1
|
Li Z, Benabdallah N, Luo J, Wahl RL, Thorek DLJ, Jha AK. ISIT-QA: In Silico Imaging Trial to Evaluate a Low-Count Quantitative SPECT Method Across Multiple Scanner-Collimator Configurations for 223Ra-Based Radiopharmaceutical Therapies. J Nucl Med 2024; 65:810-817. [PMID: 38575187 PMCID: PMC11064831 DOI: 10.2967/jnumed.123.266719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/13/2024] [Indexed: 04/06/2024] Open
Abstract
Personalized dose-based treatment planning requires accurate and reproducible noninvasive measurements to ensure safety and effectiveness. Dose estimation using SPECT is possible but challenging for alpha (α)-particle-emitting radiopharmaceutical therapy (α-RPT) because of complex γ-emission spectra, extremely low counts, and various image-degrading artifacts across a plethora of scanner-collimator configurations. Through the incorporation of physics-based considerations and skipping of the potentially lossy voxel-based reconstruction step, a recently developed projection-domain low-count quantitative SPECT (LC-QSPECT) method has the potential to provide reproducible, accurate, and precise activity concentration and dose measures across multiple scanners, as is typically the case in multicenter settings. To assess this potential, we conducted an in silico imaging trial to evaluate the LC-QSPECT method for a 223Ra-based α-RPT, with the trial recapitulating patient and imaging system variabilities. Methods: A virtual imaging trial titled In Silico Imaging Trial for Quantitation Accuracy (ISIT-QA) was designed with the objectives of evaluating the performance of the LC-QSPECT method across multiple scanner-collimator configurations and comparing performance with a conventional reconstruction-based quantification method. In this trial, we simulated 280 realistic virtual patients with bone-metastatic castration-resistant prostate cancer treated with 223Ra-based α-RPT. The trial was conducted with 9 simulated SPECT scanner-collimator configurations. The primary objective of this trial was to evaluate the reproducibility of dose estimates across multiple scanner-collimator configurations using LC-QSPECT by calculating the intraclass correlation coefficient. Additionally, we compared the reproducibility and evaluated the accuracy of both considered quantification methods across multiple scanner-collimator configurations. Finally, the repeatability of the methods was evaluated in a test-retest study. Results: In this trial, data from 268 223RaCl2 treated virtual prostate cancer patients, with a total of 2,903 lesions, were used to evaluate LC-QSPECT. LC-QSPECT provided dose estimates with good reproducibility across the 9 scanner-collimator configurations (intraclass correlation coefficient > 0.75) and high accuracy (ensemble average values of recovery coefficients ranged from 1.00 to 1.02). Compared with conventional reconstruction-based quantification, LC-QSPECT yielded significantly improved reproducibility across scanner-collimator configurations, accuracy, and test-retest repeatability ([Formula: see text] Conclusion: LC-QSPECT provides reproducible, accurate, and repeatable dose estimations in 223Ra-based α-RPT as evaluated in ISIT-QA. These findings provide a strong impetus for multicenter clinical evaluations of LC-QSPECT in dose quantification for α-RPTs.
Collapse
Affiliation(s)
- Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Nadia Benabdallah
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University, St. Louis, Missouri
| | - Jingqin Luo
- Siteman Cancer Center, Washington University, St. Louis, Missouri
- Division of Public Health Sciences, Department of Surgery, Washington University, St. Louis, Missouri; and
- Division of Biostatistics, Washington University, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Siteman Cancer Center, Washington University, St. Louis, Missouri
| | - Daniel L J Thorek
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University, St. Louis, Missouri
- Siteman Cancer Center, Washington University, St. Louis, Missouri
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri;
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Siteman Cancer Center, Washington University, St. Louis, Missouri
| |
Collapse
|
2
|
Pijeira MSO, Gomes-da-Silva NC, Ricci-Junior E, Alencar LMR, İlem-Özdemir D, Cavalcanti ADS, Machado DE, Perini JA, Santos-Oliveira R. Micellar solution of [ 223Ra]RaCl 2: Reaching renal excretion, potent efficacy in osteoblastic osteosarcoma in PDX model, biochemistry alterations and pharmacokinetics. Int J Pharm 2024; 652:123765. [PMID: 38195032 DOI: 10.1016/j.ijpharm.2023.123765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/27/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
Despite the successful use of the radiopharmaceutical radium-223 dichloride ([223Ra]RaCl2) for targeted alpha therapy of castration-resistant prostate cancer patients with bone metastases, some short-term side effects, such as diarrhea and vomiting, have been documented, causing patient discomfort. Hence, we prepared a nanosized micellar solution of [223Ra]RaCl2 and evaluated its biodistribution, pharmacokinetics, and induced biochemical changes in healthy mice up to 96 h after intraperitoneal administration as an alternative to overcome the previous limitations. In addition, we evaluated the bone specificity of micellar [223Ra]RaCl2 in patient-derived xenografts in the osteosarcoma model. The biodistribution studies revealed the high bone-targeting properties of the micellar [223Ra]RaCl2. Interestingly, the liver uptake remained significantly low (%ID/g = 0.1-0.02) from 24 to 96 h after administration. In addition, the micellar [223Ra]RaCl2 exhibited a significantly higher uptake in left (%ID/g = 0.85-0.23) and right (%ID/g = 0.76-0.24) kidneys than in small (%ID/g = 0.43-0.06) and large intestines (%ID/g = 0.24-0.09) over time, suggesting its excretion pathway is primarily through the kidneys into the urine, in contrast to the non-micellar [223Ra]RaCl2. The micellar [223Ra]RaCl2 also had low distribution volume (0.055 ± 0.003 L) and longer elimination half-life (28 ± 12 days). This nanosystem was unable to change the enzymatic activities of alanine aminotransferase, aspartate aminotransferase, gamma GT, glucose, and liquiform lipase in the treated mice. Finally, microscopic examination of the animals' osteosarcoma tumors treated with micellar [223Ra]RaCl2 indicated regression of the tumor, with large areas of necrosis. In contrast, in the control group, we observed tumor cellularity and cell anaplasia, mitotic figures and formation of neoplastic extracellular bone matrix, which are typical features of osteosarcoma. Therefore, our findings demonstrated the efficiency and safety of nanosized micellar formulations to minimize the gastrointestinal excretion pathway of the clinical radiopharmaceutical [223Ra]RaCl2, in addition to promoting regression of the osteosarcoma. Further studies must be performed to assess dose-response outcomes and organ/tissue dosimetry for clinical translation.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, DEFARMED, Rio de Janeiro Federal University, Rio de Janeiro 21941900, Brazil
| | | | - Derya İlem-Özdemir
- School of Pharmacy, Department of Radiopharmacy, Ege University, 35040 Bornova, Izmir, Turkey
| | - Amanda Dos Santos Cavalcanti
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil; State University of Rio de Janeiro, Research Laboratory of Pharmaceutical Sciences, Rio de Janeiro 23070200, Brazil
| | - Daniel Escorsim Machado
- State University of Rio de Janeiro, Research Laboratory of Pharmaceutical Sciences, Rio de Janeiro 23070200, Brazil
| | - Jamila Alessandra Perini
- State University of Rio de Janeiro, Research Laboratory of Pharmaceutical Sciences, Rio de Janeiro 23070200, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil; State University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Brazil.
