1
|
Katsarou A, Tsioulos G, Kassi E, Chatzigeorgiou A. Current and experimental pharmacotherapy for the management of non-alcoholic fatty liver disease. Hormones (Athens) 2024; 23:621-636. [PMID: 39112786 DOI: 10.1007/s42000-024-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease, with its incidence increasing in parallel with the global prevalence of obesity and type 2 diabetes mellitus. Despite our steadily increasing knowledge of its pathogenesis, there is as yet no available pharmacotherapy specifically tailored for NAFLD. To define the appropriate management, it is important to clarify the context in which the disease appears. In the case of concurrent metabolic comorbidities, NAFLD patients are treated by targeting these comorbidities, such as diabetes and obesity. Thus, GLP-1 analogs, PPAR, and SGLT2 inhibitors have recently become central to the treatment of NAFLD. In parallel, randomized trials are being conducted to explore new agents targeting known pathways involved in NAFLD progression. However, there is an imperative need to intensify the effort to design new, safe drugs with biopsy-proven efficacy. Of note, the main target of the pharmacotherapy should be directed to the regression of fibrotic NASH, as this histologic stage has been correlated with increased overall as well as liver-related morbidity and mortality. Herein we discuss the drugs currently at the forefront of NAFLD treatment.
Collapse
Affiliation(s)
- Angeliki Katsarou
- 251 Hellenic Airforce General Hospital, 1 P.Kanellopoulou Str, Athens, 11525, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece.
| | - Georgios Tsioulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 1 Rimini Str, Athens, 12462, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece
| |
Collapse
|
2
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
4
|
Liver Steatosis: A Marker of Metabolic Risk in Children. Int J Mol Sci 2022; 23:ijms23094822. [PMID: 35563210 PMCID: PMC9100068 DOI: 10.3390/ijms23094822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is one of the greatest health challenges affecting children of all ages and ethnicities. Almost 19% of children and adolescents worldwide are overweight or obese, with an upward trend in the last decades. These reports imply an increased risk of fat accumulation in hepatic cells leading to a series of histological hepatic damages gathered under the acronym NAFLD (Non-Alcoholic Fatty Liver Disease). Due to the complex dynamics underlying this condition, it has been recently renamed as 'Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD)', supporting the hypothesis that hepatic steatosis is a key component of the large group of clinical and laboratory abnormalities of Metabolic Syndrome (MetS). This review aims to share the latest scientific knowledge on MAFLD in children in an attempt to offer novel insights into the complex dynamics underlying this condition, focusing on the novel molecular aspects. Although there is still no treatment with a proven efficacy for this condition, starting from the molecular basis of the disease, MAFLD's therapeutic landscape is rapidly expanding, and different medications seem to act as modifiers of liver steatosis, inflammation, and fibrosis.
Collapse
|
5
|
Zhang X, Yang H, Zeng S, Tian S, Hu S, Yang L, Ma T, Liu Z, Wan J, Zhong Y, Li H. Melanoma differentiation-Associated gene 5 protects against NASH in mice. Hepatology 2022; 75:924-938. [PMID: 34482560 DOI: 10.1002/hep.32139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS NASH is a complicated disease characterized by hepatocyte steatosis, inflammation infiltration, and liver fibrosis. Accumulating evidence suggests that the innate immunity plays a key role in NASH progression. Here, we aimed to reveal the role of melanoma differentiation-associated gene 5 (MDA5, also known as Ifih1), a conventional innate immune regulator following viral infection, in the progression of NASH and investigate its underlying mechanism. APPROACH AND RESULTS We first examined the expression of MDA5 and found that MDA5 was markedly down-regulated in the livers with NASH in human individuals and mice models. MDA5 overexpression significantly inhibits the free fatty acid-induced lipid accumulation and inflammation in hepatocyte in vitro, whereas MDA5 knockdown promotes hepatocyte lipotoxicity. Using hepatocyte-specific Mda5 gene knockout and transgenic mice, we found that diet-induced hepatic steatosis, inflammation, and liver fibrosis were markedly exacerbated by Mda5 deficiency but suppressed by Mda5 overexpression. Mechanistically, we found that the activation of apoptosis signal-regulating kinase 1 (ASK1)-mitogen-activated protein kinase pathway was significantly inhibited by MDA5 but enhanced by MDA5 deletion. We further validated that MDA5 directly interacted with ASK1 and suppressed its N-terminal dimerization. Importantly, blockage of ASK1 with adenovirus-expressing dominant negative ASK1 obviously reversed the lipid accumulation and ASK1 pathway activation when Mda5 was knocked out. CONCLUSIONS These data indicate that MDA5 is an essential suppressor in NASH. The findings support MDA5 as a regulator of ASK1 and a promising therapeutic target for NASH.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of EducationGannan Medical UniversityGanzhouChina.,Gannan Innovation and Translational Medicine Research InstituteGanzhouChina
