. Mengistu
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of Dryland Crop and Horticultural SciencesMekelle UniversityMekelleEthiopia
| | | | - Mario Enrico Pè
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | |
Collapse
|
14
|
QTLian breeding for climate resilience in cereals: progress and prospects. Funct Integr Genomics 2019; 19:685-701. [PMID: 31093800 DOI: 10.1007/s10142-019-00684-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
The ever-rising population of the twenty-first century together with the prevailing challenges, such as deteriorating quality of arable land and water, has placed a big challenge for plant breeders to satisfy human needs for food under erratic weather patterns. Rice, wheat, and maize are the major staple crops consumed globally. Drought, waterlogging, heat, salinity, and mineral toxicity are the key abiotic stresses drastically affecting crop yield. Conventional plant breeding approaches towards abiotic stress tolerance have gained success to limited extent, due to the complex (multigenic) nature of these stresses. Progress in breeding climate-resilient crop plants has gained momentum in the last decade, due to improved understanding of the physiochemical and molecular basis of various stresses. A good number of genes have been characterized for adaptation to various stresses. In the era of novel molecular markers, mapping of QTLs has emerged as viable solution for breeding crops tolerant to abiotic stresses. Therefore, molecular breeding-based development and deployment of high-yielding climate-resilient crop cultivars together with climate-smart agricultural practices can pave the path to enhanced crop yields for smallholder farmers in areas vulnerable to the climate change. Advances in fine mapping and expression studies integrated with cheaper prices offer new avenues for the plant breeders engaged in climate-resilient plant breeding, and thereby, hope persists to ensure food security in the era of climate change.
Collapse
|
15
|
Fan X, Cui F, Ji J, Zhang W, Zhao X, Liu J, Meng D, Tong Y, Wang T, Li J. Dissection of Pleiotropic QTL Regions Controlling Wheat Spike Characteristics Under Different Nitrogen Treatments Using Traditional and Conditional QTL Mapping. FRONTIERS IN PLANT SCIENCE 2019; 10:187. [PMID: 30863417 PMCID: PMC6400075 DOI: 10.3389/fpls.2019.00187] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/05/2019] [Indexed: 05/20/2023]
Abstract
Optimal spike characteristics are critical in improving the sink capacity and yield potential of wheat even in harsh environments. However, the genetic basis of their response to nitrogen deficiency is still unclear. In this study, quantitative trait loci (QTL) for six spike-related traits, including heading date (HD), spike length (SL), spikelet number (SN), spike compactness (SC), fertile spikelet number (FSN), and sterile spikelet number (SSN), were detected under two different nitrogen (N) supplies, based on a high-density genetic linkage map constructed by PCR markers, DArTs, and Affymetrix Wheat 660 K SNP chips. A total of 157 traditional QTLand 54 conditional loci were detected by inclusive composite interval mapping, among which three completely low N-stress induced QTL for SN and FSN (qSn-1A.1, qFsn-1B, and qFsn-7D) were found to maintain the desired spikelet fertility and kernel numbers even under N deficiency through pyramiding elite alleles. Twenty-eight stable QTL showing significant differencet in QTL detection model were found and seven genomic regions (R2D, R4A, R4B, R5A, R7A, R7B, and R7D) clustered by these stable QTL were highlighted. Among them, the effect of R4B on controlling spike characteristics might be contributed from Rht-B1. R7A harboring three major stable QTL (qSn-7A.2, qSc-7A, and qFsn-7A.3) might be one of the valuable candidate regions for further genetic improvement. In addition, the R7A was found to show syntenic with R7B, indicating the possibly exsting homoeologous candidate genes in both regions. The SNP markers involved with the above highlighted regions will eventually facilitate positional cloning or marker-assisted selection for the optimal spike characteristics under various N input conditions.