| |
Collapse
|
3
|
Grønningsæter SR, Blakkisrud J, Selboe S, Revheim ME, Bruland ØS, Bønsdorff TB, Larsen SG, Stokke C. Radiation safety considerations for the use of radium-224-calciumcarbonate-microparticles in patients with peritoneal metastasis. Front Med (Lausanne) 2023; 10:1058914. [PMID: 36844217 PMCID: PMC9945525 DOI: 10.3389/fmed.2023.1058914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Aim Two ongoing phase I studies are investigating the use of radium-224 adsorbed to calcium carbonate micro particles (224Ra-CaCO3-MP) to treat peritoneal metastasis originating from colorectal or ovarian cancer. The aim of this work was to study the level of radiation exposure from the patients to workers at the hospital, carers and members of the public. Method Six patients from the phase 1 trial in patients with colorectal cancer were included in this study. Two days after cytoreductive surgery, they were injected with 7 MBq of 224Ra-CaCO3-MP. At approximately 3, 24 and 120 h after injection, the patients underwent measurements with an ionization chamber and a scintillator-based iodide detector, and whole body gamma camera imaging. The patient was modelled as a planar source to calculate dose rate as a function of distance. Scenarios varying in duration and distance from the patient were created to estimate the potential effective doses from external exposure. Urine and blood samples were collected at approximately 3, 6, 24, 48 and 120 h after injection of 224Ra-CaCO3-MP, to estimate the activity concentration of 224Ra and 212Pb. Results The patients' median effective whole-body half-life of 224Ra-CaCO3-MP ranged from 2.6 to 3.5 days, with a mean value of 3.0 days. In the scenarios with exposure at the hospital (first 8 days), sporadic patient contact resulted in a range of 3.9-6.8 μSv per patient, and daily contact resulted in 4.3-31.3 μSv depending on the scenario. After discharge from the hospital, at day 8, the highest effective dose was received by those with close daily contact; 18.7-83.0 μSv. The highest activity concentrations of 224Ra and 212Pb in urine and blood were found within 6 h, with maximum values of 70 Bq/g for 224Ra and 628 Bq/g for 212Pb. Conclusion The number of patients treated with 224Ra-CaCO3-MP that a single hospital worker - involved in extensive care - can receive per year, before effective doses of 6 mSv from external exposure is exceeded, is in the order of 200-400. Members of the public and family members are expected to receive well below 0.25 mSv, and therefore, no restrictions to reduce external exposure should be required.
Collapse
Affiliation(s)
| | - Johan Blakkisrud
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Silje Selboe
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Sverre Bruland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Lassmann M, Eberlein U. Comparing absorbed doses and radiation risk of the α-emitting bone-seekers [ 223Ra]RaCl 2 and [ 224Ra]RaCl 2. Front Med (Lausanne) 2023; 9:1057373. [PMID: 36687439 PMCID: PMC9847387 DOI: 10.3389/fmed.2022.1057373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
[223Ra]RaCl2 and [224Ra]RaCl2 are bone seekers, emitting high LET, and short range (< 100 μm) alpha-particles. Both radionuclides show similar decay properties; the total alpha energies are comparable (223Ra: ≈28 MeV, 224Ra: ≈26 MeV). [224Ra]RaCl2 has been used from the mid-1940s until 1990 for treating different bone and joint diseases with activities of up to approximately 50 MBq [224Ra]RaCl2. In 2013 [223Ra]RaCl2 obtained marketing authorization by the FDA and by the European Union for the treatment of metastatic prostate cancer with an activity to administer of 0.055 MBq per kg body weight for six cycles. For intravenous injections in humans a model calculation using the biokinetic model of ICRP67 shows a ratio of organ absorbed dose coefficients (224Ra:223Ra) between 0.37 (liver) and 0.97 except for the kidneys (2.27) and blood (1.57). For the red marrow as primary organ-at-risk, the ratio is 0.57. The differences are mainly caused be the differing half-lives of the decay products of both radium isotopes. Both radionuclides show comparable DNA damage patterns in peripheral blood mononuclear cells after internal ex-vivo irradiation. Data on the long-term radiation-associated side effects are only available for treatment with [224Ra]RaCl2. Two epidemiological studies followed two patient groups treated with [224Ra]RaCl2 for more than 25 years. One of them was the "Spiess study", a cohort of 899 juvenile patients who received several injections of [224Ra]RaCl2 with a mean specific activity of 0.66 MBq/kg. Another patient group of ankylosing spondylitis patients was treated with 10 repeated intravenous injections of [224Ra]RaCl2, 1 MBq each, 1 week apart. In total 1,471 of these patients were followed-up in the "Wick study". In both studies, an increased cancer mortality by leukemia and solid cancers was observed. Similar considerations on long-term effects likely apply to [223Ra]RaCl2 as well since the biokinetics are similar and the absorbed doses in the same range. However, this increased risk will most likely not be observed due to the much shorter life expectancy of prostate cancer patients treated with [223Ra]RaCl2.
Collapse
|
5
|
Abramenkovs A, Hariri M, Spiegelberg D, Nilsson S, Stenerlöw B. Ra-223 induces clustered DNA damage and inhibits cell survival in several prostate cancer cell lines. Transl Oncol 2022; 26:101543. [PMID: 36126563 PMCID: PMC9489499 DOI: 10.1016/j.tranon.2022.101543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 10/24/2022] Open
Abstract
The bone-seeking radiopharmaceutical Xofigo (Radium-223 dichloride) has demonstrated both extended survival and palliative effects in treatment of bone metastases in prostate cancer. The alpha-particle emitter Ra-223, targets regions undergoing active bone remodeling and strongly binds to bone hydroxyapatite (HAp). However, the toxicity mechanism and properties of Ra-223 binding to hydroxyapatite are not fully understood. By exposing 2D and 3D (spheroid) prostate cancer cell models to free and HAp-bound Ra-223 we here studied cell toxicity, apoptosis and formation and repair of DNA double-strand breaks (DSBs). The rapid binding with a high affinity of Ra-223 to bone-like HAp structures was evident (KD= 19.2 × 10-18 M) and almost no dissociation was detected within 24 h. Importantly, there was no significant uptake of Ra-223 in cells. The Ra-223 alpha-particle decay produced track-like distributions of the DNA damage response proteins 53BP1 and ɣH2AX induced high amounts of clustered DSBs in prostate cancer cells and activated DSB repair through non-homologous end-joining (NHEJ). Ra-223 inhibited growth of prostate cancer cells, independent of cell type, and induced high levels of apoptosis. In summary, we suggest the high cell killing efficacy of the Ra-223 was attributed to the clustered DNA damaged sites induced by α-particles.
Collapse
Affiliation(s)
- Andris Abramenkovs
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden
| | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden.
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sten Nilsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden.
| |
Collapse
|
6
|
Li WB, Bouvier-Capely C, Saldarriaga Vargas C, Andersson M, Madas B. Heterogeneity of dose distribution in normal tissues in case of radiopharmaceutical therapy with alpha-emitting radionuclides. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:579-596. [PMID: 36239799 PMCID: PMC9630198 DOI: 10.1007/s00411-022-01000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/06/2022] [Indexed: 05/10/2023]
Abstract
Heterogeneity of dose distribution has been shown at different spatial scales in diagnostic nuclear medicine. In cancer treatment using new radiopharmaceuticals with alpha-particle emitters, it has shown an extensive degree of dose heterogeneity affecting both tumour control and toxicity of organs at risk. This review aims to provide an overview of generalized internal dosimetry in nuclear medicine and highlight the need of consideration of the dose heterogeneity within organs at risk. The current methods used for patient dosimetry in radiopharmaceutical therapy are summarized. Bio-distribution and dose heterogeneities of alpha-particle emitting pharmaceutical 223Ra (Xofigo) within bone tissues are presented as an example. In line with the strategical research agendas of the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radiation Dosimetry Group (EURADOS), future research direction of pharmacokinetic modelling and dosimetry in patient radiopharmaceutical therapy are recommended.