| | - Hailong Yang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina
| | - Shan Zeng
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of EducationGannan Medical UniversityGanzhouChina.,Gannan Innovation and Translational Medicine Research InstituteGanzhouChina
| | - Song Tian
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina
| | - Sha Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina
| | - Ling Yang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina
| | - Tengfei Ma
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina
| | - Zhen Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina
| | - Juan Wan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina
| | - Yiming Zhong
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of EducationGannan Medical UniversityGanzhouChina.,Gannan Innovation and Translational Medicine Research InstituteGanzhouChina
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model AnimalWuhan UniversityWuhanChina.,Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
6
|
Qu W, Ma T, Cai J, Zhang X, Zhang P, She Z, Wan F, Li H. Liver Fibrosis and MAFLD: From Molecular Aspects to Novel Pharmacological Strategies. Front Med (Lausanne) 2021; 8:761538. [PMID: 34746195 PMCID: PMC8568774 DOI: 10.3389/fmed.2021.761538] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and this nomenclature MAFLD was proposed to renovate its former name, non-alcoholic fatty liver disease (NAFLD). MAFLD/NAFLD have shared and predominate causes from nutrition overload to persistent liver damage and eventually lead to the development of liver fibrosis and cirrhosis. Unfortunately, there is an absence of effective treatments to reverse MAFLD/NAFLD-associated fibrosis. Due to the significant burden of MAFLD/NAFLD and its complications, there are active investigations on the development of novel targets and pharmacotherapeutics for treating this disease. In this review, we cover recent discoveries in new targets and molecules for antifibrotic treatment, which target pathways intertwined with the fibrogenesis process, including lipid metabolism, inflammation, cell apoptosis, oxidative stress, and extracellular matrix formation. Although marked advances have been made in the development of antifibrotic therapeutics, none of the treatments have achieved the endpoints evaluated by liver biopsy or without significant side effects in a large-scale trial. In addition to the discovery of new druggable targets and pharmacotherapeutics, personalized medication, and combinatorial therapies targeting multiple profibrotic pathways could be promising in achieving successful antifibrotic interventions in patients with MAFLD/NAFLD.
Collapse
Affiliation(s)
- Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal, Wuhan University, Wuhan, China.,Department of Neurology, Huanggang Central Hospital, Huanggang, China.,Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Feng Wan
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
7
|
Zhang Y, Ye T, Zhou P, Li R, Liu Z, Xie J, Hua T, Sun Q. Exercise ameliorates insulin resistance and improves ASK1-mediated insulin signalling in obese rats. J Cell Mol Med 2021; 25:10930-10938. [PMID: 34734480 PMCID: PMC8642671 DOI: 10.1111/jcmm.16994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence reveals that physical exercise is an efficient therapeutical approach in the treatment of insulin resistance (IR) and related metabolic diseases. However, the potential beneficial effects of exercise on insulin resistance and its underlying mechanisms remain unclear. Recent findings elucidated the negative role of ASK1 in repressing the glucose uptake through JNK1‐IRS1‐Akt signalling in liver. Thus, a detailed investigation of the effect of ASK1‐mediated insulin signalling on exercise‐mediated improvement of insulin sensitivity and its underlying mechanism was implemented in this study. Using a high‐fat diet‐induced IR rat model of chronic or acute swimming exercise training, we here showed that body weight and visceral fat mass were significantly reduced after chronic exercise. Moreover, chronic exercise reduced serum FFAs levels and hepatic triglyceride content. Both chronic and acute exercise promoted glucose tolerance and insulin sensitivity. Meanwhile, both chronic and acute exercise decreased ASK1 phosphorylation and improved JNK1‐IRS1‐Akt signalling. Furthermore, exercise training decreased CFLAR, CREG and TRAF1 protein levels in liver of obese rats, which are positive regulator of ASK1 activity. These results suggested that swimming exercise demonstrated to be an effective ameliorator of IR through the regulation of ASK1‐mediated insulin signalling and therefore, could present a prospective therapeutic mean towards the treatment of IR and several metabolic diseases based on IR, containing NAFLD and type Ⅱ diabetes.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China.,The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tingting Ye