Collapse
Affiliation(s)
- Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fa Cui
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong University, Yantai, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xueqiang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - JiaJia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Deyuan Meng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Tao Wang
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Junming Li
| |
Collapse
|
16
|
Fan X, Zhang W, Zhang N, Chen M, Zheng S, Zhao C, Han J, Liu J, Zhang X, Song L, Ji J, Liu X, Ling H, Tong Y, Cui F, Wang T, Li J. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2677-2698. [PMID: 30255337 DOI: 10.1007/s00122-018-3183-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/08/2018] [Indexed: 05/26/2023]
Abstract
QTL for a wheat ideotype root system and its plasticity to nitrogen deficiency were characterized. Root system architecture-related traits (RRTs) and their plasticity to nitrogen availability are important for nitrogen acquisition and yield formation in wheat (Triticum aestivum L.). In this study, quantitative trait loci (QTL) analysis was conducted under different nitrogen conditions, using the seedlings of 188 recombinant inbred lines derived from a cross between Kenong 9204 and Jing 411. Fifty-three QTL for seven RRTs and fourteen QTL for the plasticity of these RRTs to nitrogen deficiency were detected. Thirty of these QTL were mapped in nine clusters on chromosomes 2B, 2D, 3A, 3D, 6B, 6D, 7A and 7B. Six of these nine clusters were also colocated with loci for nitrogen use efficiency (NUE)-related traits (NRTs). Among them, three QTL clusters (C2B, C6D and C7B) were highlighted, considering that they individually harbored three stable robust QTL (i.e., QMrl-2B.1, QdRs-6D and QMrl-7B). C2B and C7B stably contributed to the optimal root system, and C6D greatly affected the plasticity of RRTs in response to nitrogen deficiency. However, strong artificial selection was only observed for C7B in 574 derivatives of Kenong 9204. Covariance analysis identified QMrl-7B as the major contributor in C7B that affected the investigated NRTs in mature plants. Phenotypic analysis indicated that thousand kernel weight might represent a "concomitant" above-ground trait of the "hidden" RRTs controlled by C7B, which are used for breeding selection. Dissecting these QTL regions with potential breeding value will ultimately facilitate the selection of donor lines with both high yield and NUE in wheat breeding programs.
Collapse
Affiliation(s)
- Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mei Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Zhao
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Xilan Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xigang Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fa Cui
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
17
|
Ren D, Fang X, Jiang P, Zhang G, Hu J, Wang X, Meng Q, Cui W, Lan S, Ma X, Wang H, Kong L. Genetic Architecture of Nitrogen-Deficiency Tolerance in Wheat Seedlings Based on a Nested Association Mapping (NAM) Population. FRONTIERS IN PLANT SCIENCE 2018; 9:845. [PMID: 29997636 PMCID: PMC6028695 DOI: 10.3389/fpls.2018.00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
Genetic divergence for nitrogen utilization in germplasms is important in wheat breeding programs, especially for low nitrogen input management. In this study, a nested association mapping (NAM) population, derived from "Yanzhan 1" (a Chinese domesticated cultivar) crossed with "Hussar" (a British domesticated cultivar) and another three semi-wild wheat varieties, namely, "Cayazheda 29" (Triticum aestivum ssp. tibetanum Shao), "Yunnan" (T. aestivum ssp. yunnanense King), and "Yutian" (T. aestivum petropavloski Udats et Migusch), was used to detect quantitative trait loci (QTLs) for nitrogen utilization at the seedling stage. An integrated genetic map was constructed using 2,059 single nucleotide polymorphism (SNP) markers from a 90 K SNP chip, with a total coverage of 2,355.75 cM and an average marker spacing of 1.13 cM. A total of 67 QTLs for RDW (root dry weight), SDW (shoot dry weight), TDW (total dry weight), and RSDW (root to shoot ratio) were identified under normal nitrogen conditions (N+) and nitrogen deficient conditions (N-). Twenty-three of these QTLs were only detected under N- conditions. Moreover, 23 favorable QTLs were identified in the domesticated cultivar Yanzhan 1, 15 of which were detected under N+ conditions, while only four were detected under N- conditions. In contrast, the semi-wild cultivars contributed more favorable N--specific QTLs (eight from Cayazheda 29; nine from Yunnan), which could be further explored for breeding cultivars adapted to nitrogen-deficient conditions. In particular, QRSDW-5A.1 from YN should be further evaluated using high-resolution mapping.