Collapse
Affiliation(s)
- Wei Bo Li
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Medicine, Neuherberg, Germany.
| | - Céline Bouvier-Capely
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRSI, Fontenay-aux-Roses, France
| | - Clarita Saldarriaga Vargas
- Radiation Protection Dosimetry and Calibrations, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michelle Andersson
- Radiation Protection Dosimetry and Calibrations, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Balázs Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
7
|
S-Values for Radium-223 and absorbed doses estimates for 223RACL2 using three computational phantoms. Appl Radiat Isot 2022; 189:110387. [DOI: 10.1016/j.apradiso.2022.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
|
8
|
Tronchin S, Forster JC, Hickson K, Bezak E. Dosimetry in targeted alpha therapy. A systematic review: current findings and what is needed. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fe0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Objective. A systematic review of dosimetry in Targeted Alpha Therapy (TAT) has been performed, identifying the common issues. Approach. The systematic review was performed in accordance with the PRISMA guidelines, and the literature was searched using the Scopus and PubMed databases. Main results. From the systematic review, three key points should be considered when performing dosimetry in TAT. (1) Biodistribution/Biokinetics: the accuracy of the biodistribution data is a limit to accurate dosimetry in TAT. The biodistribution of alpha-emitting radionuclides throughout the body is difficult to image directly, with surrogate radionuclide imaging, blood/faecal sampling, and animal studies able to provide information. (2) Daughter radionuclides: the decay energy of the alpha-emissions is sufficient to break the bond to the targeting vector, resulting in a release of free daughter radionuclides in the body. Accounting for daughter radionuclide migration is essential. (3) Small-scale dosimetry and microdosimetry: due to the short path length and heterogeneous distribution of alpha-emitters at the target site, small-scale/microdosimetry are important to account for the non-uniform dose distribution in a target region, organ or cell and for assessing the biological effect of alpha-particle radiation. Significance. TAT is a form of cancer treatment capable of delivering a highly localised dose to the tumour environment while sparing the surrounding healthy tissue. Dosimetry is an important part of treatment planning and follow up. Being able to accurately predict the radiation dose to the target region and healthy organs could guide the optimal prescribed activity. Detailed dosimetry models accounting for the three points mentioned above will help give confidence in and guide the clinical application of alpha-emitting radionuclides in targeted cancer therapy.
Collapse
|
9
|
Saganich C, Zgaljardic M. Radium-223 Dichloride in Peritoneal Dialysate Following Treatment of Metastatic Castration-resistant Prostate Cancer. HEALTH PHYSICS 2022; 122:433-439. [PMID: 34999662 DOI: 10.1097/hp.0000000000001518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
ABSTRACT Radium-223 dichloride was administrated to a patient with castration-resistant metastatic prostate cancer (mCRPC) undergoing in-home peritoneal dialysis. The peritoneal dialysate and tubing sets were collected following four treatment cycles and analyzed for removable contamination, dose rate, and radioactivity. The purpose of the study was to assess radiation safety concerns and compare data with patients having normal renal function. Sixty-two liters of dialysate in 22 samples were collected over 4 mo. The mean surface dose rate of the dialysate bags was 0.16 μSv h-1 (range 0.11-0.23 μSv h-1). The highest measured removable surface activity was 150 dpm per 100 cm2. The mean cumulative percent of administered activity was 1.7% (range 1.4-1.9%). The mean concentration of 223Ra in dialysate was 4.0 kBq L-1 (range 0.56-14.1 kBq L-1). There was no association between the measured 223Ra activity in dialysate with peritoneal dwell time or the number of exchanges following administration. The measurement of the 211Bi and 223Ra ratio in the dialysate compared with a standard showed an increase of 23% by 40 h post administration. The data presented suggest that 223Ra dialysate can be safely managed in the home without risk of radiation dose or contamination if minimal precautions are taken. Patients with normal renal function have been shown to excrete up to six times more 223Ra in urine compared to those undergoing hemodialysis or peritoneal dialysis. A potential consequence may be an increase in 223Ra activity transiting GI tract leading to intestinal effects.
Collapse
Affiliation(s)
- Christopher Saganich
- Medical Health Physics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065
| | | |
Collapse
|
10
|
Sarnelli A, Belli ML, Azzali I, Loi E, Severi S, Strigari L. Alpha-Emitter Radiopharmaceuticals and External Beam Radiotherapy: A Radiobiological Model for the Combined Treatment. Cancers (Basel) 2022; 14:cancers14041077. [PMID: 35205825 PMCID: PMC8870677 DOI: 10.3390/cancers14041077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Previously published studies combined external beam radiotherapy (EBRT) treatments with different activities of 223Ra. The data of two-year overall survival (2y-OS) and neutropenia (TOX) incidence when combining EBRT and 223Ra are not homogeneous in literature. We adapted the linear-quadratic model (LQ) to 223Ra therapy using brachytherapy formalism for a mixture of radionuclides, considering the contribution of all daughter isotopes in the decay chain. A virtual cohort of patients undergoing 223Ra therapy was derived using data from the literature. The doses delivered using 223Ra and EBRT were converted into biologically equivalent doses. Fixed-effect logistic regression models were derived for both the 2y-OS and TOX and compared with available literature. Based on the literature search, four studies were identified to have reported the 223Ra injection activity levels varying from the placebo (0) to 80 kBq/kg, associated or not with EBRT. Logistic regression models revealed a dose-dependent increase in both the 2y-OS (intercept = -1.364; slope = 0.006; p-value ≤ 0.05) and TOX (-5.035; 0.018; ≤0.05) using the EBRT schedule of 8 Gy in 1 fr. Similar results were obtained for other schedules. Discrepancies between our TOX model and those derived for EBRT combined with chemotherapy are discussed. Radiobiological models allow us to estimate dose-dependent relationships, to predict the OS and TOX following combined 223Ra + EBRT treatment, which will guide future treatment optimization.
Collapse
Affiliation(s)
- Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.S.); (E.L.)
| | - Maria Luisa Belli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.S.); (E.L.)
- Correspondence:
| | - Irene Azzali
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Emiliano Loi
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.S.); (E.L.)
| | - Stefano Severi
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
11
|
Bastiani I, McMahon SJ, Turner P, Redmond KM, McGarry CK, Cole A, O'Sullivan JM, Prise KM, Ainsbury L, Anderson R. Dose estimation after a mixed field exposure: Radium-223 and intensity modulated radiotherapy. Nucl Med Biol 2021; 106-107:10-20. [PMID: 34968973 DOI: 10.1016/j.nucmedbio.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Radium-223 dichloride ([223Ra]RaCl2), a radiopharmaceutical that delivers α-particles to regions of bone metastatic disease, has been proven to improve overall survival of men with metastatic castration resistant prostate cancer (mCRPC). mCRPC patients enrolled on the ADRRAD clinical trial are treated with a mixed field exposure comprising radium-223 (223Ra) and intensity modulated radiotherapy (IMRT). While absorbed dose estimation is an important step in the characterisation of wider systemic radiation risks in nuclear medicine, uncertainties remain for novel radiopharmaceuticals such as 223Ra. METHODS 24-Colour karyotyping was used to quantify the spectrum of chromosome aberrations in peripheral blood lymphocytes of ADRRAD patients at incremental times during their treatment. Dicentric equivalent frequencies were used in standard models for estimation of absorbed blood dose. To account for the mixed field nature of the treatment, existing models were used to determine the ratio of the component radiation types. Additionally, a new approach (M-FISHLET), based on the ratio of cells containing damage consistent with high-LET exposure (complex chromosomal exchanges) and low-LET exposure (simple exchanges), was used as a pseudo ratio for 223Ra:IMRT dose. RESULTS Total IMRT estimated doses delivered to the blood after completion of mixed radiotherapy (after 37 IMRT fractions and two [223Ra]RaCl2 injections) were in the range of 1.167 ± 0.092 and 2.148 ± 0.096 Gy (dose range across all models applied). By the last treatment cycle analysed in this study (four [223Ra]RaCl2 injections), the total absorbed 223Ra dose to the blood was estimated to be between 0.024 ± 0.027 and 0.665 ± 0.080 Gy, depending on the model used. Differences between the models were observed, with the observed dose variance coming from inter-model as opposed to inter-patient differences. The M-FISHLET model potentially overestimates the 223Ra absorbed blood dose by accounting for further PBL exposure in the vicinity of metastatic sites. CONCLUSIONS The models presented provide initial estimations of cumulative dose received during incremental IMRT fractions and [223Ra]RaCl2 injections, which will enable improved understanding of the doses received by individual patients. While the M-FISHLET method builds on a well-established technique for external exposures, further consideration is needed to evaluate this method and its use in assessing non-targeted exposure by 223Ra after its localization at bone metastatic sites.