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Puqing Zhou
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Runjing Li
- Department of Cardiology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Zuofeng Liu
- Department of Hepatobiliary Surgery, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jianyuan Xie
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tianmiao Hua
- Neurobiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
8
|
QNZ alleviated hepatocellular carcinoma by targeting inflammatory pathways in a rat model. Cytokine 2021; 148:155710. [PMID: 34564023 DOI: 10.1016/j.cyto.2021.155710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
The pathogenicity of HCC could be enhanced by TNF-α and NFκB, which are crucial parts of the inflammatory pathway inside the HCC microenvironment. Therefore, we aimed to discover the therapeutic effects of QNZ, an inhibitor of both TNF-α and NFκB, in an experimental model of HCC in rats. HCC was experimentally induced in rats by thioacetamide, and some of the rats were treated with QNZ. The expression levels of nuclear factor (NF)κB, tumor necrosis factor (TNF)-α, apoptosis signal regulating kinase (ASK)-1, β-catenin, glycogen synthase kinase (GSK)-3 and TNF receptor-associated factor (TRAF) were examined in hepatic samples. In addition, hepatic tissues were stained with hematoxylin/eosin and anti-TNF-α antibodies. QNZ blocked HCC-induced expression of both NFκB and TNF-α. It significantly reduced both α-fetoprotein and the average number of nodules and increased the survival rate of the HCC rats. Moreover, hematoxylin and eosin liver sections from the HCC rats showed vacuolated cytoplasm and necrotic nodules. All of these effects were alleviated by QNZ treatment. Finally, treating HCC rats with QNZ resulted in a reduction in the expression of TRAF, ASK-1 and β-catenin, as well as increased expression of GSK-3. In conclusion, inhibition of the inflammatory pathway in HCC with QNZ produced therapeutic effects, as indicated by an increased survival rate, reduced serum α-fetoprotein levels, decreased liver nodules and improved the hepatocyte structure. In addition, QNZ significantly reduced the expression of TRAF, ASK-1 and β-catenin that were associated with increased expression of GSK-3.
Collapse
|
9
|
Wu H, Xu X, Zheng A, Wang W, Mei L, Chen Y, Sun S, Jiang L, Wu Y, Zhou Y, Zheng M, Chen Q. TNF-α-Induce Protein 8-Like 1 Inhibits Hepatic Steatosis, Inflammation, and Fibrosis by Suppressing Polyubiquitination of Apoptosis Signal-Regulating Kinase 1. Hepatology 2021; 74:1251-1270. [PMID: 33713358 DOI: 10.1002/hep.31801] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Characterized by hepatocyte steatosis, inflammation, and fibrosis, NASH is a complicated process that contributes to end-stage liver disease and, eventually, HCC. TNF-α-induced protein 8-like 1 (TIPE1), a new member of the TNF-α-induced protein 8 family, has been explored in immunology and oncology research; but little is known about its role in metabolic diseases. APPROACH AND RESULTS Here, we show that hepatocyte-specific deletion of TIPE1 exacerbated diet-induced hepatic steatosis, inflammation, and fibrosis as well as systemic metabolic disorders during NASH pathogenesis. Conversely, hepatocyte-specific overexpression of TIPE1 dramatically prevented the progression of these abnormalities. Mechanically, TIPE1 directly interacted with apoptosis signal-regulating kinase 1 (ASK1) to suppress its TNF receptor-associated factor 6 (TRAF6)-catalyzed polyubiquitination activation upon metabolic challenge, thereby inhibiting the downstream c-Jun N-terminal kinase and p38 signaling pathway. Importantly, dramatically reduced TIPE1 expression was observed in the livers of patients with NAFLD, suggesting that TIPE1 might be a promising therapeutic target for NAFLD and related metabolic diseases. CONCLUSIONS TIPE1 protects against hepatic steatosis, inflammation, and fibrosis through directly binding ASK1 and restraining its TRAF6-catalyzed polyubiquitination during the development of NASH. Therefore, targeting TIPE1 could be a promising therapeutic approach for NAFLD treatment.
