1
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
2
|
Meng F, Han L, Liang Q, Lu S, Huang Y, Liu J. The Lnc-RNA APPAT Suppresses Human Aortic Smooth Muscle Cell Proliferation and Migration by Interacting With MiR-647 and FGF5 in Atherosclerosis. J Endovasc Ther 2023; 30:937-950. [PMID: 35880306 DOI: 10.1177/15266028221112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE LncRNA-Atherosclerotic plaque pathogenesis-associated transcript (APPAT) could be detected in circulating blood and has been demonstrated to correlate with the development of atherosclerosis in our previous work. It could be a potential noninvasive biomarker for earlier diagnoses of clinical cardiovascular disease. Moreover, the expression of miR-647 increased in ox-LDL-treated vascular smooth muscle cells and peripheral blood of patients with coronary heart disease. A negative correlation between APPAT and miR-647 was confirmed, and FGF5 was screened as molecular target of miR-647. However, it is largely unclear how APPAT, miR-647, and FGF5 interact and function in disease development. Here, we aim to explore the underlying molecular mechanism in this progression. MATERIALS AND METHODS APPAT, miR-647, and FGF5 expression levels were detected by quantitative reverse transcription polymerase chain reaction; cell proliferation was detected by EdU incorporation assay; cell migration was detected by wound-healing assay; the molecular interaction of APPAT/FGF5 with miR-647 was verified by dual-luciferase reporter assay; the western blot was performed to determine the gene expression at protein levels; subcellular localizations of APPAT and miR-647 were observed by fluorescence in situ hybridization; cytosolic and nucleus fractionation assay was performed to further detect the distribution of miR-647. RESULTS APPAT and miR-647 have inverse effects on human aortic smooth muscle cells' (HASMCs) proliferation and migration. APPAT negatively regulated the cell activity, whereas miR-647 did it in a positive way (p<0.05). Three pairs of molecular interplay were found: mutual negative regulation between APPAT and miR-647, APPAT downregulated FGF5, miR-647 regulation on FGF5 (p<0.05). Subcellular location assay confirmed the molecular interaction of APPAT and miR-647. CONCLUSIONS APPAT could suppress the migration and proliferation of ox-LDL-treated HASMCs via interacting with miR-647 and FGF5. We revealed a nontypical competing endogenous RNA mechanism of long noncoding RNA in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Fanming Meng
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Luyang Han
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Qin Liang
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Shanshan Lu
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Yanqing Huang
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Junwen Liu
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| |
Collapse
|
3
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
4
|
Vetchinkina EA, Kalinkin AI, Kuznetsova EB, Kiseleva AE, Alekseeva EA, Nemtsova MV, Bure IV. Diagnostic and prognostic value of long non-coding RNA PROX1‑AS1 and miR-647 expression in gastric cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-50-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction. Gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Epigenetic alternations of non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs can contribute to its pathogenesis and progression, and could be potent diagnostic and prognostic biomarkers.Aim. Estimation of PROX1‑AS1 and miR-647 expression in gastric cancer and investigation of its clinical significance. Materials and methods. Tumor and adjacent normal tissues (n = 62), and sectional normal tissue samples (n = 5) were included in the study. The expression of the ncRNAs was quantified by reverse transcription-polymerase chain reaction assay.Results. We have reviled the significant difference in the PROX1‑AS1 expression in tumor (p = 0.002) and non-tumor tissues (p <0.001) obtained from gastric cancer patients in comparison with sectional gastric tissues without pathology. Pearson correlation analysis confirmed a negative correlation between PROX1‑AS1 and miR-647 in gastric cancer both in tumor (р <0,001) and adjacent normal tissues (р <0.001). Besides, expression of PROX1‑AS1 and miR-647 was associated with the size and extent of the primary tumor.Conclusion. The obtained results allow to suggest a potential prognostic value of PROX1‑AS1 and miR-647 in gastric cancer.
Collapse
Affiliation(s)
- E. A. Vetchinkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | | | - E. B. Kuznetsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - A. E. Kiseleva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. A. Alekseeva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - M. V. Nemtsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - I. V. Bure
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| |
Collapse
|
5
|
Wang K, Liu J, Deng G, Ou Z, Li S, Xu X, Zhang M, Peng X, Chen F. LncSIK1 enhanced the sensitivity of AML cells to retinoic acid by the E2F1/autophagy pathway. Cell Prolif 2022; 55:e13185. [PMID: 35092119 PMCID: PMC8891555 DOI: 10.1111/cpr.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ke Wang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Jun‐da Liu
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ge Deng
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Zi‐yao Ou
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Shu‐fang Li
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐ling Xu
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Mei‐Ju Zhang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Qing Peng
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei‐hu Chen
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Wang C, Lv Y, Sha Z, Zhang J, Wu J, Qi Y, Guo Z. Dicer Enhances Bevacizumab-Related Inhibition of Hepatocellular Carcinoma via Blocking the Vascular Endothelial Growth Factor Pathway. J Hepatocell Carcinoma 2022; 8:1643-1653. [PMID: 35004391 PMCID: PMC8721026 DOI: 10.2147/jhc.s327258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) family members contribute greatly to the development and angiogenesis of hypervascular hepatocellular carcinoma (HCC). We have previously shown that Dicer inhibited HCC growth. In this study, we aimed to determine the relationship between Dicer and VEGF in HCC. Methods Gain-of-function studies were performed to determine the effect of different treatments on the proliferation, migration, and invasion of HCC cells. Expression of VEGF-A in xenograft tumor tissues was analysed using Western blotting, and that of CD31 using immunohistochemical analysis. Results We found that Dicer inhibited proliferation, migration and invasion of HCC cells by suppressing VEGF-A expression. Interestingly, VEGF-A165, which is the most prominent VEGF-A isoform, counteracted Dicer-induced inhibition of HCC cells. In addition, a monoclonal anti-VEGF antibody (bevacizumab) enhanced Dicer-induced inhibition of HCC in vitro and in vivo. Further, immunohistochemical analysis of CD31 indicated bevacizumab and Dicer synergized to reduce tumor microvessel density. Conclusion Our data demonstrated that Dicer enhanced bevacizumab-related inhibition of HCC cell via the VEGF pathway; therefore, Dicer in coordination with bevacizumab may provide another potential approach for HCC therapy.
Collapse
Affiliation(s)
- Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalei Lv
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ziyue Sha
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yixin Qi
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
7
|
Li SJ, Cai ZW, Yang HF, Tang XD, Fang X, Qiu L, Wang F, Chen XL. A Next-Generation Sequencing of Plasma Exosome-Derived microRNAs and Target Gene Analysis with a Microarray Database of Thermally Injured Skins: Identification of Blood-to-Tissue Interactions at Early Burn Stage. J Inflamm Res 2021; 14:6783-6798. [PMID: 34916825 PMCID: PMC8670889 DOI: 10.2147/jir.s343956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background Plasma exosome-derived microRNA (miRNA) profiles following thermal injury and their relationship with gene expression derangements in burned skin remain unexplored. This study focused on the identification of key miRNA-mRNA axes in potential blood-to-tissue interactions at early burn stage. Methods Plasma exosomes were obtained from 6 severe burn patients 4–7 days post injury and 6 healthy volunteers. Next-generation sequencing (NGS) of exosomal small RNAs presented the differentially expressed miRNAs (DEMs). Target genes of the DEMs were predicted in the mirDIP database. Dataset GSE8056 was enrolled to acquire differentially expressed genes (DEGs) in burned skin compared to normal skin. Overlap between the DEGs and target genes of the DEMs were focus genes. The protein–protein interaction (PPI) network and enrichment analyses of the focus genes demonstrated hub genes and suggested underlying mechanisms and pathways. The hub genes and upstream DEMs were selected to construct key miRNA-mRNA axes. Results The NGS of plasma exosome-derived small RNAs identified 85 DEMs (14 downregulated miRNAs and 71 upregulated miRNAs) with 12,901 predicted target genes. Dataset GSE8056 exhibited 1861 DEGs in partial-thickness burned skins 4–7 days postburn. The overlap between DEGs and target genes of DEMs displayed 1058 focus genes. The top 9 hub genes (CDK1, CCNB1, CCNA2, BUB1B, PLK1, KIF11, AURKA, NUSAP1 and CDCA8) in the PPI network of the focus genes pointed to 16 upstream miRNAs in DEMs, including 4 downregulated miRNAs (hsa-miR-6848-3p, has-miR-4684-3p, has-miR-4786-5p and has-miR-365a-5p) and 12 upregulated miRNAs (hsa-miR-6751-3p, hsa-miR-718, hsa-miR-4754, hsa-miR-6754-3p, hsa-miR-4739, hsa-miR-6739-5p, hsa-miR-6884-3p, hsa-miR-1224-3p, hsa-miR-6878-3p, hsa-miR-6795-3p, hsa-miR-550a-3p, and hsa-miR-550b-3p). A key miRNA-mRNA network in potential blood-to-tissue interactions at early burn stage was therefore constructed. Conclusion An NGS and bioinformatic analysis in the study identified key miRNA-mRNA axes in potential blood-to-tissue interactions at early burn stage, suggesting plasma exosome-derived miRNAs may impact on the alteration patterns of gene expressions in a burn wound.