Collapse
Affiliation(s)
- Isabella Bastiani
- Centre for Health Effects of Radiological and Chemical Agents, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London UB8 3PH, United Kingdom of Great Britain and Northern Ireland.
| | - Stephen J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland.
| | - Philip Turner
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Kelly M Redmond
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Conor K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Aidan Cole
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Joe M O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland.
| | - Liz Ainsbury
- Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Didcot OX11 0RQ, United Kingdom of Great Britain and Northern Ireland.
| | - Rhona Anderson
- Centre for Health Effects of Radiological and Chemical Agents, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London UB8 3PH, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
12
|
Sgouros G, Frey E, Du Y, Hobbs R, Bolch W. Imaging and dosimetry for alpha-particle emitter radiopharmaceutical therapy: improving radiopharmaceutical therapy by looking into the black box. Eur J Nucl Med Mol Imaging 2021; 49:18-29. [PMID: 34782911 DOI: 10.1007/s00259-021-05583-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023]
Abstract
Radiopharmaceutical therapy using α-particle emitting radionuclides (αRPT) is a novel treatment modality that delivers highly potent alpha-particles to cancer cells or their environment. We review the advantages and challenges of imaging and dosimetry in implementing αRPT for cancer patients.
Collapse
Affiliation(s)
| | - Eric Frey
- Johns Hopkins University, Baltimore, MD, USA
| | - Yong Du
- Johns Hopkins University, Baltimore, MD, USA
| | - Rob Hobbs
- Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
13
|
Serencsits B, Chu B, Pandit-Taskar N, McDevitt MR, Dauer LT. Radiation Safety Considerations and Clinical Advantages of Alpha-Emitting Therapy Radionuclides. J Nucl Med Technol 2021; 50:10-16. [PMID: 34750237 DOI: 10.2967/jnmt.121.262294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-emitting radionuclides provide an effective means of delivering large radiation doses to targeted treatment locations. Radium-223 dichloride (223RaCl2) is FDA approved for treatment of metastatic castration-resistant prostate cancer (mCRPC) and Actinium-225 (225Ac-Lintuzumab) radiolabeled antibodies have been shown to be beneficial for patients with acute myeloid leukemia. In recent years, there is an increasing use of alpha emitters in theranostic agents with both small and large molecule constructs. The proper precautionary means for their use and surveying documentation of these isotopes in a clinical setting are an essential accompaniment to these treatments. Methods: Patient treatment data collected over a three-year period, as well as regulatory requirements and safety practices, are described. Commonly used radiation instrumentation was evaluated for their ability to identify potential radioactive material spills and contamination events during a clinical administration of 225Ac. These instruments were placed at 0.32 cm from a 1.0 cm 225Ac disk source for measurement purposes. Radiation background values, efficiencies, and minimal detectable activities were measured and calculated for each type of detector. Results: The median external measured patient dose rate from 223RaCl2 patients (n = 611) was 2.5 µSv hr-1 on contact and 0.2 µSv hr-1 at 1 meter immediately after administration. Similarly, 225Ac-Lintuzumab (n = 19) patients had median external dose rates of 2.0 µSv hr-1 on contact and 0.3 µSv hr-1 at 1 meter. For the measurement of 225Ac samples, a liquid scintillation counter was found to have the highest overall efficiency (97%), while a zinc sulfide (ZnS) alpha probe offered the lowest minimal detectable activity at 3 counts per minute. Conclusion: In this study, we report data from 630 patients who were undergoing treatment with alpha-emitting isotopes 223Ra and 225Ac. While alpha emitters have ability to deliver higher internal radiation dose to the tissues exposed as compared with other unsealed radionuclides, they typically present minimal external dose rate concerns. Additionally, alpha radiation can be efficiently detected with appropriate radiation instrumentation, such as a liquid scintillation counter or ZnS probe, that should be prioritized when surveying for spills of alpha-emitters.
Collapse
Affiliation(s)
| | - Bae Chu
- Memorial Sloan Kettering Cancer Center, United States
| | | | | | | |
Collapse
|
14
|
Benabdallah N, Scheve W, Dunn N, Silvestros D, Schelker P, Abou D, Jammalamadaka U, Laforest R, Li Z, Liu J, Ballard DH, Maughan NM, Gay H, Baumann BC, Hobbs RF, Rogers B, Iravani A, Jha AK, Dehdashti F, Thorek DLJ. Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics 2021; 11:9721-9737. [PMID: 34815780 PMCID: PMC8581409 DOI: 10.7150/thno.63860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Rationale: Alpha particle emitting radiopharmaceuticals are generating considerable interest for the treatment of disseminated metastatic disease. Molecular imaging of the distribution of these agents is critical to safely and effectively maximize the clinical potential of this emerging drug class. The present studies aim to investigate the feasibility and limitations of quantitative SPECT for 223Ra, 225Ac and 227Th. Methods: Three state-of-the-art SPECT/CT systems were investigated: the GE Discovery NM/CT 670, the GE Optima NM/CT 640, and the Siemens Symbia T6. A series of phantoms, including the NEMA IEC Body phantom, were used to compare and calibrate each camera. Additionally, anthropomorphic physical tumor and vertebrae phantoms were developed and imaged to evaluate the quantitative imaging protocol. Results: This work describes and validates a methodology to calibrate each clinical system. The efficiency of each gamma camera was analyzed and compared. Using the calibration factors obtained with the NEMA phantom, we were able to quantify the activity in 3D-printed tissue phantoms with an error of 2.1%, 3.5% and 11.8% for 223Ra, 225Ac, and 227Th, respectively. Conclusion: The present study validates that quantitative SPECT/CT imaging of 223Ra, 225Ac, and 227Th is achievable but that careful considerations for camera configuration are required. These results will aid in future implementation of SPECT-based patient studies and will help to identify the limiting factors for accurate image-based quantification with alpha particle emitting radionuclides.