Collapse
Affiliation(s)
- Deqiang Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaojian Fang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Peng Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Guangxu Zhang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Junmei Hu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qing Meng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Weian Cui
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shengjie Lan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| |
Collapse
|
18
|
Clarke CK, Gregory PJ, Lukac M, Burridge AJ, Allen AM, Edwards KJ, Gooding MJ. Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer. ANNALS OF BOTANY 2017; 120:457-470. [PMID: 28911016 PMCID: PMC5591426 DOI: 10.1093/aob/mcx068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/19/2017] [Indexed: 05/16/2023]
Abstract
Background and Aims The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Methods Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Key Results Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. Conclusions To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment.
Collapse
Affiliation(s)
- Christina K Clarke
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, PO Box 237, Reading RG6 6AR, UK
| | - Peter J Gregory
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, PO Box 237, Reading RG6 6AR, UK
| | - Martin Lukac
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, PO Box 237, Reading RG6 6AR, UK
- Czech University of Life Sciences, 16521 Prague, Czech Republic
| | | | | | - Keith J Edwards
- Life Sciences, University of Bristol, Bristol, Avon BS8 1TQ, UK and
| | - Mike J Gooding
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Gogerddan, Aberystwyth, Ceredigion SY23 3EE, UK
| |
Collapse
|
19
|
Iannucci A, Marone D, Russo MA, De Vita P, Miullo V, Ferragonio P, Blanco A, Gadaleta A, Mastrangelo AM. Mapping QTL for Root and Shoot Morphological Traits in a Durum Wheat × T. dicoccum Segregating Population at Seedling Stage. Int J Genomics 2017; 2017:6876393. [PMID: 28845431 PMCID: PMC5563412 DOI: 10.1155/2017/6876393] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/12/2017] [Accepted: 06/21/2017] [Indexed: 01/27/2023] Open
Abstract
A segregating population of 136 recombinant inbred lines derived from a cross between the durum wheat cv. "Simeto" and the T. dicoccum accession "Molise Colli" was grown in soil and evaluated for a number of shoot and root morphological traits. A total of 17 quantitative trait loci (QTL) were identified for shoot dry weight, number of culms, and plant height and for root dry weight, volume, length, surface area, and number of forks and tips, on chromosomes 1B, 2A, 3A, 4B, 5B, 6A, 6B, and 7B. LODs were 2.1 to 21.6, with percent of explained phenotypic variability between 0.07 and 52. Three QTL were mapped to chromosome 4B, one of which corresponds to the Rht-B1 locus and has a large impact on both shoot and root traits (LOD 21.6). Other QTL that have specific effects on root morphological traits were also identified. Moreover, meta-QTL analysis was performed to compare the QTL identified in the "Simeto" × "Molise Colli" segregating population with those described in previous studies in wheat, with three novel QTL defined. Due to the complexity of phenotyping for root traits, further studies will be helpful to validate these regions as targets for breeding programs for optimization of root function for field performance.
Collapse
Affiliation(s)
- Anna Iannucci
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Daniela Marone
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Maria Anna Russo
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Pasquale De Vita
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Vito Miullo
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Pina Ferragonio
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Anna Maria Mastrangelo
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| |
Collapse
|
20
|
Qin P, Lin Y, Hu Y, Liu K, Mao S, Li Z, Wang J, Liu Y, Wei Y, Zheng Y. Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet Mol Biol 2016; 39:398-407. [PMID: 27560650 PMCID: PMC5004832 DOI: 10.1590/1678-4685-gmb-2015-0232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/15/2015] [Indexed: 01/09/2023] Open
Abstract
The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resistance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A. tauschii and wheat, and represents a foundation for breeding drought-resistant wheat cultivars using marker-assisted selection.
Collapse
Affiliation(s)
- Peng Qin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Shuangshuang Mao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Zhanyi Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| |
Collapse
|
21
|
Parvathi MS, Nataraja KN. Emerging tools, concepts and ideas to track the modulator genes underlying plant drought adaptive traits: An overview. PLANT SIGNALING & BEHAVIOR 2016; 11:e1074370. [PMID: 26618613 PMCID: PMC4871659 DOI: 10.1080/15592324.2015.1074370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Crop vulnerability to multiple abiotic stresses is increasing at an alarming rate in the current global climate change scenario, especially drought. Crop improvement for adaptive adjustments to accomplish stress tolerance requires a comprehensive understanding of the key contributory processes. This requires the identification and careful analysis of the critical morpho-physiological plant attributes and their genetic control. In this review we try to discuss the crucial traits underlying drought tolerance and the various modes followed to understand their molecular level regulation. Plant stress biology is progressing into new dimensions and a conscious attempt has been made to traverse through the various approaches and checkpoints that would be relevant to tackle drought stress limitations for sustainable crop production.