Collapse
Affiliation(s)
- Hong Wu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Xu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ancheng Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weina Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Li Mei
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shasha Sun
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liujun Jiang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yijiang Zhou
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Damiris K, Tafesh ZH, Pyrsopoulos N. Efficacy and safety of anti-hepatic fibrosis drugs. World J Gastroenterol 2020; 26:6304-6321. [PMID: 33244194 PMCID: PMC7656211 DOI: 10.3748/wjg.v26.i41.6304] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Recent progress in our understanding of the pathways linked to progression from hepatic insult to cirrhosis has led to numerous novel therapies being investigated as potential cures and inhibitors of hepatic fibrogenesis. Liver cirrhosis is the final result of prolonged fibrosis, which is an intimate balance between fibrogenesis and fibrinolysis. A number of these complex mechanisms are shared across the various etiologies of liver disease. Thankfully, investigation has yielded some promising results in regard to reversal of fibrosis, particularly the indirect benefits associated with antiviral therapy for the treatment of hepatitis B and C and the farnesoid receptor agonist for the treatment of primary biliary cholangitis and metabolic associated fatty liver disease. A majority of current clinical research is focused on targeting metabolic associated fatty liver disease and its progression to metabolic steatohepatitis and ultimately cirrhosis, with some hope of potential standardized therapeutics in the near future. With our ever-evolving understanding of the underlying pathophysiology, these therapeutics focus on either controlling the primary disease (the initial trigger of fibrogenesis), interrupting receptor ligand interactions and other intracellular communications, inhibiting fibrogenesis, or even promoting resolution of fibrosis. It is imperative to thoroughly test these potential therapies with the rigorous standards of clinical therapeutic trials in order to ensure the highest standards of patient safety. In this article we will briefly review the key pathophysiological pathways that lead to liver fibrosis and present current clinical and experimental evidence that has shown reversibility of liver fibrosis and cirrhosis, while commenting on therapeutic safety.
Collapse
Affiliation(s)
- Konstantinos Damiris
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Zaid H Tafesh
- Medicine-Gastroenterology and Hepatology, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Medicine-Gastroenterology and Hepatology, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| |
Collapse
|
11
|
Yoon YC, Fang Z, Lee JE, Park JH, Ryu JK, Jung KH, Hong SS. Selonsertib Inhibits Liver Fibrosis via Downregulation of ASK1/ MAPK Pathway of Hepatic Stellate Cells. Biomol Ther (Seoul) 2020; 28:527-536. [PMID: 32451370 PMCID: PMC7585640 DOI: 10.4062/biomolther.2020.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis constitutes a significant health problem worldwide due to its rapidly increasing prevalence and the absence of specific and effective treatments. Growing evidence suggests that apoptosis-signal regulating kinase 1 (ASK1) is activated in oxidative stress, which causes hepatic inflammation and apoptosis, leading to liver fibrogenesis through a mitogen-activated protein kinase (MAPK) downstream signals. In this study, we investigated whether selonsertib, a selective inhibitor of ASK1, shows therapeutic efficacy for liver fibrosis, and elucidated its mechanism of action in vivo and in vitro. As a result, selonsertib strongly suppressed the growth and proliferation of hepatic stellate cells (HSCs) and induced apoptosis by increasing Annexin V and TUNEL-positive cells. We also observed that selonsertib inhibited the ASK1/MAPK pathway, including p38 and c-Jun N-terminal kinase (JNK) in HSCs. Interestingly, dimethylnitrosamine (DMN)-induced liver fibrosis was significantly alleviated by selonsertib treatment in rats. Furthermore, selonsertib reduced collagen deposition and the expression of extracellular components such as α-smooth muscle actin (α-SMA), fibronectin, and collagen type I in vitro and in vivo. Taken together, selonsertib suppressed fibrotic response such as HSC proliferation and extracellular matrix components by blocking the ASK1/MAPK pathway. Therefore, we suggest that selonsertib may be an effective therapeutic drug for ameliorating liver fibrosis.