Collapse
Affiliation(s)
- Shi-Ji Li
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhi-Wen Cai
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hong-Fu Yang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xu-Dong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiao Fang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Le Qiu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fei Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
8
|
Farfán N, Sanhueza N, Briones M, Burzio LO, Burzio VA. Antisense noncoding mitochondrial RNA-2 gives rise to miR-4485-3p by Dicer processing in vitro. Biol Res 2021; 54:33. [PMID: 34666824 PMCID: PMC8527801 DOI: 10.1186/s40659-021-00356-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background The antisense noncoding mitochondrial RNAs (ASncmtRNAs) derive from the mitochondrial 16S gene. Knockdown of these transcripts with chemically-modified antisense oligonucleotides induces proliferative arrest, apoptosis and invasiveness reduction in tumor but not normal cells. One of these transcripts, ASncmtRNA-2, contains the complete and identical sequence of hsa-miR-4485-3p and, upon knockdown of this transcript, there is a strong increase in levels of this miRNA, suggesting ASncmtRNA-2 as a source for miR-4485-3p, which is supported by several evidences from our group and others, in the ex vivo setting. Results Here we show that incubation of in vitro-transcribed ASncmtRNA-2 with recombinant Dicer produces RNA fragments corresponding to hsa-miR-4485-3p, showing that Dicer binds to and processes ASncmtRNA-2, strongly supporting the hypothesis that ASncmtRNA-2 acts as a precursor for miR-4485-3p. Conclusion The in vitro results presented here strengthen the hypothesis that miR-4485-3p is derived from ASncmtRNA-2 by Dicer processing. Since miR-4485-3p is classified as a tumor suppressor miRNA, this evidence strengthens the application of ASncmtRNA knockdown for cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00356-0.
Collapse
Affiliation(s)
- Nicole Farfán
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo/Clínica Alemana de Santiago, Santiago, Chile
| | - Nicole Sanhueza
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Center for Integrative Biology, Faculty of Science, Universidad Mayor de Chile, Santiago, Chile
| | - Macarena Briones
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile
| | - Luis O Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile. .,Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
9
|
Niu K, Qu S, Zhang X, Dai J, Wang J, Nie Y, Zhang H, Tao K, Song W. LncRNA-URHC Functions as ceRNA to Regulate DNAJB9 Expression by Competitively Binding to miR-5007-3p in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3031482. [PMID: 34659430 PMCID: PMC8516585 DOI: 10.1155/2021/3031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long noncoding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. Our study aims to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. OBJECTIVE To study the in vivo and in vitro localization and biological effects of URHC on liver cancer cells. Through bioinformatics analysis, dual-luciferase reporter gene analysis and rescue experiments revealed the possible mechanism of URHC. METHODS RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenograft experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC. RESULTS URHC silencing may inhibit the HCC cells' proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggestive of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p. CONCLUSION Together, our study elucidated the role of URHC as a miRNA sponge in HCC and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.
Collapse
Affiliation(s)
- Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Jimin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
10
|
Han F, Chen G, Guo Y, Li B, Sun Y, Qi X, Tian H, Zhao X, Zhang H. MicroRNA-4491 enhances cell proliferation and inhibits cell apoptosis in non-small cell lung cancer via targeting TRIM7. Oncol Lett 2021; 22:591. [PMID: 34149902 PMCID: PMC8200940 DOI: 10.3892/ol.2021.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of non-small cell lung cancer (NSCLC). However, the biological roles of several aberrantly expressed miRNAs have not been explored yet. In the present study, miR-4491 was identified as a novel upregulated miRNA in NSCLC tissues and cell lines. Downregulation of miR-4491 by a miR-4491 inhibitor inhibited the proliferation and triggered the apoptosis of NSCLC cells. Tripartite motif containing 7 (TRIM7), a tumor suppressor gene expressed in NSCLC, was demonstrated in the present study to be directly targeted by miR-4491. This finding was verified by bioinformatics analysis, reverse transcription-quantitative PCR, western blotting and dual luciferase reporter assays. Furthermore, downregulation of miR-4491 inactivated nuclear factor-κB signaling via induction of TRIM7. In addition, TRIM7 silencing attenuated the effect of miR-4491 inhibitor in NSCLC cells. The decreased TRIM7 level in NSCLC tissues was negatively correlated with miR-4491 expression in NSCLC tissues. In conclusion, the findings from this study demonstrated that miR-4491 expression was upregulated in NSCLC tissues and cells and that miR-4491 may promote NSCLC progression via targeting TRIM7.
Collapse
Affiliation(s)
- Fei Han
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Gang Chen
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Yi Guo
- Department of Respiratory Diseases, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Bo Li
- Department of Thoracic Radiotherapy, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Yanlong Sun
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Xiangqian Qi
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Hanji Tian
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Xinfei Zhao
- Taiyuan Jinyu Clinical Laboratory, Taiyuan, Shanxi 030013, P.R. China
| | - Hongguang Zhang
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
11
|
Wu JC, Liu ZH, Ding X, Ke RS. miR-3178 as a prognostic indicator and tumor suppressor of gastric cancer. Ir J Med Sci 2021; 191:139-145. [PMID: 33547612 DOI: 10.1007/s11845-021-02527-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gastric cancer is a common malignant tumor with an increasing death rate. MicroRNA can serve as a promising biomarker for the progression and prognosis of various cancers. AIMS The clinical significance and biological function of miR-3178 in gastric cancer was assessed in this study. METHODS A total of 117 paired tissues were collected from gastric cancer patients. Quantitative real-time polymerase chain reaction was used to detect the expression of miR-3178 in gastric cancer tissues and cells. The association between miR-3178 expression and the clinicopathological features of patients were analyzed by χ2 test. Kaplan-Meier analysis and Cox regression were employed to investigate the prognostic value of miR-3178. Finally, the effect of miR-3178 on the cellular process of gastric cancer was investigated by CCK-8 and transwell assay. RESULTS miR-3178 was downregulated in gastric cancer tissues and cells, which showed a significant association with the TNM stage and lymph node metastasis of patients and a poor prognosis. MiR-3178 and TNM stage were considered as two independent prognostic factors for gastric cancer. Furthermore, the downregulation of miR-3178 promoted cell proliferation, migration, and invasion of gastric cancer by regulating Notch1. CONCLUSION miR-3178 may be involved in the progression of gastric cancer, which provides new insights into the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jin-Cheng Wu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, Fujian, China
| | - Zhao-Hui Liu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, Fujian, China
| | - Xiaomei Ding
- Department of Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Rui-Sheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, Fujian, China.
| |
Collapse
|
12
|
Liang F, Zhang H, Qiu Y, Xu Q, Jian K, Jiang L, Wang F, Lu X. MiR-124-5p Inhibits the Progression of Gastric Cancer by Targeting MIEN1. Technol Cancer Res Treat 2020; 19:1533033820979199. [PMID: 33349155 PMCID: PMC7758558 DOI: 10.1177/1533033820979199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective: To observe the effect of miR-124-5p on progression of gastric cancer (GC) and explore the targeting mechanism. Methods: After collecting the specimens, we used real-time fluorescence quantitative PCR to detect the miR-124-5p level of GC tissue and corresponding adjacent tissue. Then MTT test and scratch wound-healing assay were hired to evaluate the influence of miR-124-5p in GC cell (SGC-803 and SGC7901) migration and proliferation ability. The binding of miR-124-5p to migration and invasion enhancer 1 (MIEN1) was detected through dual luciferase reporter gene experiment and western blot was utilized to assay the protein level of MIEN1. Results: Compared with adjacent tissues, miR-124-5p level in GC tissues was lower significantly. MiR-124-5p mimic inhibited the metastasis and proliferation ability of SGC7901 cells and miR-124-5p inhibitor promoted the migration and proliferation ability of SGC803 cells. In addition, miR-124-5p targeted MIEN1 and negatively modulated the MIEN1 expression in SGC-803 and SGC7901 cells. Silencing MIEN1 negatively regulated the metastasis and proliferation ability of SGC7901 cells. Conclusion: MiR-124-5p inhibited the GC cell proliferation and metastasis phenotypes through MIEN1, which probably becomes a novel molecular target for clinical GC treatment.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - HongYan Zhang
- Department of Oncology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - YuXuan Qiu
- Department of General Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - QianRu Xu
- Department of General Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - KaiYu Jian
- Department of General Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lin Jiang
- Department of General Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Wang
- Department of Oncology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xin Lu
- Department of General Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Md Yusof K, Rosli R, Abdullah M, Avery-Kiejda KA. The Roles of Non-Coding RNAs in Tumor-Associated Lymphangiogenesis. Cancers (Basel) 2020; 12:cancers12113290. [PMID: 33172072 PMCID: PMC7694641 DOI: 10.3390/cancers12113290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The lymphatic system plays key roles in the bodies’ defence against disease, including cancer. The expansion of this system is termed lymphangiogenesis and it is orchestrated by factors and conditions within the microenvironment. One approach to prevent cancer progression is by interfering with these microenvironment factors that promote this process and that facilitate the spread of cancer cells to distant organs. One of these factors are non-coding RNAs. This review will summarize recent findings of the distinct roles played by non-coding RNAs in the lymphatic system within normal tissues and tumours. Understanding the mechanisms involved in this process can provide new avenues for therapeutic intervention for inhibiting the spread of cancer. Abstract Lymphatic vessels are regarded as the ”forgotten” circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Kelly A. Avery-Kiejda