Collapse
Affiliation(s)
- Nadia Benabdallah
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | - Diane Abou
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri
| | - Uday Jammalamadaka
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Jonathan Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David H. Ballard
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nichole M. Maughan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Hiram Gay
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian C. Baumann
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert F. Hobbs
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Buck Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Amir Iravani
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Abhinav K. Jha
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Oncologic Imaging Program, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Farrokh Dehdashti
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Oncologic Imaging Program, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel L. J. Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- Oncologic Imaging Program, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Sciuto R, Rea S, Ungania S, Testa A, Dini V, Tabocchini MA, Patrono C, Soriani A, Palma V, Marconi R, Strigari L. The role of dosimetry and biological effects in metastatic castration-resistant prostate cancer (mCRPC) patients treated with 223Ra: first in human study. J Exp Clin Cancer Res 2021; 40:281. [PMID: 34488829 PMCID: PMC8420003 DOI: 10.1186/s13046-021-02056-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 223Ra is currently used for treatment of metastatic castration resistant prostate cancer patients (mCRPC) bone metastases with fixed standard activity. Individualized treatments, based on adsorbed dose (AD) in target and non-target tissue, are absolutely needed to optimize efficacy while reducing toxicity of α-emitter targeted therapy. This is a pilot first in human clinical trial aimed to correlate dosimetry, clinical response and biological side effects to personalize 223Ra treatment. METHODS Out of 20 mCRPC patients who underwent standard 223Ra treatment and dosimetry, in a subset of 5 patients the AD to target and non-target tissues was correlated with clinical effects and radiation-induced chromosome damages. Before each 223Ra administrations, haematological parameters, PSA and ALP values were evaluated. Additional blood samples were obtained baseline (T0), at 7 days (T7), 30 days (T30) and 180 days (T180) to evaluate chromosome damage. After administration WB planar 223Ra images were obtained at 2-4 and 18-24 h. Treatment response and toxicity were monitored with clinical evaluation, bone scan, 18F-choline-PET/CT, PSA value and ALP while haematological parameters were evaluated weekly after 223Ra injection and 2 months after last cycle. RESULTS 1. a correlation between AD to target and clinical response was evidenced with threshold of 20 Gy as a cut-off to obtain tumor control; 2. the AD to red marrow was lower than 2 Gy in all the patients with no apparently correlation between dosimetry and clinical toxicity. 3. a high dose dependent increase of the number of dicentrics and micronuclei during the course of 223Ra therapy was observed and a linear correlation has been found between blood AD (BAD) and number of dicentrics. CONCLUSIONS This study provides some interesting preliminary evidence to be further investigated: dosimetry may be useful to identify a more appropriate 223Ra administered activity predicting AD to target tissue; a dose dependent complex chromosome damage occurs during 223Ra administration and this injury is more evident in heavily pre-treated patients; dosimetry could be used for radioprotection purpose. TRIAL REGISTRATION The pilot study has been approved from the Ethics Committee of Regina Elena National Cancer Institute (N:RS1083/18-2111).
Collapse
Affiliation(s)
- Rosa Sciuto
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sandra Rea
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Ungania
- Laboratory of Medical Physics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonella Testa
- Division of Health Protection Technologies, ENEA Casaccia Research Center, Rome, Italy
| | - Valentina Dini
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
- INFN, Rome, Italy
| | - Maria Antonella Tabocchini
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
- INFN, Rome, Italy
| | - Clarice Patrono
- Division of Health Protection Technologies, ENEA Casaccia Research Center, Rome, Italy
| | - Antonella Soriani
- Laboratory of Medical Physics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Palma
- Division of Health Protection Technologies, ENEA Casaccia Research Center, Rome, Italy
| | - Raffaella Marconi
- Laboratory of Medical Physics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Present address: Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
16
|
Leung CN, Howell DM, Howell RW. Radium-223 dichloride causes transient changes in natural killer cell population and cytotoxic function. Int J Radiat Biol 2021; 97:1417-1424. [PMID: 34264175 DOI: 10.1080/09553002.2021.1956002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
RATIONALE Natural killer (NK) cells play an important role in both the innate and adaptive arms of the immune system. While previous studies have demonstrated the effects of ionizing radiation on cytotoxic function of NK cells, little is known about how a chronic exposure to high LET alpha particles emitted by radionuclides will affect both NK population size and function. This study was conducted to determine the effects of 223RaCl2 on splenic NK cell population size and function in Swiss Webster mice. METHODS Swiss Webster mice were administered intravenously with 0, 50, or 600 kBq/kg 223RaCl2. Spleens were harvested at 5, 12, and 19 days post-administration. The numbers of splenocytes per spleen were enumerated and flow cytometry was used to assess changes in the distribution of splenocyte subpopulations of B, CD4 and CD8 T lymphocytes, and NK cells. NK functional activity was quantified using YAC-1 target cells and the 51Cr-release assay. RESULTS The total number of splenocytes was unaffected by 223RaCl2. However, significant changes in the distribution of splenocyte subpopulations were observed for NK cells and CD8 T lymphocytes. NK functional activity was enhanced substantially relative to controls at 12 days post-administration, but decreased markedly by day 19. CONCLUSION NK functional activity is both diminished and enhanced by 223RaCl2 depending on both administered activity and time post-administration. These results suggest that there may be an optimum window of time to combine the 223RaCl2-induced antitumor NK cell response with other cancer therapies that elicit immune activation.
Collapse
Affiliation(s)
- Calvin N Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Donna M Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Natural Sciences, Middlesex College, Edison, NJ, USA
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
17
|
Höllriegl V, Petoussi-Henss N, Hürkamp K, Ocampo Ramos JC, Li WB. Radiopharmacokinetic modelling and radiation dose assessment of 223Ra used for treatment of metastatic castration-resistant prostate cancer. EJNMMI Phys 2021; 8:44. [PMID: 34076794 PMCID: PMC8172819 DOI: 10.1186/s40658-021-00388-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/12/2021] [Indexed: 12/09/2022] Open
Abstract
PURPOSE Ra-223 dichloride (223Ra, Xofigo®) is used for treatment of patients suffering from castration-resistant metastatic prostate cancer. The objective of this work was to apply the most recent biokinetic model for radium and its progeny to show their radiopharmacokinetic behaviour. Organ absorbed doses after intravenous injection of 223Ra were estimated and compared to clinical data and data of an earlier modelling study. METHODS The most recent systemic biokinetic model of 223Ra and its progeny, developed by the International Commission on Radiological Protection (ICRP), as well as the ICRP human alimentary tract model were applied for the radiopharmacokinetic modelling of Xofigo® biodistribution in patients after bolus administration. Independent kinetics were assumed for the progeny of 223Ra. The time activity curves for 223Ra were modelled and the time integrated activity coefficients, [Formula: see text] in the source regions for each progeny were determined. For estimating the organ absorbed doses, the Specific Absorbed Fractions (SAF) and dosimetric framework of ICRP were used together with the aforementioned [Formula: see text] values. RESULTS The distribution of 223Ra after injection showed a rapid plasma clearance and a low urinary excretion. Main elimination was via faeces. Bone retention was found to be about 30% at 4 h post-injection. Similar tendencies were observed in clinical trials of other authors. The highest absorbed dose coefficients were found for bone endosteum, liver and red marrow, followed by kidneys and colon. CONCLUSION The biokinetic modelling of 223Ra and its progeny may help to predict their distributions in patients after administration of Xofigo®. The organ dose coefficients of this work showed some variation to the values reported from clinical studies and an earlier compartmental modelling study. The dose to the bone endosteum was found to be lower by a factor of ca. 3 than previously estimated.
Collapse
Affiliation(s)
- Vera Höllriegl
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Nina Petoussi-Henss
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Juan Camilo Ocampo Ramos
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1250 First Avenue, New York, NY, 10065, USA
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
18
|
Lindén O, Bates AT, Cunningham D, Hindorf C, Larsson E, Cleton A, Pinkert J, Huang F, Bladt F, Hennekes H, Oedegaardstuen LI, Sturm I, McNamara C. Thorium-227-Labeled Anti-CD22 Antibody (BAY 1862864) in Relapsed/Refractory CD22-Positive Non-Hodgkin Lymphoma: A First-in-Human, Phase I Study. Cancer Biother Radiopharm 2021; 36:672-681. [PMID: 33887152 DOI: 10.1089/cbr.2020.4653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: BAY 1862864 is an α-particle emitting thorium-227-labeled CD22-targeting antibody. This first-in-human dose-escalation phase I study evaluated BAY 1862864 in patients with CD22-positive relapsed/refractory B cell non-Hodgkin lymphoma (R/R-NHL). Materials and Methods: BAY 1862864 intravenous injections were administered at the starting thorium-227 radioactivity dose of 1.5 MBq (2 or 10 mg antibody), and the radioactivity dose escalated in ∼1.5 MBq increments (10 mg antibody) until the maximum tolerated dose (MTD) was reported. The primary objective was to determine the safety, tolerability, and MTD. Results: Twenty-one patients received BAY 1862864. Two dose-limiting toxicities (grade 3 febrile neutropenia and grade 4 thrombocytopenia) were reported in one patient in the 4.6 MBq (10 mg antibody) cohort. The MTD was not reached. Ten (48%) patients reported grade ≥3 treatment-emergent adverse events, with the most common being neutropenia, thrombocytopenia, and leukopenia, each occurring in 3 (14%) patients. Pharmacokinetics demonstrated the dose proportionality and stability of BAY 1862864 in the blood. The objective response rate (ORR) was 25% (5/21 patients) according to the LUGANO 2014 criteria, including 1 complete and 4 partial responses. The ORR was 11% (1/9) and 30% (3/10) in patients with relapsed high- and low-grade lymphomas, respectively. Conclusions: BAY 1862864 was safe and tolerated in patients with R/R-NHL. The Clinical Trial Registration numbers: NCT02581878 and EudraCT 2014-004140-36.