Collapse
Affiliation(s)
- Young-Chan Yoon
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ji Eun Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Jung Hee Park
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- Department of Urology, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
12
|
Anfuso B, Tiribelli C, Adorini L, Rosso N. Obeticholic acid and INT-767 modulate collagen deposition in a NASH in vitro model. Sci Rep 2020; 10:1699. [PMID: 32015483 PMCID: PMC6997404 DOI: 10.1038/s41598-020-58562-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
Pharmacological treatments for non-alcoholic steatohepatitis (NASH) are still unsatisfactory. Fibrosis is the most significant predictor of mortality and many anti-fibrotic agents are under evaluation. Herein, we assessed in vitro the effects of the FXR agonist obeticholic acid (OCA) and the dual FXR/TGR5 agonist INT-767 in a well-established co-culture NASH model. Co-cultures of human hepatoma and hepatic stellate (HSCs) cells were exposed to free fatty acids (FFAs) alone or in combination with OCA or INT-767. mRNA expression of HSCs activation markers and FXR engagement were evaluated at 24, 96 and 144 hours. Collagen deposition and metalloproteinase 2 and 9 (MMP2-9) activity were compared to tropifexor and selonsertib. FFAs induced collagen deposition and MMP2-9 activity reduction. Co-treatment with OCA or INT-767 did not affect ACTA2 and COL1A1 expression, but significantly reduced FXR and induced SHP expression, as expected. OCA induced a dose-dependent reduction of collagen and induced MMP2-9 activity. Similarly, INT-767 induced collagen reduction at 96 h and a slight increase in MMP2-9. Tropifexor and Selonsertib were also effective in collagen reduction but showed no modulation of MMP2-9. All tested compounds reduced collagen deposition. OCA exerted a more potent and long-lasting effect, mainly related to modulation of collagen turn-over and MMP2-9 activity.
Collapse
Affiliation(s)
- Beatrice Anfuso
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| | - Luciano Adorini
- Intercept Pharmaceutical, Inc, 10 Hudson Yards 37th Floor, 10001, New York, NY, USA
| | - Natalia Rosso
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy.
| |
Collapse
|
13
|
Chen L, Zhang X, Zhang L, Zheng D. Effect of Saxagliptin, a Dipeptidyl Peptidase 4 Inhibitor, on Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:3507-3518. [PMID: 33116702 PMCID: PMC7547785 DOI: 10.2147/dmso.s262284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) represents a broad spectrum of chronic liver disease characterized by aberrant accumulation of triglycerides (TG) in hepatocytes without excessive alcohol consumption. Hepatic lipotoxicity derived from overaccumulation of free fatty acids is considered as one of the typical hallmarks of NAFLD. Insulin resistance (IR) and chronic inflammation are widely recognized as the key etiological factors associated with NAFLD. Dipeptidyl peptidase 4 inhibitor (DPP4i) is a novel pharmacological agent extensively applied in the treatment of Type 2 Diabetes Mellitus (T2DM) for decades which also have a liver protective effect. METHODS In order to invest the therapeutic efficiency and underlying mechanism of DPP4i saxagliptin, we used high-fat diet (HFD) and streptozotocin-induced NAFLD treated with saxagliptin. Biochemical, histomorphological, genetic and protein expression of related pathways were investigated. RESULTS Fasting blood glucose (FBG), TG, total cholesterol (TC), and low-density lipoprotein cholesterin significantly increased in NAFLD group, which also exhibited severe steatosis. Other remarkable findings were hyperinsulinemia, increased DPP4, PTP-1B and TNF-α level and decreased GLP-1, ACOX-1, CPT-1A expression, concomitant with liver DPP4 expression enhancement and serum DPP4 elevation. These undesirable consequences were alleviated by saxagliptin to a certain degree. CONCLUSION DPP4i saxagliptin improves NAFLD by ameliorating IR, inflammation, downregulation of hepatic DPP4 and sDPP4, as well as subsequent steatosis. The elevation of hepatic DPP4 and sDPP4 and succedent post-treatment decrease suggested that DPP4 may involve in the development of NAFLD. The anti-lipotoxic effect of DPP4i may involve the activation of CPT1A and ACOX1 related β-oxidation signaling pathway suppression of TNF-α mediated inflammatory and PTP-1B. The results covered in this article showed that saxagliptin affects many aspects of the pathological characteristics of NAFLD, suggesting that DPP4i saxagliptin may offer a novel therapeutic option for NAFLD.