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence:
| |
Collapse
|
14
|
Tan X, Zhang C, Gao W, Sun B, Jiang B, Song P. Overexpression of microRNA-124-5p sensitizes non-small cell lung cancer cells to treatment with 5-fluorouracil via AEG-1 regulation. Oncol Lett 2020; 21:5. [PMID: 33240411 DOI: 10.3892/ol.2020.12266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic resistance represents a major obstacle for the treatment of patients with non-small cell lung cancer (NSCLC); however, the associated molecular mechanisms underpinning the development of resistance remain poorly characterized. In the current study, 5-fluorouracil (5-FU)-resistant A549 cells (A549/5-FU) were generated from A549 cells. Reverse transcription-quantitative PCR and western blotting were used to detect microRNA(miR)-124-5p and astrocyte elevated gene 1 (AEG-1) expression levels in cells and tumor tissues. In addition, the cytotoxic effect of 5-FU on the cells was determined using the Cell Counting Kit-8 assay, and the Dual-luciferase reporter assay was used to validate AEG-1 as a target gene of miR-124-5p. Transfection with a miR-124-5p mimic enhanced inhibition of cell viability induced by 5-FU in A549/5-FU cells, whereas miR-124-5p inhibitor transfection partially reversed 5-FU-induced cell viability inhibition in A549 and H1299 cells. A decrease in miR-124-5p expression level was observed in A549/5-FU cells compared with the parental A549 cells. Furthermore, AEG-1 was predicted as a target gene of miR-124-5p, and its expression was increased in A549/5-FU cells compared with A549 cells. Additionally, the upregulation of miR-124-5p was associated with lower expression levels of AEG-1 in A549/5-FU cells, compared with parental A549 cells. Moreover, the Dual-luciferase reporter assay confirmed the ability of miR-124-5p to bind directly to the 3'-untranslated region of AEG-1 mRNA. Notably, the overexpression of AEG-1 reversed the ability of the miR-124-5p mimic to increase the sensitivity of A549/5-FU cells to 5-FU treatment. Additionally, a significant negative correlation between miR-124-5p expression and AEG-1 mRNA levels was detected in 40 pairs of NSCLC tissues and their corresponding adjacent paracancerous tissues. The results of the present study indicated that miR-124-5p may regulate the chemotherapeutic sensitivity of NSCLC cells, and may therefore represent a promising biomarker or therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Xiaoxia Tan
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Chuancui Zhang
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Weidong Gao
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Bei Sun
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Baozhen Jiang
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| | - Peng Song
- Department of Respiration, The Third People's Hospital of Linyi City, Linyi, Shandong 371312, P.R. China
| |
Collapse
|
15
|
Guo L, Wang Q, Zhang D. MicroRNA-4485 ameliorates severe influenza pneumonia via inhibition of the STAT3/PI3K/AKT signaling pathway. Oncol Lett 2020; 20:215. [PMID: 32963621 PMCID: PMC7491079 DOI: 10.3892/ol.2020.12078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to explore the potential roles and mechanism of microRNA-4485 (miR-4485) in severe influenza pneumonia. miR-4485 expression was detected in patients with severe H1N1 pneumonia using quantitative PCR. Furthermore, the effects of aberrantly expressed miR-4485 on H1N1-infected A549 cells were investigated using Cell Counting Kit-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, western blotting and (ELISA) assays. Furthermore, the regulatory relationships between miR-4485 and the STAT3-mediated PI3K/AKT/mTOR signaling pathway were explored using a luciferase reporter and rescue assay. MiR-4485 expression was downregulated following H1N1 infection and in patients with H1N1 pneumonia. In addition, miR-4485 alleviated H1N1-induced A549 cell injury by promoting cell viability and the production of cytokines, as well as reducing apoptosis in A549 cells. Furthermore, STAT3 was revealed to be a target gene of miR-4485. Additionally, STAT3 silencing reversed the protective effects of miR-4485 knockdown on H1N1-induced cell injury via inhibition of the PI3K/AKT/mTOR signaling pathway. In conclusion, miR-4485 inhibited H1N1-induced severe pneumonia in A549 cells by targeting STAT3 via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Longfei Guo
- Department of Critical Care Medicine, Gansu Provincial People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Quanhong Wang
- Department of Critical Care Medicine, Gansu Provincial People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Dongquan Zhang
- Department of Critical Care Medicine, Gansu Provincial People's Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
16
|
Mao M, Zhang A, He Y, Zhang L, Liu W, Song Y, Chen S, Jiang G, Wang X. Development and validation of a novel nomogram to predict overall survival in gastric cancer with lymph node metastasis. Int J Biol Sci 2020; 16:1230-1237. [PMID: 32174797 PMCID: PMC7053322 DOI: 10.7150/ijbs.39161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/26/2019] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) with lymph node metastasis (LNM) at diagnosis is associated with a unstable prognosis and indefinite survival times. The aim of the present study was to construct and validate a model for the Overall survival (OS) estimation for patients with LNM. The nomogram was constructed to predict the OS for LNM-positive GC using the primary group of 836 patients and validated using an independent cohort of 411 patients. Factors in the nomogram were identified by multivariate Cox hazard analysis. The predictive capability of nomogram was evaluated by calibration analysis and decision curve analysis. Multivariate analysis suggested that eight pre-treatment characteristics were used for developing the nomogram. In the primary cohort, the C-index for OS prediction was 0.788 (95% CI: 0.753-0.823), while in validation cohort, the C-index for OS prediction was 0.769 (95% CI: 0. 720-0.818). The calibration plot for the probability of OS and decision curve analyses showed an optimal agreement. Based on the nomogram, we could divided patients into three groups: low-risk group, middle-risk group and a high-risk group(p <0.001).Taken together, we have provided an easy-to-used and accurate tool for predicting OS, furthermore could be used for risk stratification of OS of LNM-positive GC patients.
Collapse
Affiliation(s)
- Minjie Mao
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi He
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lin Zhang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Liu
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiling Song
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuqi Chen
- Guangzhou Medical University, Guangzhou, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xueping Wang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Yan L, Zhang Y, Li K, Wang M, Li J, Qi Z, Wu J, Wang Z, Ling L, Liu H, Wu Y, Lu X, Xu L, Zhu Y, Zhang Y. miR-593-5p inhibit cell proliferation by targeting PLK1 in non small cell lung cancer cells. Pathol Res Pract 2020; 216:152786. [PMID: 31864714 DOI: 10.1016/j.prp.2019.152786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Worldwide, lung cancer has the highest rates of mortality and morbidity, with the majority of its pathology attributable to non-small cell lung cancer (NSCLC). MicroRNAs are pivotal in the occurrence and development of cancer. However, the role of miRNA-593-5p in the progression of NSCLC is not clear. In this study, we investigate, in vitro, whether miRNA-593-5p inhibits NSCLC cell proliferation. To clarify its specific mechanism of inhibition, we used bioinformatics to predict its target genes and identified PLK1. Luciferase reporter assay confirmed the binding of miR-593-5p to the PLK1 3'-UTR in a sequence-specific manner in NSCLC cells. Additionally, we also found through Western blot and quantitative RT-PCR that miR-593-5p down-regulates the expression of PLK1 protein. Finally, PLK1 overexpression was shown to disinhibit NSCLC cell proliferation. Taken together, this evidence suggests that miR-593-5p inhibits NSCLC cell proliferation by inhibiting PLK1 expression.
Collapse
Affiliation(s)
- Liang Yan
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yizonheng Zhang
- First Clinical College, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Kai Li
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Mengze Wang
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Jiaping Li
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zhilin Qi
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Juan Wu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zhen Wang
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Liefeng Ling
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Haijun Liu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yaohua Wu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Xinyu Lu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Lei Xu
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China.
| | - Yiping Zhu
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China.
| | - Yao Zhang
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China.
| |
Collapse
|
18
|
Jin W, Han H, Liu D. Downregulation miR-539 is associated with poor prognosis of gastric cancer patients and aggressive progression of gastric cancer cells. Cancer Biomark 2019; 26:183-191. [DOI: 10.3233/cbm-190384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Cao MX, Tang YL, Zhang WL, Tang YJ, Liang XH. Non-coding RNAs as Regulators of Lymphangiogenesis in Lymphatic Development, Inflammation, and Cancer Metastasis. Front Oncol 2019; 9:916. [PMID: 31616631 PMCID: PMC6763613 DOI: 10.3389/fonc.2019.00916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs (ncRNAs), which do not encode proteins, have pivotal roles in manipulating gene expression in development, physiology, and pathology. Emerging data have shown that ncRNAs can regulate lymphangiogenesis, which refers to lymphatics deriving from preexisting vessels, becomes established during embryogenesis, and has a close relationship with pathological conditions such as lymphatic developmental diseases, inflammation, and cancer. This review summarizes the molecular mechanisms of lymphangiogenesis in lymphatic development, inflammation and cancer metastasis, and discusses ncRNAs' regulatory effects on them. Therapeutic targets with regard to lymphangiogenesis are also discussed.