Collapse
Affiliation(s)
- Ola Lindén
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Andrew T Bates
- Clinical Oncology Department, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - David Cunningham
- Gastrointestinal and Lymphoma Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Cecilia Hindorf
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Erik Larsson
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Adriaan Cleton
- Translational Sciences Asia, Bayer Healthcare Co. Ltd., Beijing, China
| | - Joerg Pinkert
- Pharmacovigilance, Benefit-Risk Management Oncology, Bayer AG, Berlin, Germany
| | - Funan Huang
- Strategic Business Unit Oncology, Bayer Healthcare US, Whippany, New Jersey, USA
| | | | | | | | - Isrid Sturm
- Strategic Business Unit Oncology, Bayer AG, Berlin, Germany
| | - Christopher McNamara
- Department of Haematology, University College London Hospital, London, United Kingdom
| |
Collapse
|
19
|
RADTHYR: an open-label, single-arm, prospective multicenter phase II trial of Radium-223 for the treatment of bone metastases from radioactive iodine refractory differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2021; 48:3238-3249. [PMID: 33619600 PMCID: PMC8426251 DOI: 10.1007/s00259-021-05229-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 01/02/2023]
Abstract
Purpose This is the first prospective trial evaluating the efficacy of alpha emitter Radium-223 in patients with bone metastases from radioactive iodine (RAI) refractory (RAIR) differentiated thyroid cancer. Methods RADTHYR is a multicenter, single-arm prospective Simon two-stage phase II trial (NCT02390934). The primary objective was to establish the efficacy of three administrations of 55 kBq/kg of Radium-223 by 18F-FDG PET/CT according to PERCIST criteria. Secondary objectives were to establish the efficacy of six administrations of Radium-223 by 18F-FDG PET/CT, 99mTc-HMDP bone scan and 18FNa PET/CT, clinical benefits, changes in serum bone markers, thyroglobulin levels, and safety. Results Ten patients were enrolled between July 2015 and December 2017 (4 M; median age 74 years). Prior to Radium-223 administration, patients received a median RAI cumulative activity of 15 GBq (7.4–35.6), external radiation therapy (n = 9), bone surgery (n = 8), cimentoplasty (n = 5), and cryoablation (n = 2). 18F-FDG PET/CT showed stable disease (SD) in 4/10 and progressive disease (PD) in 6/10 cases after three administrations and SD in 4/10, PD in 5/10 cases, and 1/10 non-evaluable (NE) case after six administrations. After six injections, 99mTc-HMDP bone scan showed SD in 9 cases and was NE in 1 case; 18FNa PET/CT showed SD in 8 cases, partial response (PR) in 1 case, and was NE in 1 case. No significant clinical benefits were reported during the study. A skeletal event occurred in 6 patients (median time without skeletal event of 12.1 months). Seventy-seven adverse events were reported during treatment (7 of grade 3–4). Three patients developed an acute myeloid, a promyelocytic, and a chronic myeloid leukemia after the last Radium-223 administration considered as drug-related. Conclusion The trial was stopped after interim analysis for lack of response of bone metastases from RAIR thyroid cancer to Radium-223. Severe hematological toxicity was observed in patients heavily pretreated with RAI and external radiation. Trial registration number NCT02390934. Registration date 18.03.2015. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05229-y.
Collapse
|
20
|
Abstract
As a single organ distributed diffusely throughout the body, bones represent both a unique challenge and unique opportunity for the treatment of symptomatic metastatic disease. While the multifocality of bone metastases often prevents effective complete treatment with focal radiotherapy, the similar pathophysiology of these diffuse sites of disease opens the door to targeted systemic therapy. The relatively rapid dose fall-off from beta- or alpha-emitting particles, if correctly and reliably targeted to osseous metastases, might reduce tumor burden and enhance pain control or improve survival. Radioisotopes have thus been studied keenly with the first generation of primarily beta-emitting radioisotopes, strontium-89 and samarium-153, which reached early FDA approval based on successful endpoints of pain control. More recently, an alpha-emitting therapy, radium-223, has demonstrated a successful endpoint of improved overall survival in patients with a burden of symptomatic, metastatic castrate-resistant prostate cancer (mCRPC) confined to the bones. With this discovery, an additional survival-improving tool beyond systemic and hormonal agents was added to the treatment arsenal for mCRPC for suitable candidates. With an improved understanding of the optimization of hormonal and systemic therapies in the context of mCRPC, there is lingering uncertainty regarding the safety and efficacy of combinatorial use of alpha and beta-emitting therapies with the current generation of systemic agents. In this narrative review, we will highlight the current understanding of the relative utility and clinical paradigms involving alpha- and beta-emitting radioisotopes. We discuss fundamental mechanisms for antineoplastic activity, initial clinical trials validating their use, the use of concurrent antiresorptive therapies to provide bone protection, and ongoing clinical trials targeted at best utilization of these agents in the broader context of mCRPC treatment.
Collapse
Affiliation(s)
- Andrew W Smith
- Departments of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Benjamin A Greenberger
- Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - Robert B Den
- Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - Richard G Stock
- Departments of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY..
| |
Collapse
|
21
|
Gamat-Huber M, Jeon D, Johnson LE, Moseman JE, Muralidhar A, Potluri HK, Rastogi I, Wargowski E, Zahm CD, McNeel DG. Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers (Basel) 2020; 12:cancers12102831. [PMID: 33008010 PMCID: PMC7601088 DOI: 10.3390/cancers12102831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The only vaccine approved by FDA as a treatment for cancer is sipuleucel-T, a therapy for patients with metastatic castration-resistant prostate cancer (mCRPC). Most investigators studying anti-tumor vaccines believe they will be most effective as parts of combination therapies, rather than used alone. Unfortunately, the cost and complexity of sipuleucel-T makes it difficult to feasibly be used in combination with many other agents. In this review article we discuss the use of DNA vaccines as a simpler vaccine approach that has demonstrated efficacy in several animal species. We discuss the use of DNA vaccines in combination with traditional treatments for mCRPC, and other immune-modulating treatments, in preclinical and early clinical trials for patients with mCRPC. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is a challenging disease to treat, with poor outcomes for patients. One antitumor vaccine, sipuleucel-T, has been approved as a treatment for mCRPC. DNA vaccines are another form of immunotherapy under investigation. DNA immunizations elicit antigen-specific T cells that cause tumor cell lysis, which should translate to meaningful clinical responses. They are easily amenable to design alterations, scalable for large-scale manufacturing, and thermo-stable for easy transport and distribution. Hence, they offer advantages over other vaccine formulations. However, clinical trials with DNA vaccines as a monotherapy have shown only modest clinical effects against tumors. Standard therapies for CRPC including androgen-targeted therapies, radiation therapy and chemotherapy all have immunomodulatory effects, which combined with immunotherapies such as DNA vaccines, could potentially improve treatment. In addition, many investigational drugs are being developed which can augment antitumor immunity, and together with DNA vaccines can further enhance antitumor responses in preclinical models. We reviewed the literature available prior to July 2020 exploring the use of DNA vaccines in the treatment of prostate cancer. We also examined various approved and experimental therapies that could be combined with DNA vaccines to potentially improve their antitumor efficacy as treatments for mCRPC.