Collapse
Affiliation(s)
- Lin Chen
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Dongmei Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Correspondence: Dongmei Zheng Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province250021, People’s Republic of ChinaTel + 86 531 68776375 Email
| |
Collapse
|
14
|
Wang Y, Wen H, Fu J, Cai L, Li PL, Zhao CL, Dong ZF, Ma JP, Wang X, Tian H, Zhang Y, Liu Y, Cai J, She ZG, Huang Z, Li W, Li H. Hepatocyte TNF Receptor-Associated Factor 6 Aggravates Hepatic Inflammation and Fibrosis by Promoting Lysine 6-Linked Polyubiquitination of Apoptosis Signal-Regulating Kinase 1. Hepatology 2020; 71:93-111. [PMID: 31222801 DOI: 10.1002/hep.30822] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
Activation of apoptosis signal-regulating kinase 1 (ASK1) is a key driving force of the progression of nonalcoholic steatohepatitis (NASH) and represents an attractive therapeutic target for NASH treatment. However, the molecular and cellular mechanisms underlying ASK1 activation in the pathogenesis of NASH remain incompletely understood. In this study, our data unequivocally indicated that hyperactivated ASK1 in hepatocytes is a potent inducer of hepatic stellate cell (HSC) activation by promoting the production of hepatocyte-derived factors. Our previous serial studies have shown that the ubiquitination system plays a key role in regulating ASK1 activity during NASH progression. Here, we further demonstrated that tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes lysine 6 (Lys6)-linked polyubiquitination and subsequent activation of ASK1 to trigger the release of robust proinflammatory and profibrotic factors in hepatocytes, which, in turn, drive HSC activation and hepatic fibrosis. Consistent with the in vitro findings, diet-induced liver inflammation and fibrosis were substantially attenuated in Traf6+/- mice, whereas hepatic TRAF6 overexpression exacerbated these abnormalities. Mechanistically, Lys6-linked ubiquitination of ASK1 by TRAF6 facilitates the dissociation of thioredoxin from ASK1 and N-terminal dimerization of ASK1, resulting in the boosted activation of ASK1-c-Jun N-terminal kinase 1/2 (JNK1/2)-mitogen-activated protein kinase 14(p38) signaling cascade in hepatocytes. Conclusion: These results suggest that Lys6-linked polyubiquitination of ASK1 by TRAF6 represents a mechanism underlying ASK1 activation in hepatocytes and a key driving force of proinflammatory and profibrogenic responses in NASH. Thus, inhibiting Lys6-linked polyubiquitination of ASK1 may serve as a potential therapeutic target for NASH treatment.
Collapse
Affiliation(s)
- Yutao Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Huan Wen
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Jiajun Fu
- Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cai
- Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng-Long Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Chang-Ling Zhao
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zhu-Feng Dong
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Jun-Peng Ma
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xi Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Han Tian
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Yan Zhang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Ye Liu
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal of Wuhan University, Wuhan, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-Gang She
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Wenhua Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hongliang Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Samji NS, Verma R, Keri KC, Singal AK, Ahmed A, Rinella M, Bernstein D, Abdelmalek MF, Satapathy SK. Liver Transplantation for Nonalcoholic Steatohepatitis: Pathophysiology of Recurrence and Clinical Challenges. Dig Dis Sci 2019; 64:3413-3430. [PMID: 31312990 DOI: 10.1007/s10620-019-05716-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis is the fastest-growing indication for the liver transplant and a leading cause of hepatocellular carcinoma among patients listed for liver transplantation in the USA. Post-transplant nonalcoholic hepatic steatosis and steatohepatitis are frequent complications of liver transplantation. Nonalcoholic steatohepatitis poses a significant challenge in both pre- and post-transplant period due to its association with metabolic syndrome, coronary artery disease, chronic kidney disease, and obstructive sleep apnea. While optimal therapy is not yet available in the post-liver transplant setting, lifestyle interventions continue to remain as the mainstay of therapy for post-transplant nonalcoholic steatohepatitis. Early recognition with protocol biopsies and noninvasive modalities, along with modification of known risk factors, are the most effective methods to curtail the progression of nonalcoholic steatohepatitis in the absence of FDA-approved pharmacologic therapy.