Collapse
Affiliation(s)
- Ming-Xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Wu X, Li S, Hu X, Xiang X, Halloran M, Yang L, Williams TM, Houghton PJ, Shen C, He Z. mTOR Signaling Upregulates CDC6 via Suppressing miR-3178 and Promotes the Loading of DNA Replication Helicase. Sci Rep 2019; 9:9805. [PMID: 31285446 PMCID: PMC6614418 DOI: 10.1038/s41598-019-46052-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
mTOR signaling pathway is deregulated in most cancers and uncontrolled cell cycle progression is a hallmark of cancer cell. However, the precise molecular mechanisms of the regulation of DNA replication and chromatin metabolism by mTOR signaling are largely unknown. We herein report that mTOR signaling promotes the loading of MCM2-7 helicase onto chromatin and upregulates DNA replication licensing factor CDC6. Pharmacological inhibition of mTOR kinase resulted in CHK1 checkpoint activation and decreased MCM2-7 replication helicase and PCNA associated with chromatins. Further pharmacological and genetic studies demonstrated CDC6 is positively controlled by mTORC1-S6K1 and mTORC2 signaling. miRNA screening revealed mTOR signaling suppresses miR-3178 thereby upregulating CDC6. Analysis of TCGA data found that CDC6 is overexpressed in most cancers and associates with the poor survival of cancer patients. Our findings suggest that mTOR signaling may control DNA replication origin licensing and replisome stability thereby cell cycle progression through CDC6 regulation.
Collapse
Affiliation(s)
- Xianjin Wu
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Shenghua Li
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xing Hu
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaoliang Xiang
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Megan Halloran
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Linlin Yang
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Terence M Williams
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Peter J Houghton
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
| | - Changxian Shen
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
21
|
Identification of a prognostic 28-gene expression signature for gastric cancer with lymphatic metastasis. Biosci Rep 2019; 39:BSR20182179. [PMID: 30971501 PMCID: PMC6499450 DOI: 10.1042/bsr20182179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) patients have high mortality due to late-stage diagnosis, which is closely associated with lymph node metastasis. Exploring the molecular mechanisms of lymphatic metastasis may inform the research into early diagnostics of GC. In the present study, we obtained RNA-Seq data from The Cancer Genome Altas and used Limma package to identify differentially expressed genes (DEGs) between lymphatic metastases and non-lymphatic metastases in GC tissues. Then, we used an elastic net-regularized COX proportional hazard model for gene selection from the DEGs and constructed a regression model composed of 28-gene signatures. Furthermore, we assessed the prognostic performance of the 28-gene signature by analyzing the receive operating characteristic curves. In addition, we selected the gene PELI2 amongst 28 genes and assessed the roles of this gene in GC cells. The good prognostic performance of the 28-gene signature was confirmed in the testing set, which was also validated by GSE66229 dataset. In addition, the biological experiments showed that PELI2 could promote the growth and metastasis of GC cells by regulating vascular endothelial growth factor C. Our study indicates that the identified 28-gene signature could be considered as a sensitive predictive tool for lymphatic metastasis in GC.
Collapse
|
22
|
Wu X, Ding M, Liu Y, Xia X, Xu FL, Yao J, Wang BJ. hsa-miR-3177-5p and hsa-miR-3178 Inhibit 5-HT1A Expression by Binding the 3'-UTR Region in vitro. Front Mol Neurosci 2019; 12:13. [PMID: 30766477 PMCID: PMC6365703 DOI: 10.3389/fnmol.2019.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal expression of the 5-HT1A receptor, which is encoded by the HTR1A gene, leads to susceptibilities to neuropsychiatric disorders such as depression, anxiety, and schizophrenia. miRNAs regulate gene expression by recognizing the 3'-UTR region of mRNA. This study evaluated the miRNAs that might identify and subsequently determine the regulatory mechanism of HTR1A gene. Using the HEK-293, U87, SK-N-SH and SH-SY5Y cell lines, we determined the functional sequence of the 3'-UTR region of the HTR1A gene and predicted miRNA binding. Dual luciferase reporter assay and Western Blot were used to confirm the effect of miRNA mimics and inhibitors on endogenous 5-HT1A receptors. In all cell lines, gene expression of the -17 bp to +443 bp fragment containing the complete sequence of the 3'-UTR region was significantly decreased, although mRNA quantification was not different. The +375 bp to +443 bp sequence, which exhibited the most significant change in relative chemiluminescence intensity, was recognized by hsa-miR-3177-5p and hsa-miR-3178. In HEK-293 and U87 cells, hsa-miR-3177-5p significantly inhibited the 5-HT1A receptor expression, while a hsa-miR-3178 inhibitor up-regulated HTR1A gene expression in SK-N-SH and SH-SY5Y cells. By constructing the pmirGLO-vector with the mutated HTR1A gene, we further confirmed that hsa-miR-3177-5p recognized the HTR1A gene tgtacaca at +377 bp to +384 bp, and the +392 bp to +399 bp fragment cgcgccca was identified by hsa-miR-3178. hsa-miR-3177-5p and hsa-miR-3178 had significant inhibitory effects on expression of the HTR1A gene and 5-HT1A receptor and may directly participate in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yi Liu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Correlations between Histological and Array Comparative Genomic Hybridization Characterizations of Wilms Tumor. Pathol Oncol Res 2019; 25:1199-1206. [DOI: 10.1007/s12253-019-00601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
24
|
Yu H, Wei W, Cao W, Zhan Z, Yan L, Wu K, Xie D, Cai B, Xie Y, Xiao Q. Regulation of cell proliferation and metastasis by microRNA-593-5p in human gastric cancer. Onco Targets Ther 2018; 11:7429-7440. [PMID: 30425531 PMCID: PMC6204852 DOI: 10.2147/ott.s178151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNA (miRNA) array analysis has reported that the expression of miR-593-5p is associated with lymph node metastasis in gastric cancer (GC); however, the function and mechanism of miR-593-5p in GC have not been described yet. miR-593-5p has also not been elucidated widely in other cancers. Methods miR-593-5p expression was detected by quantitative RT-PCR (qRT-PCR) in human GC tissues and cell lines. Cell proliferation was investigated using CCK-8 assays, cell cycle was detected by flow cytometric method, and cell migration and invasion abilities were evaluated by wound-healing and transwell assays. miR-593-5p-influenced gene expression profiles were detected by total gene expression chip method in MGC-803 cells, and miR-593-5p candidate target genes were predicted using bioinformatics methods. The candidate target gene and downstream of miR-593-5p were determined by qRT-PCR, Western blot, and dual-luciferase reporter assays. The effects of miR-593-5p on the growth and metastasis of GC were evaluated by tumor xenograft experiment in vivo. Results miR-593-5p was frequently downregulated in GC patients and GC cell lines. miR-593-5p was significantly correlated with tumor size and distant metastasis in GC patients. miR-593-5p inhibited cell proliferation, migration, and invasion and also arrested cell cycle at the G0/G1 phase in SGC-7901 and MGC-803 cells in vitro. miR-593-5p also suppressed tumor growth and metastasis in vivo. miR-593-5p influenced gene expression profile in MGC-803 cells. MST4 was indirectly targeted by miR-593-5p. miR-593-5p also downregulated FAK, MMP12, and JUN protein expression. Conclusion Our study suggests that miR-593-5p may function as a tumor suppressor in GC through a mechanism that regulates JUN pathway via indirectly targeting the MST4 gene.
Collapse
Affiliation(s)
- Han Yu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, .,Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Kun Wu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Bin Cai
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| |
Collapse
|
25
|
Zhang X, Zhang M, Wang G, Tian Y, He X. Tumor promoter role of miR‑647 in gastric cancer via repression of TP73. Mol Med Rep 2018; 18:3744-3750. [PMID: 30106095 PMCID: PMC6131566 DOI: 10.3892/mmr.2018.9358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
It has previously been demonstrated that miRNA (miR)‑647 exhibits an important role in various cancers, and is aberrantly expressed in gastric cancer (GC). However, the exact role of miR‑647 in GC still remains unclear. The present study aimed to investigate the functional significance of miR‑647 and its target gene in GC. TargetScan and Miranda databases were used to predict the putative targets, and the prediction was validated by Dual‑luciferase Reporter Assays. To investigate whether miR‑647 affects GC cell behavior, a stable miR‑647‑overexpression/low‑expression cell line was generated by transfection with miR‑647 mimic/inhibitor. MTT, Flow Cytometry and Transwell invasion assays were performed to investigate the proliferation, cell apoptosis, migration and invasion properties of MGC‑803 cells. Additionally, reverse transcription‑quantitative polymerase chain reaction and western blot analysis were performed to detect the mRNA and protein expression levels of the apoptosis‑associated genes. The results suggested that tumor protein P73 (TP73) is a target gene of miR‑647. TP73 was markedly decreased following miR‑647 overexpression and significantly increased following miR‑647 inhibition. Following overexpression of miR‑647, the proliferation, migration and invasion of MGC‑803 cells were significantly increased, whereas the percentage of apoptotic cells decreased. Conversely, the proliferation, migration and invasion of MGC‑803 cells were significantly declined, and the percentage of apoptotic cells increased following miR‑647 inhibition. In addition, the B cell lymphoma (Bcl)‑2 Associated X, Apoptosis Regulator/Bcl‑2 ratio was markedly decreased when miR‑647 was overexpressed by miRNA mimics, and significantly increased when miR‑647 expression was inhibited via an miRNA inhibitor. Overall, miR‑647 functions as a tumor promoter in GC by repressing TP73.