Collapse
|
22
|
Ogawa K, Higashi T, Mishiro K, Wakabayashi H, Shiba K, Odani A, Kinuya S. Decreasing undesirable absorbed radiation to the intestine after administration of radium-223 dichloride for treatment of bone metastases. Sci Rep 2020; 10:11917. [PMID: 32681007 PMCID: PMC7368038 DOI: 10.1038/s41598-020-68846-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 11/08/2022] Open
Abstract
[223Ra]RaCl2 is the first alpha-particle emitting radiopharmaceutical to be used for castration-resistant prostate cancer patients with bone metastases because of its excellent therapeutic effects. [223Ra]RaCl2 is excreted via the intestine into feces, and some is absorbed from the intestine into the blood, which may be undesirable in terms of the exposure to radiation. Recently, we showed that a complex of myo-inositol-hexakisphosphate (InsP6) with zinc is a useful decorporation agent against radiostrontium. In this study, we hypothesized that Zn-InsP6 could bind to not only strontium but also to radium, and could inhibit the absorption of radium from the intestine. In in vitro binding experiments, Zn-InsP6 showed a high binding affinity for radium. In in vivo biodistribution experiments by intravenous injection of [223Ra]RaCl2 after treatment of Zn-InsP6, mice treated with Zn-InsP6 showed significantly lower bone accumulation of radioactivity (34.82 ± 1.83%Dose/g) than the mice in the non-treatment control group (40.30 ± 2.78%Dose/g) at 48 h postinjection. These results indicate that Zn-InsP6 bound radium in the intestine and inhibited the absorption of radium into the blood. Therefore, the insoluble Zn-InsP6 complex has high potential to decrease the side effects of [223Ra]RaCl2.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Takuma Higashi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | | | - Kazuhiro Shiba
- Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan
| | - Akira Odani
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Seigo Kinuya
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
23
|
Saltalamacchia G, Frascaroli M, Bernardo A, Quaquarini E. Renal and Cardiovascular Toxicities by New Systemic Treatments for Prostate Cancer. Cancers (Basel) 2020; 12:cancers12071750. [PMID: 32630204 PMCID: PMC7407336 DOI: 10.3390/cancers12071750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PC) is the most common male cancer in Western Countries. In recent years, the treatment of relapsed or metastatic disease had benefited by the introduction of a variety of new different drugs. In consideration of the relative long survival of PC patients, side effects of these drugs must be considered and monitored. In this review, we analyzed the newly developed therapies for PC treatment, describing the mechanism of action, the metabolism and latest clinical trials that led to the approval of these drugs in clinical practice. We then evaluated the cardiovascular and renal side effects from pivotal phase III and II studies and meta-analyses. Cardiovascular side effects are the most frequent, in particular hypertension, while renal toxicity is rarer and not well described in literature. Therefore, there is a need to better define the effects of these therapies, in order to personalize patient treatment on the basis of their comorbidities and preferences, in addition to their symptoms and disease load.
Collapse
Affiliation(s)
- Giuseppe Saltalamacchia
- Operative Unit of Medical Oncology, IRCCS Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy; (G.S.); (A.B.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mara Frascaroli
- Operative Unit of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy;
| | - Antonio Bernardo
- Operative Unit of Medical Oncology, IRCCS Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy; (G.S.); (A.B.)
| | - Erica Quaquarini
- Operative Unit of Medical Oncology, IRCCS Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy; (G.S.); (A.B.)
- Experimental Medicine School, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; +39-0382-592671
| |
Collapse
|
24
|
Guerra Liberal FDC, O'Sullivan JM, McMahon SJ, Prise KM. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother Radiopharm 2020; 35:404-417. [PMID: 32552031 DOI: 10.1089/cbr.2020.3576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
α-Emitting radionuclides have been approved for cancer treatment since 2013, with increasing degrees of success. Despite this clinical utility, little is known regarding the mechanisms of action of α particles in this setting, and accurate assessments of the dosimetry underpinning their effectiveness are lacking. However, targeted alpha therapy (TAT) is gaining more attention as new targets, synthetic chemistry approaches, and α particle emitters are identified, constructed, developed, and realized. From a radiobiological perspective, α particles are more effective at killing cells compared to low linear energy transfer radiation. Also, from these direct effects, it is now evident from preclinical and clinical data that α emitters are capable of both producing effects in nonirradiated bystander cells and stimulating the immune system, extending the biological effects of TAT beyond the range of α particles. The short range of α particles makes them a potent tool to irradiate single-cell lesions or treat solid tumors by minimizing unwanted irradiation of normal tissue surrounding the cancer cells, assuming a high specificity of the radiopharmaceutical and good stability of its chemical bonds. Clinical approval of 223RaCl2 in 2013 was a major milestone in the widespread application of TAT as a safe and effective strategy for cancer treatment. In addition, 225Ac-prostate specific membrane antigen treatment benefit in metastatic castrate-resistant prostate cancer patients, refractory to standard therapies, is another game-changing piece in the short history of TAT clinical application. Clinical applications of TAT are growing with different radionuclides and combination therapies, and in different clinical settings. Despite the remarkable advances in TAT dosimetry and imaging, it has not yet been used to its full potential. Labeled 227Th and 225Ac appear to be promising candidates and could represent the next generation of agents able to extend patient survival in several clinical scenarios.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Faculdade de Ciências e Tenclonogia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joe M O'Sullivan
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Stephen J McMahon
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Gustafsson J, Rodeño E, Mínguez P. Feasibility and limitations of quantitative SPECT for 223Ra. Phys Med Biol 2020; 65:085012. [PMID: 32092708 DOI: 10.1088/1361-6560/ab7971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this paper is to investigate the feasibility and limitations of activity-concentration estimation for 223Ra using SPECT. Phantom measurements are performed using spheres (volumes 5.5 mL to 26.4 mL, concentrations 1.6 kBq mL-1 to 4.5 kBq mL-1). Furthermore, SPECT projections are simulated using the SIMIND Monte Carlo program for two geometries, one similar to the physical phantom and the other being an anthropomorphic phantom with added lesions (volumes 34 mL to 100 mL, concentrations 0.5 kBq mL-1 to 4 kBq mL-1). Medium-energy and high-energy collimators, 60 projections with 55 s per projection and a 20% energy window at 82 keV are employed. For the Monte Carlo simulated images, Poisson-distributed noise is added in ten noise realizations. Reconstruction is performed (OS-EM, 40 iterations, 6 subsets) employing compensation for attenuation, scatter, and collimator-detector response. The estimated concentrations in the anthropomorphic phantom are also corrected using recovery coefficients. Errors for the largest sphere in the physical phantom range from -25% to -34% for the medium-energy collimator and larger deviations for smaller spheres. Corresponding results for the high-energy collimator are -15% to -31%. The corresponding Monte Carlo simulations show standard deviations of a few percentage points. For the anthropomorphic phantom, before application of recovery coefficients the bias ranges from -16% to -46% (medium-energy collimator) and -10% to -28% (high-energy collimator), with standard deviations of 2% to 14% and 1% to 16%. After the application of recovery coefficients, the biases range from -3% to -35% (medium energy collimator) and from 0% to -18%. The errors decrease with increasing concentrations. Activity-concentration estimation of 223Ra with SPECT is feasible, but problems with repeatability need to be further studied.