Collapse
Affiliation(s)
- Naga Swetha Samji
- Tennova Cleveland Hospital, 2305 Chambliss Ave NW, Cleveland, TN, 37311, USA
| | - Rajanshu Verma
- Division of Transplant Surgery, Department of Surgery, Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | | | - Ashwani K Singal
- University of South Dakota Sanford School of Medicine, Avera Transplant Institute, S. Cliff Ave, Sioux Falls, SD, 57105, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary Rinella
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - David Bernstein
- Division of Hepatology and Sandra Atlas Bass Center for Liver Diseases, Northwell Health, Manhasset, NY, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology/Hepatology, Duke University, 40 Duke Medicine Cir, Durham, NC, USA
| | - Sanjaya K Satapathy
- Division of Hepatology at Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 400 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
16
|
Abstract
Nonalcoholic steatohepatitis (NASH) is the second leading cause of liver transplantation in the US with a high risk of liver-related morbidities and mortality. Given the global burden of NASH, development of appropriate therapeutic strategies is an important clinical need. Where applicable, lifestyle modification remains the primary recommendation for the treatment of NASH, even though such changes are difficult to sustain and even insufficient to cure NASH. Bariatric surgery resolves NASH in such patients where lifestyle modifications have failed, and is recommended for morbidly obese patients with NASH. Thus, pharmacotherapies are of high value for NASH treatment. Though no drug has been approved by the US Food and Drug Administration for treatment of NASH, substantial progress in pharmacological development has been made in the last few years. Agents such as vitamin E and pioglitazone are recommended in patients with NASH, and yet concerns about their side effects remain. Many agents targeting various vital molecules and pathways, including those impacting metabolic perturbations, inflammatory cascades, and oxidative stress, are in clinical trials for the treatment of NASH. Some agents have shown promising results in phase II or III clinical trials, but more studies are required to assess their long-term effects. Herein, we review the potential strategies and challenges in therapeutic approaches to treating NASH.
Collapse
Affiliation(s)
- Ming-Ming Chen
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing-Jing Cai
- †Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yao Yu
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
| | - Zhi-Gang She
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| | - Hongliang Li
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
17
|
Yu Y, Cai J, She Z, Li H. Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801585. [PMID: 30828530 PMCID: PMC6382298 DOI: 10.1002/advs.201801585] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Indexed: 05/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease which affects ≈25% of the adult population worldwide, placing a tremendous burden on human health. The disease spectrum ranges from simple steatosis to steatohepatitis, fibrosis, and ultimately, cirrhosis and carcinoma, which are becoming leading reasons for liver transplantation. NAFLD is a complex multifactorial disease involving myriad genetic, metabolic, and environmental factors; it is closely associated with insulin resistance, metabolic syndrome, obesity, diabetes, and many other diseases. Over the past few decades, countless studies focusing on the investigation of noninvasive diagnosis, pathogenesis, and therapeutics have revealed different aspects of the mechanism and progression of NAFLD. However, effective pharmaceuticals are still in development. Here, the current epidemiology, diagnosis, animal models, pathogenesis, and treatment strategies for NAFLD are comprehensively reviewed, emphasizing the outstanding breakthroughs in the above fields and promising medications in and beyond phase II.
Collapse
Affiliation(s)
- Yao Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Jingjing Cai
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Zhigang She
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| |
Collapse
|
18
|
Kim KH, Lee MS. Pathogenesis of Nonalcoholic Steatohepatitis and Hormone-Based Therapeutic Approaches. Front Endocrinol (Lausanne) 2018; 9:485. [PMID: 30197624 PMCID: PMC6117414 DOI: 10.3389/fendo.2018.00485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for type 2 diabetes, cardiovascular disease, and chronic kidney disease. Nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a predisposing factor for development of cirrhosis and hepatocellular carcinoma. The increasing prevalence of NASH emphasizes the need for novel therapeutic approaches. Although therapeutic drugs against NASH are not yet available, fundamental insights into the pathogenesis of NASH have been made during the past few decades. Multiple therapeutic strategies have been developed and are currently being explored in clinical trials or preclinical testing. The pathogenesis of NASH involves multiple intracellular/extracellular events in various cell types in the liver or crosstalk events between the liver and other organs. Here, we review current findings and knowledge regarding the pathogenesis of NASH, focusing on the most recent advances. We also highlight hormone-based therapeutic approaches for treatment of NASH.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Kook Hwan Kim ;
| | - Myung-Shik Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Myung-Shik Lee
| |
Collapse
|