Collapse
Affiliation(s)
- Xiangqian Zhang
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Min Zhang
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Guifeng Wang
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Ye Tian
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Xiaolong He
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| |
Collapse
|
26
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
27
|
eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 2018; 21:711-724. [PMID: 29737439 PMCID: PMC6208887 DOI: 10.1007/s10456-018-9620-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3′UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.
Collapse
|
28
|
Wang H, Li K, Mei Y, Huang X, Li Z, Yang Q, Yang H. Sp1 Suppresses miR-3178 to Promote the Metastasis Invasion Cascade via Upregulation of TRIOBP. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:1-11. [PMID: 30195749 PMCID: PMC6023786 DOI: 10.1016/j.omtn.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp1) plays an important role in invasion-metastasis cascade. Sp1 regulation on protein coding genes has been extensively investigated; however, little is known about its regulation on protein non-coding genes. In this study, miR-3178 is reported as a novel target of Sp1 in multiple cancer cell models. Sp1 functions as its transcriptional suppressor as evidenced by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. In line with the pro-metastatic role of Sp1, miR-3178 exerts anti-metastasis function. Overexpression of miR-3178 inhibits both migration and invasion of highly metastatic prostate, lung, and breast cancer cells whereas antagonizing miR-3178 promotes those events in their lowly metastatic counterparts. The in vivo study demonstrates that miR-3178 suppresses the tail vein inoculated prostate cancer cells to form colonies in lung, lymph node, and liver of BALB/c nude mice. miR-3178 directly targets the 3′ UTR of TRIOBP-1 and TRIOBP-5, two isoforms of TRIOBP expressed in prostate, lung, and breast cancer cells. Overexpression of TRIOBP-1 could rescue miR-3178 inhibition on cell migration and invasion. Collectively, our findings reveal the regulatory axis of Sp1/miR-3178/TRIOBP in metastasis cascade. Our results suggest miR-3178 as a promising application to suppress metastasis in Sp1-overexpressed cancers.
Collapse
Affiliation(s)
- Hui Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zhenglin Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Qingzhu Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
29
|
Tzeng HE, Chang AC, Tsai CH, Wang SW, Tang CH. Basic fibroblast growth factor promotes VEGF-C-dependent lymphangiogenesis via inhibition of miR-381 in human chondrosarcoma cells. Oncotarget 2018; 7:38566-38578. [PMID: 27229532 PMCID: PMC5122411 DOI: 10.18632/oncotarget.9570] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
A chondrosarcoma is a common, primary malignant bone tumor that can grow to destroy the bone, produce fractures and develop soft tissue masses. Left untreated, chondrosarcomas metastasize through the vascular system to the lungs and ultimately lead to large metastatic deposits of the malignant cartilage taking over lung volume and function. Vascular endothelial growth factor (VEGF)-C has been implicated in tumor-induced lymphangiogenesis and elevated expression of VEGF-C has been found to correlate with cancer metastasis. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis and metastasis. We have previously reported on the important role of bFGF in angiogenesis in chondrosarcomas. However, the effect of bFGF in VEGF-C regulation and lymphangiogenesis in chondrosarcomas is poorly understood. In this investigation, we demonstrate a correlation exists between bFGF and VEGF-C in tissue specimens from patients with chondrosarcomas. To examine the lymphangiogenic effect of bFGF, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. We found that bFGF-treated chondrosarcomas promoted LEC tube formation and cell migration. In addition, bFGF knockdown inhibited lymphangiogenesis in vitro and in vivo. We also found that bFGF-induced VEGF-C is mediated by the platelet-derived growth factor receptor (PDGFR) and c-Src signaling pathway. Furthermore, bFGF inhibited microRNA-381 expression via the PDGFR and c-Src cascade. Our study is the first to describe the mechanism of bFGF-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, bFGF could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
30
|
Yan LH, Chen ZN, Li-Li, Chen J, Wei WE, Mo XW, Qin YZ, Lin Y, Chen JS. miR-135a promotes gastric cancer progression and resistance to oxaliplatin. Oncotarget 2018; 7:70699-70714. [PMID: 27683111 PMCID: PMC5342584 DOI: 10.18632/oncotarget.12208] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Resistance to oxaliplatin (OXA)-based chemotherapy regimens continues to be a major cause of gastric cancer (GC) recurrence and metastasis. We analyzed GC samples and matched non-tumorous control stomach tissues from 280 patients and found that miR-135a was overexpressed in GC samples relative to control tissues. Tumors with high miR-135a expression were more likely to have aggressive characteristics (high levels of carcino-embryonic antigen, vascular invasion, lymphatic metastasis, and poor differentiation) than those with low levels. Patients with greater tumoral expression of miR-135a had shorter overall survival times and times to disease recurrence. Furthermore, miR-135a, which promotes the proliferation and invasion of OXA-resistant GC cells, inhibited E2F transcription factor 1 (E2F1)-induced apoptosis by downregulating E2F1 and Death-associated protein kinase 2 (DAPK2) expression. Our results indicate that higher levels of miR-135a in GC are associated with shorter survival times and reduced times to disease recurrence. The mechanism whereby miR-135a promotes GC pathogenesis appears to be the suppression of E2F1 expression and Sp1/DAPK2 pathway signaling.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Ning Chen
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Li
- Department of Pharmacy, The People Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia Chen
- Department of Medical Image Center, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wen-E Wei
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Zhou Qin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuan Lin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Si Chen
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
31
|
Lu CY, Chen SY, Peng HL, Kan PY, Chang WC, Yen CJ. Cell-free methylation markers with diagnostic and prognostic potential in hepatocellular carcinoma. Oncotarget 2018; 8:6406-6418. [PMID: 28031532 PMCID: PMC5351641 DOI: 10.18632/oncotarget.14115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with poor prognosis and high mortality. There is a dearth of effective early diagnostic tools, so liver resection surgery and liver transplantation are the only effective medical treatments. The most commonly used marker for HCC detection is serum alpha fetoprotein (AFP), which has low sensitivity and specificity. Because aberrant DNA methylation of genes and miRNAs occurs early in most cancers, we explored whether circulating methylation markers could be promising clinical tools for HCC diagnosis. Using a whole-genome approach, we identified many hyper-methylated miRNAs in HCC. Furthermore, three abnormally methylated genes and one miRNA were combined to establish a methylation predictive model and tested for its diagnostic and prognostic potential in HCC. Using plasma samples, the predictive model exhibited high sensitivity and specificity (> 80%) for HBV-related HCC. Most importantly, nearly 75% of patients who could not be diagnosed with AFP at 20 ng/mL were detected by this model. Further, the predictive model exhibited an exceedingly high ability to predict 5-year overall survival in HCC patients. These data demonstrate the high diagnostic and prognostic potential of methylation markers in the plasma of HCC patients.
Collapse
Affiliation(s)
- Chang-Yi Lu
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shih-Ya Chen
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hui-Ling Peng
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pu-Yeh Kan
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wan-Chi Chang
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Meng F, Yan J, Ma Q, Jiao Y, Han L, Xu J, Yang F, Liu J. Expression status and clinical significance of lncRNA APPAT in the progression of atherosclerosis. PeerJ 2018; 6:e4246. [PMID: 29372117 PMCID: PMC5775756 DOI: 10.7717/peerj.4246] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to modulate cardiovascular diseases, and expression dynamics of lncRNAs in the bloodstream were proposed to be potential biomarkers for clinical diagnosis. However, few cardiovascular diseases-related circulating lncRNAs were identified and their prediction power has not been investigated in depth. Here we report a new circulating lncRNA, atherosclerotic plaque pathogenesis associated transcript (APPAT), and evaluated its role and predicting ability in atherosclerotic development. Methods APPAT was analyzed and screened by high-throughput sequencing, and then detected in vitro and in vivo. Immunofluorescence-fluorescence in situ hybridization (IF-FISH) was utilized to explore distribution and subcellular location of APPAT. The expressing alteration of APPAT in samples of healthy and pathological coronary artery was explored further. We also assessed the level of circulating APPAT in blood samples from healthy individuals, and patients with angina pectoris (AP) or myocardial infarction (MI). Additionally, we predicted and validated microRNA targets of APPAT, then showed the expression level of a candidate target which was primarily measured in human VSMCs cell line, coronary artery, and blood samples. Lastly, we examined the potential indicating ability of APPAT for the risk of AP or MI. Results APPAT showed significant reduction in ox-LDL treated human VSMCs in vitro. It enriched in contractile VSMCs of artery tunica media and mainly existed in cytoplasm. Significant down-regulation of APPAT was found in coronary artery samples with severe stenosis. More importantly, we observed decreased expression of APPAT in blood samples accompanying disease progression. ROC and correlation analyses further verified the relatively high predicting ability of APPAT. We also observed the predicted miRNA exhibited opposite expression direction to that of APPAT. Conclusions This study revealed that circulating lncRNA-APPAT may perform an important function and have some indicating ability on the development of atherosclerosis.