Collapse
Affiliation(s)
- M S Parvathi
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| | - Karaba N Nataraja
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| |
Collapse
|
22
|
Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J, Wells DM. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2283-92. [PMID: 25740921 PMCID: PMC4407652 DOI: 10.1093/jxb/erv006] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D.
Collapse
Affiliation(s)
- Jonathan A Atkinson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Luzie U Wingen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marcus Griffiths
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Michael P Pound
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Oorbessy Gaju
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - M John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Jacques Le Gouis
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont-Ferrand, France
| | - Simon Griffiths
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
23
|
Petrarulo M, Marone D, Ferragonio P, Cattivelli L, Rubiales D, De Vita P, Mastrangelo AM. Genetic analysis of root morphological traits in wheat. Mol Genet Genomics 2014; 290:785-806. [PMID: 25416422 DOI: 10.1007/s00438-014-0957-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. 'Creso' × 'Pedroso' were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the 'Creso' × 'Pedroso' cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the 'Creso' × 'Pedroso' segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the 'Creso' × 'Pedroso' durum-wheat population has revealed some QTL that had not been previously identified.
Collapse
Affiliation(s)
- Maria Petrarulo
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Cereal Research Centre, SS 673 km 25.200, 71122, Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Greetham D, Wimalasena TT, Leung K, Marvin ME, Chandelia Y, Hart AJ, Phister TG, Tucker GA, Louis EJ, Smart KA. The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations. PLoS One 2014; 9:e103233. [PMID: 25116161 PMCID: PMC4130530 DOI: 10.1371/journal.pone.0103233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's) that regulate phenotypic variation, linkage analysis on six F1 crosses from four highly divergent clean lineages of S. cerevisiae was performed. Segregants from each cross were assessed for tolerance to a range of stresses encountered during industrial bioethanol fermentations. Tolerance levels within populations of F1 segregants to stress conditions differed and displayed transgressive variation. Linkage analysis resulted in the identification of QTL's for tolerance to weak acid and osmotic stress. We tested candidate genes within loci identified by QTL using reciprocal hemizygosity analysis to ascertain their contribution to the observed phenotypic variation; this approach validated a gene (COX20) for weak acid stress and a gene (RCK2) for osmotic stress. Hemizygous transformants with a sensitive phenotype carried a COX20 allele from a weak acid sensitive parent with an alteration in its protein coding compared with other S. cerevisiae strains. RCK2 alleles reveal peptide differences between parental strains and the importance of these changes is currently being ascertained.
Collapse
Affiliation(s)
- Darren Greetham
- School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
| | - Tithira T. Wimalasena
- School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
| | - Kay Leung
- Centre for Genetic Architecture of Complex Traits, Department of Genetics, University of Leicester, Adrian Building, Leicester, Leicestershire, United Kingdom
| | - Marcus E. Marvin
- Centre for Genetic Architecture of Complex Traits, Department of Genetics, University of Leicester, Adrian Building, Leicester, Leicestershire, United Kingdom
| | - Yogeshwar Chandelia
- School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
| | - Andrew J. Hart
- School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
| | - Trevor G. Phister
- School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
| | - Gregory A. Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
| | - Edward J. Louis
- Centre for Genetic Architecture of Complex Traits, Department of Genetics, University of Leicester, Adrian Building, Leicester, Leicestershire, United Kingdom
| | - Katherine A. Smart
- School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Alvarez S, Roy Choudhury S, Pandey S. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 2014; 13:1688-701. [PMID: 24475748 DOI: 10.1021/pr401165b] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.
Collapse
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center , 975 North Warson Road, St. Louis, Missouri 63132, United States
| | | | | |
Collapse
|