Collapse
Affiliation(s)
- Fanming Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Qiongshan Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yunjuan Jiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Luyang Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jing Xu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Fan Yang
- Department of Internal Neurology, Tongliao KEQU First Hospital, Tongliao, People's Republic of China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
33
|
Liu S, Qu D, Li W, He C, Li S, Wu G, Zhao Q, Shen L, Zhang J, Zheng J. miR‑647 and miR‑1914 promote cancer progression equivalently by downregulating nuclear factor IX in colorectal cancer. Mol Med Rep 2017; 16:8189-8199. [PMID: 28990086 PMCID: PMC5779906 DOI: 10.3892/mmr.2017.7675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have been investigated as diagnostic and prognostic biomarkers for cancer; however, the significance of miRNAs in colorectal cancer (CRC) remains to be elucidated. The aim of the present study was to determine the genetic profiles of CRC tissue, and screen for miRNAs implicated in CRC cell proliferation and migration. RNA sequencing of 10 paired specimens was performed to for screen genes that were upregulated or downregulated in CRC. miRNA expression in CRC specimens and cell lines was confirmed using qPCR analysis. The significance of indicated miRNAs in CRC cell proliferation and migration was evaluated using MTT and scratch wound-healing assays. Online computational prediction, isobaric tags for relative and absolute quantification analysis and a luciferase reporter assay were applied to determine candidate targeted genes for the miRNAs. RNA-seq data revealed miR-1914 as the most prominent miRNA in CRC specimens. qPCR analysis also suggested that the expression of miR-1914, as well as its counterpart miR-647 were elevated in CRC specimens and cell lines. Suppression of miR-647/1914 using small interfering RNAs inhibited CRC SW480 and SW620 cell proliferation, and migration. Nuclear factor I/X (NFIX) was demonstrated to be a candidate for miR-647/1914 and mediated the oncogenic activity of miR-647/1914. In all, miR-647 and miR-1914 were demonstrated to promote the proliferation and migration of CRC cells by directly targeting NFIX. Therapeutic delivery of siRNAs targeting miR-647/1914 and overexpression of NFIX may be feasible approaches for CRC treatment.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dingding Qu
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weiping Li
- Department of Neurology, Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Chenxiang He
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guosheng Wu
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
34
|
Ye G, Huang K, Yu J, Zhao L, Zhu X, Yang Q, Li W, Jiang Y, Zhuang B, Liu H, Shen Z, Wang D, Yan L, Zhang L, Zhou H, Hu Y, Deng H, Liu H, Li G, Qi X. MicroRNA-647 Targets SRF-MYH9 Axis to Suppress Invasion and Metastasis of Gastric Cancer. Theranostics 2017; 7:3338-3353. [PMID: 28900514 PMCID: PMC5595136 DOI: 10.7150/thno.20512] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in regulating tumour development and progression. Here we show that miR-647 is repressed in gastric cancer (GC), and associated with GC metastasis. Moreover, we identify that miR-647 can suppress GC cell migration and invasion in vitro. Mechanistically, we confirm miR-647 directly binds to the 3' untranslated regions of SRF mRNA, and SRF binds to the CArG box located at the MYH9 promoter. CCG-1423, an inhibitor of RhoA/SRF-mediated gene transcription, inhibits the expression of MYH9, especially in SRF downregulated cells. Overexpression of miR-647 inhibits MGC 80-3 cells' metastasis in orthotropic GC models, but increasing SRF expression in these cells reverses this change. Importantly, we found the synergistic inhibition effect of CCG-1423 and agomir-647, an engineered miRNA mimic, on cancer metastasis in orthotropic GC models. Our study demonstrates that miR-647 functions as a tumor metastasis suppressor in GC by targeting SRF/MYH9 axis.
Collapse
Affiliation(s)
- Gengtai Ye
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Kunzhai Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Xianjun Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Qingbin Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Wende Li
- Guangdong Key Laboratory of Laboratory Animal, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Baoxiong Zhuang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Hao Liu
- Leder Human Biology and Translational Medicine, Biology and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Da Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Li Yan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Lei Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Haipeng Zhou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Xiaolong Qi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| |
Collapse
|
35
|
Riazalhosseini B, Mohamed R, Apalasamy YD, Langmia IM, Mohamed Z. Circulating microRNA as a marker for predicting liver disease progression in patients with chronic hepatitis B. Rev Soc Bras Med Trop 2017; 50:161-166. [PMID: 28562750 DOI: 10.1590/0037-8682-0416-2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/22/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Hepatitis B virus (HBV) constitutes an important risk factor for cirrhosis and hepatocellular carcinoma (HCC). The link between circulating microRNAs and HBV has been previously reported, although not as a marker of liver disease progression in chronic hepatitis B (CHB). The aim of this study was to characterize miRNA expression profiles between CHB with and without cirrhosis or HCC. METHODS: A total of 12 subjects were recruited in this study. We employed an Affymetrix Gene Chip miRNA 3.0 Array to provide universal miRNA coverage. We compared microRNA expression profiles between CHB with and without cirrhosis/HCC to discover possible prognostic markers associated with the progression of CHB. RESULTS: Our results indicated 8 differently expressed microRNAs, of which miRNA-935, miRNA-342, miRNA-339, miRNA-4508, miRNA-3615, and miRNA-3200 were up-regulated, whereas miRNA-182 and miRNA-4485 were down-regulated in patients with CHB who progressed to cirrhosis/HCC as compared to those without progression. CONCLUSIONS: We demonstrated the differential expression of miRNA-935, miRNA-342, miRNA-339, miRNA-4508, miRNA-3615, miRNA-3200, miRNA-182, and miRNA-4485 between patients with HBV without cirrhosis/HCC and those who had progressed to these more severe conditions. These miRNAs may serve as novel and non-invasive prognostic markers for early detection of CHB-infected patients who are at risk of progression to cirrhosis and/or HCC.
Collapse
Affiliation(s)
- Behnaz Riazalhosseini
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rosmawati Mohamed
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yamunah Devi Apalasamy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA, Devaskar SU. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS One 2017; 12:e0176493. [PMID: 28463968 PMCID: PMC5413012 DOI: 10.1371/journal.pone.0176493] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
Placental insufficiency leading to intrauterine growth restriction (IUGR) demonstrates perturbed gene expression affecting placental angiogenesis and nutrient transfer from mother to fetus. To understand the post-transcriptional mechanisms underlying such placental gene expression changes, our objective was to identify key non-coding microRNAs that express biological function. To this end, we initially undertook microarrays targeting microRNAs in a small sub-set of placentas of appropriate (AGA) versus small for gestational age (SGA) weight infants, and observed up-regulation of 97 miRs and down-regulation of 44 miRs in SGA versus AGA. In a larger cohort of samples (AGA, n = 21; SGA, n = 11; IUGR subset, n = 5), we validated by qRT-PCR differential expression of three specific microRNAs (miR-10b, -363 and -149) that target genes mediating angiogenesis and nutrient transfer. Validation yielded an increase in miR-10b and -363 expression of ~2.5-fold (p<0.02 each) in SGA versus AGA, and of ~3-fold (p<0.005) in IUGR versus AGA, with no significant change despite a trending increase in miR-149. To further establish a cause-and-effect paradigm, employing human HTR8 trophoblast cells, we assessed the effect of nutrient deprivation on miR expression and inhibition of endogenous miRs on target gene expression. In-vitro nutrient deprivation (~50%) increased the expression of miR-10b and miR-149 by 1.5-fold (p<0.02) while decreasing miR-363 (p<0.0001). Inhibition of endogenous miRs employing antisense sequences against miR-10b, -363 and -149 revealed an increase respectively in the expression of the target genes KLF-4 (transcription factor which regulates angiogenesis), SNAT1 and 2 (sodium coupled neutral amino acid transporters) and LAT2 (leucine amino acid transporter), which translated into a similar change in the corresponding proteins. Finally to establish functional significance we performed dual-luciferase reporter assays with 3'-insertion of miR-10b alone and observed a ~10% reduction in the 5'-luciferase activity versus the control. Lastly, we further validated by microarray and employing MirWalk software that the pathways and target genes identified by differentially expressed miRs in SGA/IUGR compared to AGA are consistent in a larger cohort. We have established the biological significance of various miRs that target common transcripts mediating pathways of importance, which are perturbed in the human IUGR placenta.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Katie Kempf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - David A. Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
37
|
Fukagawa S, Miyata K, Yotsumoto F, Kiyoshima C, Nam SO, Anan H, Katsuda T, Miyahara D, Murata M, Yagi H, Shirota K, Yasunaga S, Kato K, Miyamoto S. MicroRNA-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci 2017; 108:886-896. [PMID: 28231414 PMCID: PMC5448652 DOI: 10.1111/cas.13210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/11/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Recently, several molecularly targeted anticancer agents have been developed for ovarian cancer; however, its prognosis remains extremely poor. The development of molecularly targeted therapy, as well as companion diagnostics, is required to improve outcomes for patients with ovarian cancer. In this study, to identify microRNAs (miRNAs) involved in the progression of ovarian cancer we analyzed serum miRNAs in patients with ovarian cancer using miRNA array and quantitative RT-PCR and examined the anticancer properties of miRNA expression in ovarian cancer cells. In patients with ovarian cancer, high amount of miR-135a-3p in serum samples was significantly associated with favorable clinical prognosis. The amount of miR-135a-3p was significantly decreased in patients with ovarian cancer compared with patients with ovarian cysts or normal ovaries. In SKOV-3 and ES-2 human ovarian cancer cells, enhanced expression of miR-135a-3p induced drug sensitivity to cisplatin and paclitaxel and suppressed cell proliferation and xenograft tumor growth. These findings suggest that miR-135a-3p may be considered as a biomarker and a therapeutic agent in ovarian cancer.
Collapse
Affiliation(s)
- Satoshi Fukagawa
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
| | - Kohei Miyata
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
| | | | - Chihiro Kiyoshima
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
| | - Sung Ouk Nam
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Haruchika Anan
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Takahiro Katsuda
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Daisuke Miyahara
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Masaharu Murata
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Hiroshi Yagi
- Department of Obstetrics and GynecologyFaculty of MedicineKyushu UniversityFukuokaJapan
| | - Kyoko Shirota
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Shin'ichiro Yasunaga
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
- Department of BiochemistryFaculty of MedicineFukuoka UniversityFukuokaJapan
| | - Kiyoko Kato
- Department of Obstetrics and GynecologyFaculty of MedicineKyushu UniversityFukuokaJapan
| | - Shingo Miyamoto
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| |
Collapse
|
38
|
Liu J, Wang C, Liu X, Wang Y, Liu H, Ren G, Zhu L, Sun Z, Chen Z. Low expression of miR-1469 predicts disease progression and unfavorable post-surgical clinical outcomes in patients with esophageal squamous cell cancer. Oncol Lett 2017; 13:4469-4474. [PMID: 28588716 DOI: 10.3892/ol.2017.5957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that deregulated microRNA (miRNA/miR) expression has a profound impact on biological and pathological processes; abnormal miR-1469 expression was detected in several human malignancies. In the present study, the clinicopathological and prognostic significance of miR-1469 was assessed in 129 patients with esophageal squamous cell cancer (ESCC) who successfully underwent esophagectomy and esophagogastrostomy. Low miR-1469 expression was identified to be significantly associated with tumor invasion depth (P=0.026), lymph node metastasis status (P<0.001) and pathological tumor stage (P<0.001). Survival analysis demonstrated that patients with low miR-1469 expression had significantly poorer disease-free survival (DFS) (18.2 vs. 43.2%; P=0.004) and overall survival (29.1 vs. 47.3%; P=0.029) 5 years following surgery compared with patients with high miR-1469 expression. Univariate survival analysis demonstrated that low miR-1469 expression significantly predicted unfavorable 5-year DFS among patients with N1-3 disease (7.1 vs. 31.8%; P=0.043). The results from the present study indicate that miR-1469 expression could be used in the clinic to predict ESCC progression and prognosis. This will aid in the identification of high-risk patients with ESCC that require more aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chuifang Wang
- Department of Thoracic Surgery, Liaocheng Tumor Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yu Wang
- Department of Gastroenterology, Zhangqiu People's Hospital, Zhangqiu, Shandong 250200, P.R. China
| | - Haibo Liu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guohua Ren
- Department of Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Liangming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhigang Sun
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
39
|
Cao W, Wei W, Zhan Z, Xie D, Xie Y, Xiao Q. Role of miR-647 in human gastric cancer suppression. Oncol Rep 2017; 37:1401-1411. [PMID: 28098914 PMCID: PMC5364874 DOI: 10.3892/or.2017.5383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) regulate various oncogenes concomitantly, resulting in tumor suppression. They regulate proliferation and migration pathways in tumor development, suggesting a potential therapeutic role. In the present study, we found that miR-647 was markedly downregulated in gastric cancer (GC), and was significantly correlated with reduced tumor size and metastasis. In addition, miR-647 was also reduced in GC cell lines. Furthermore, overexpression of miR-647 in the GC cell lines inhibited cell proliferation, promoted cell cycle arrest at the G0/G1 phase and induced cell apoptosis. miR-647 also significantly inhibited tumor growth in vivo. Notably, we found that miR-647 overexpression suppressed the migration and invasion of the cancer cells, particularly liver metastasis in nude mice. miR-647 also reduced the expression levels of genes associated with proliferation and metastasis in tumors, including ANK2, FAK, MMP2, MMP12, CD44 and SNAIL1. Overall, our findings demonstrated that miR-647 exerts powerful antitumorigenic effects in vitro and in vivo, and may represent a promising therapeutic agent against GC.
Collapse
Affiliation(s)
- Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yubo Xie
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
40
|
Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features. Int J Oncol 2016; 50:49-65. [PMID: 27959387 PMCID: PMC5182011 DOI: 10.3892/ijo.2016.3800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
Alcohol consumption is a risk factor for breast cancer. Little is known regarding the mechanism, although it is assumed that acetaldehyde or estrogen mediated pathways play a role. We previously showed that long-term exposure to 2.5 mM ethanol (blood alcohol ~0.012%) of MCF-12A, a human normal epithelial breast cell line, induced epithelial mesenchymal transition (EMT) and oncogenic transformation. In this study, we investigated in the human breast cancer cell line MCF-7, whether a similar exposure to ethanol at concentrations ranging up to peak blood levels in heavy drinkers would increase malignant progression. Short-term (1-week) incubation to ethanol at as low as 1-5 mM (corresponding to blood alcohol concentration of ~0.0048-0.024%) upregulated the stem cell related proteins Oct4 and Nanog, but they were reduced after exposure at 25 mM. Long-term (4-week) exposure to 25 mM ethanol upregulated the Oct4 and Nanog proteins, as well as the malignancy marker Ceacam6. DNA microarray analysis in cells exposed for 1 week showed upregulated expression of metallothionein genes, particularly MT1X. Long-term exposure upregulated expression of some malignancy related genes (STEAP4, SERPINA3, SAMD9, GDF15, KRT15, ITGB6, TP63, and PGR, as well as the CEACAM, interferon related, and HLA gene families). Some of these findings were validated by RT-PCR. A similar treatment also modulated numerous microRNAs (miRs) including one regulator of Oct4 as well as miRs involved in oncogenesis and/or malignancy, with only a few estrogen-induced miRs. Long-term 25 mM ethanol also induced a 5.6-fold upregulation of anchorage-independent growth, an indicator of malignant-like features. Exposure to acetaldehyde resulted in little or no effect comparable to that of ethanol. The previously shown alcohol induction of oncogenic transformation of normal breast cells is now complemented by the current results suggesting alcohol's potential involvement in malignant progression of breast cancer.
Collapse
|
41
|
Fan H, Shao M, Huang S, Liu Y, Liu J, Wang Z, Diao J, Liu Y, Tong LI, Fan Q. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1. Oncol Lett 2016; 11:3729-3734. [PMID: 27313684 DOI: 10.3892/ol.2016.4438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
Curcumin (Cur) exhibits radiosensitization effects to a variety of malignant tumors. The present study investigates the radiosensitizing effect of Cur on nasopharyngeal carcinoma (NPC) cells and whether its mechanism is associated with microRNA-593 (miR-593) and multidrug resistance gene 1 (MDR1). A clonogenic assay was performed to measure the radiosensitizing effect. The expression of miR-593 and MDR1 was analyzed by quantitative polymerase chain reaction (qPCR) or western blot assay. A transplanted tumor model was established to identify the radiosensitizing effect in vivo. A luciferase-based reporter was constructed to evaluate the effect of direct binding of miR-593 to the putative target site on the 3' UTR of MDR1. The clonogenic assay showed that Cur enhanced the radiosensitivity of cells. Cur (100 mg/kg) combined with 4 Gy irradiation inhibited the growth of a transplanted tumor model in vivo, resulting in the higher inhibition ratio compared with the radiotherapy-alone group. These results demonstrated that Cur had a radiosensitizing effect on NPC cells in vivo and in vitro; Cur-mediated upregulation of miR-593 resulted in reduced MDR1 expression, which may promote radiosensitivity of NPC cells.
Collapse
Affiliation(s)
- Haoning Fan
- Department of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Meng Shao
- Department of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shaohui Huang
- Department of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Liu
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Liu
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiyuan Wang
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianxin Diao
- Department of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuanliang Liu
- Department of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - L I Tong
- Department of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qin Fan
- Department of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
42
|
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. J Biotechnol 2016; 235:150-61. [PMID: 26993211 DOI: 10.1016/j.jbiotec.2016.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics.
Collapse
|
43
|
Saad MA, Kuo SZ, Rahimy E, Zou AE, Korrapati A, Rahimy M, Kim E, Zheng H, Yu MA, Wang-Rodriguez J, Ongkeko WM. Alcohol-dysregulated miR-30a and miR-934 in head and neck squamous cell carcinoma. Mol Cancer 2015; 14:181. [PMID: 26472042 PMCID: PMC4608114 DOI: 10.1186/s12943-015-0452-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol consumption is a well-established risk factor for head and neck squamous cell carcinoma (HNSCC); however, the molecular mechanisms by which alcohol promotes HNSCC pathogenesis and progression remain poorly understood. Our study sought to identify microRNAs that are dysregulated in alcohol-associated HNSCC and investigate their contribution to the malignant phenotype. METHOD Using RNA-sequencing data from 136 HNSCC patients, we compared the expression levels of 1,046 microRNAs between drinking and non-drinking cohorts. Dysregulated microRNAs were verified by qRT-PCR in normal oral keratinocytes treated with biologically relevant doses of ethanol and acetaldehyde. The most promising microRNA candidates were investigated for their effects on cellular proliferation and invasion, sensitivity to cisplatin, and expression of cancer stem cell genes. Finally, putative target genes were identified and evaluated in vitro to further establish roles for these miRNAs in alcohol-associated HNSCC. RESULTS From RNA-sequencing analysis we identified 8 miRNAs to be significantly upregulated in alcohol-associated HNSCCs. qRT-PCR experiments determined that among these candidates, miR-30a and miR-934 were the most highly upregulated in vitro by alcohol and acetaldehyde. Overexpression of miR-30a and miR-934 in normal and HNSCC cell lines produced up to a 2-fold increase in cellular proliferation, as well as induction of the anti-apoptotic gene BCL-2. Upon inhibition of these miRNAs, HNSCC cell lines exhibited increased sensitivity to cisplatin and reduced matrigel invasion. miRNA knockdown also indicated direct targeting of several tumor suppressor genes by miR-30a and miR-934. CONCLUSIONS Alcohol induces the dysregulation of miR-30a and miR-934, which may play crucial roles in HNSCC pathogenesis and progression. Future investigation of the alcohol-mediated pathways effecting these transformations will prove valuable for furthering the understanding and treatment of alcohol-associated HNSCC.
Collapse
Affiliation(s)
- Maarouf A Saad
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Selena Z Kuo
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Elham Rahimy
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Angela E Zou
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Avinaash Korrapati
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Mehran Rahimy
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Elizabeth Kim
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Hao Zheng
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Michael Andrew Yu
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Jessica Wang-Rodriguez
- Department of Pathology, Veterans Administration Health Care System, San Diego, CA, USA. .,Department of Pathology, University of California, San Diego, CA, USA.
| | - Weg M Ongkeko
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
44
|
Zheng YB, Xiao GC, Tong SL, Ding Y, Wang QS, Li SB, Hao ZN. Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling. World J Gastroenterol 2015; 21:7197-7207. [PMID: 26109806 PMCID: PMC4476881 DOI: 10.3748/wjg.v21.i23.7197] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/26/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.
METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay, respectively. Cell apoptosis of MGC-803 cells was measured using flow cytometry, DAPI staining assay and caspase-3 activity assay. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression of microRNA-124 (miR-124) in response to paeoniflorin. The expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), phospho-Akt (p-Akt) and phospho-signal transducer and activator of transcription 3 (p-STAT3) were also measured by quantitative RT-PCR and Western blot analysis in normal, miR-124 and anti-miR-124 over-expressing MGC-803 cells, treated with paeoniflorin.
RESULTS: Paeoniflorin was found to inhibit MGC-803 cell viability in a dose-dependent manner. Paeoniflorin treatment was associated with the induction of apoptosis and caspase-3 activity in MGC-803 cells. Paeoniflorin treatment significantly increased miR-124 levels and inhibited the expression of PI3K, Akt, p-Akt and p-STAT3 in MGC-803 cells. Interestingly, the over-expression of miR-124 inhibits PI3K/Akt and phospho-STAT3 expressions in MGC-803 cells. PI3K agonist (IGF-1, 1 μg/10 μL) or over-expression of STAT3 reversed the effect of paeoniflorin on the proliferation of MGC-803 cells. Over-expression of anti-miR-124 in MGC-803 cells reversed paeoniflorin-induced up-regulation.
CONCLUSION: In summary, the in vitro data suggest that paeoniflorin is a potential novel therapeutic agent against gastric carcinoma, which inhibits cell viability and induces apoptosis through the up-regulation of miR-124 and suppression of PI3K/Akt and STAT3 signaling.
Collapse
|
45
|
Chen F, Tian Y, Pang EJ, Wang Y, Li L. MALAT2-activated long noncoding RNA indicates a biomarker of poor prognosis in gastric cancer. Cancer Gene Ther 2015:cgt20156. [PMID: 25721209 DOI: 10.1038/cgt.2015.6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
The purpose of this study is to investigate the role of the long noncoding RNA metastasis associated lung adenocarcinoma transcript 2 (MALAT2) in the prognosis of stage II/III gastric cancer (GC) patients. The expression of MALAT2 was evaluated in cancer tissues from 146 stage II/III GC patients undergoing radical resection and 60 paired normal samples using quantitative real-time reverse transcriptase PCR. Differences in the expression of MALAT2 between 23 GC and paired normal colonic mucosa samples were analysed with the Wilcoxon test. Relationships between the expression level of MALAT2, patient clinico-pathological parameters and disease-free survival and overall survival were analysed using the uni-variate Kaplan-Meier method and the multivariate COX regression model. The quantitative polymerase chain reaction results showed that MALAT2 was frequently over-expressed in cancer tissues and this over-expression was found to significantly correlate with lymph node metastasis and tumor stage. The ectopic expression of MALAT2 contributed to the migration of human GC SGC-7901 cells, whereas knockdown of MALAT2 inhibited the migration of the SGC-7901 cells in vitro. Further investigation into the underlying mechanisms responsible for the migratory effects revealed that MALAT2 induced the epithelial-mesenchymal transition (EMT) through an MEK/extracellular signal-regulated kinase-dependent mechanism as treatment with the MEK inhibitor, U0126, decreased migration and reversed the EMT in the MALAT2 over-expressed SGC-7901 cells. The expression of MALAT2 is upregulated in GC tissues, and a higher expression level of MALAT2 might serve as a negative prognostic marker in stage II/III GC patients which implies the potential application of MALAT2 in the therapeutic treatment of GC.Cancer Gene Therapy advance online publication, 27 February 2015; doi:10.1038/cgt.2015.6.
Collapse
Affiliation(s)
- F Chen
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y Tian
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - E-J Pang
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y Wang
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - L Li
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
46
|
MicroRNA let-7b suppresses human gastric cancer malignancy by targeting ING1. Cancer Gene Ther 2015; 22:122-9. [PMID: 25613480 DOI: 10.1038/cgt.2014.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. In this study, we investigate whether let-7b acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers. We analyzed the expression of let-7b in 60 pair-matched gastric neoplastic and adjacent non-neoplastic tissues by quantitative real-time polymerase chain reaction. Functional analysis of let-7b expression was assessed in vitro in gastric cancer cell lines with let-7b precursor and inhibitor. The roles of let-7b in tumorigenesis and tumor metastasis were analyzed using a stable let-7b expression plasmid in nude mice. A luciferase reporter assay was used to assess the effect of let-7b on inhibitor of growth family, member 1 (ING1) expression. Real-time PCR showed decreased levels of let-7b expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7b mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7b could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7b. Luciferase reporter assays demonstrated that let-7b directly binds to the 3'-UTR of ING1, and real-time PCR and western blotting further indicated that let-7b downregulated the expression of ING1 at the mRNA and protein levels. Our study demonstrates that overexpression of let-7b in gastric cancer can inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene ING1. These findings help clarify the molecular mechanisms involved in gastric cancer metastasis and indicate that let-7b modulation may be a bona fide treatment of gastric cancer.
Collapse
|
47
|
Wu Q, Luo G, Yang Z, Zhu F, An Y, Shi Y, Fan D. miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells. FEBS Lett 2014; 588:2055-62. [PMID: 24801601 DOI: 10.1016/j.febslet.2014.04.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 12/31/2022]
Abstract
This study aimed to test the exact functions and potential mechanisms of miR-17-5p in gastric cancer. Using real-time PCR, miR-17-5p was found to be expressed more highly in gastric cancer compared with-normal tissues. Gain- and loss-of-function assays demonstrated that miR-17-5p increased the proliferation and growth of gastric cancer cells in vitro and in vivo. Through reporter gene and western blot assays, SOCS6 was shown to be a direct target of miR-17-5p, and proliferative assays confirmed that SOCS6 exerted opposing function to that of miR-17-5p in gastric cancer. In short, miR-17-5p might function as a pro-proliferative factor by repressing SOCS6 in gastric cancer.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guanhong Luo
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhiping Yang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Zhu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yanxin An
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
48
|
Morello M, Minciacchi VR, de Candia P, Yang J, Posadas E, Kim H, Griffiths D, Bhowmick N, Chung LWK, Gandellini P, Freeman MR, Demichelis F, Di Vizio D. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 2013; 12:3526-36. [PMID: 24091630 PMCID: PMC3906338 DOI: 10.4161/cc.26539] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer cells release atypically large extracellular vesicles (EVs), termed large oncosomes, which may play a role in the tumor microenvironment by transporting bioactive molecules across tissue spaces and through the blood stream. In this study, we applied a novel method for selective isolation of large oncosomes applicable to human platelet-poor plasma, where the presence of caveolin-1-positive large oncosomes identified patients with metastatic disease. This procedure was also used to validate results of a miRNA array performed on heterogeneous populations of EVs isolated from tumorigenic RWPE-2 prostate cells and from isogenic non-tumorigenic RWPE-1 cells. The results showed that distinct classes of miRNAs are expressed at higher levels in EVs derived from the tumorigenic cells in comparison to their non-tumorigenic counterpart. Large oncosomes enhanced migration of cancer-associated fibroblasts (CAFs), an effect that was increased by miR-1227, a miRNA abundant in large oncosomes produced by RWPE-2 cells. Our findings suggest that large oncosomes in the circulation report metastatic disease in patients with prostate cancer, and that this class of EV harbors functional molecules that may play a role in conditioning the tumor microenvironment.
Collapse
Affiliation(s)
- Matteo Morello
- Cancer Biology Program; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|