Collapse
Affiliation(s)
- Johan Gustafsson
- Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | | |
Collapse
|
26
|
Compartmental Model for 223Ra-Dichloride in Patients With Metastatic Bone Disease From Castration-Resistant Prostate Cancer. Int J Radiat Oncol Biol Phys 2019; 105:884-892. [DOI: 10.1016/j.ijrobp.2019.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/04/2019] [Accepted: 07/12/2019] [Indexed: 01/31/2023]
|
27
|
Mechanistic Modeling of Radium-223 Treatment of Bone Metastases. Int J Radiat Oncol Biol Phys 2019; 103:1221-1230. [DOI: 10.1016/j.ijrobp.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
|
28
|
Benabdallah N, Bernardini M, Bianciardi M, de Labriolle-Vaylet C, Franck D, Desbrée A. 223Ra-dichloride therapy of bone metastasis: optimization of SPECT images for quantification. EJNMMI Res 2019; 9:20. [PMID: 30790144 PMCID: PMC6384291 DOI: 10.1186/s13550-019-0488-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND 223Ra imaging is crucial to evaluate the successfulness of the therapy of bone metastasis of castration-resistant prostate cancer (CRPC). The goals of this study were to establish a quantitative tomographic 223Ra imaging protocol with clinically achievable conditions, as well as to investigate its usefulness and limitations. We performed several experiments using the Infinia Hawkeye 4 gamma camera (GE) and physical phantoms in order to assess the optimal image acquisition and reconstruction parameters, such as the windows setting, as well as the iteration number and filter of the reconstruction algorithm. Then, based on the MIRD pamphlet 23, we used a NEMA phantom and an anthropomorphic TORSO® phantom to calibrate the gamma camera and investigate the accuracy of quantification. RESULTS Experiences showed that the 85 keV ± 20%, 154 keV ± 10%, and 270 keV ± 10% energy windows are the most suitable for 223Ra imaging. The study with the NEMA phantom showed that the OSEM algorithm with 2 iterations, 10 subsets, and the Butterworth filter offered the best compromise between contrast and noise. Moreover, the calibration factors for different sphere sizes (26.5 ml, 11.5 ml, and 5.6 ml) were constant for 223Ra concentrations ranging between 6.5 and 22.8 kBq/ml. The values found are 73.7 cts/s/MBq, 43.8 cts/s/MBq, and 43.4 cts/s/MBq for 26.5 ml, 11.5 ml, and 5.6 ml sphere, respectively. For concentration lower than 6.5 kBq/ml, the calibration factors exhibited greater variability pointing out the limitations of SPECT/CT imaging for quantification. By the use of a TORSO® phantom, we simulated several tumors to normal tissue ratios as close as possible to clinical conditions. Using the calibration factors obtained with the NEMA phantom, for 223Ra concentrations higher than 8 kBq/ml, we were able to quantify the activity with an error inferior to 18.8% in a 5.6 ml lesion. CONCLUSIONS Absolute quantitative 223Ra SPECT imaging appears feasible once the dimension of the target is determined. Further evaluation should be needed to apply the calibration factor-based quantitation to clinical 223Ra SPECT/CT imaging. This will open the possibility for patient-specific 223Ra treatment planning and therapeutic outcome prediction in patients.
Collapse
Affiliation(s)
- Nadia Benabdallah
- Internal Dose Assessment Laboratory, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Michela Bernardini
- Nuclear Medicine Department, European Hospital George Pompidou (HEGP), Paris, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Claire de Labriolle-Vaylet
- UPMC, Univ Paris 06 Biophysics, Paris, France
- Nuclear Medicine Department, Trousseau Hospital, Paris, France
| | - Didier Franck
- Internal Dose Assessment Laboratory, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Aurélie Desbrée
- Internal Dose Assessment Laboratory, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
29
|
Azorín-Vega E, Rojas-Calderón E, Ferro-Flores G, Aranda-Lara L, Jiménez-Mancilla N, Nava-Cabrera MA. Assessment of the radiation absorbed dose produced by 177Lu-iPSMA, 225Ac-iPSMA and 223RaCl 2 to prostate cancer cell nuclei in a bone microenvironment model. Appl Radiat Isot 2019; 146:66-71. [PMID: 30753987 DOI: 10.1016/j.apradiso.2019.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
This research aimed to assess the radiation absorbed dose produced by 177Lu-iPSMA (177Lu-prostate specific membrane antigen inhibitor), 225Ac-iPSMA and 223RaCl2 to prostate cancer cell nuclei in a simplified model of bone by using an experimental in-vitro prostate cancer LNCaP cell biokinetic study and Monte Carlo simulation with the MCNPX code. Results showed that 225Ac-iPSMA releases a nine hundred-fold radiation dose greater than 177Lu-iPSMA and 14 times more than 223RaCl2 per unit of activity retained in bone. 225Ac-iPSMA could be the best option for treatment of bone metastases in prostate cancer.
Collapse
Affiliation(s)
- Erika Azorín-Vega
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico.
| | - Eva Rojas-Calderón
- Departamento de Ciencias Ambientales, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico.
| | - Guillermina Ferro-Flores
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Mexico
| | - Nallely Jiménez-Mancilla
- CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico
| | - Miguel A Nava-Cabrera
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico; Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Mexico
| |
Collapse
|
30
|
Takahashi A, Baba S, Sasaki M. Assessment of collimators in radium-223 imaging with channelized Hotelling observer: a simulation study. Ann Nucl Med 2018; 32:649-657. [PMID: 30073570 DOI: 10.1007/s12149-018-1286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/27/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Radium-223 (223Ra) is used in unsealed radionuclide therapy for metastatic bone tumors. The aim of this study is to apply a computational model observer to 223Ra planar images, and to assess the performance of collimators in 223Ra imaging. METHODS The 223Ra planar images were created via an in-house Monte Carlo simulation code using HEXAGON and NAI modules. The phantom was a National Electrical Manufacturers Association body phantom with a hot sphere. The concentration of the background was 55 Bq/mL, and the sphere was approximately 1.5-20 times that of the background concentration. The acquisition time was 10 min. The photopeaks (and the energy window) were 84 (full width of energy window: 20%), 154 (15%), and 270 keV (10%). Each 40 images, with and without hot concentration, were applied to a three-channel difference-of-Gaussian channelized Hotelling observer (CHO), and the signal-to-noise ratio (SNR) of the hot region was calculated. The images were examined using five different collimators: two low-energy general-purpose (LEGP), two medium-energy general-purpose (MEGP), and one high-energy general-purpose (HEGP) collimators. RESULTS The SNR value was linearly proportional to the contrast of the hot region for all collimators and energy windows. The images of the 84-keV energy window with the MEGP collimator that have thicker septa and larger holes produced the highest SNR value. The SNR values of two LEGP collimators were approximately half of the MEGP collimators. The HEGP collimator was halfway between the MEGP and LEGP. Similar characteristics were observed for other energy windows (154, 270 keV). The SNR value of images captured via the 270-keV energy window was larger than 154-keV, although the sensitivity of the 270-keV energy window is lower than 154-keV. The results suggested a positive correlation between the SNR value and the fraction of unscattered photons. CONCLUSIONS The SNR value of CHO reflected the performance of collimators and was available to assess and quantitatively evaluate the collimator performance in 223Ra imaging. The SNR value depends on the magnitudes of unscattered photon count and the fraction of unscattered photon count. Consequently, in this study, MEGP collimators performed better than LEGP and HEGP collimators for 223Ra imaging.
Collapse
Affiliation(s)
- Akihiko Takahashi
- Division of Medical Quantum Science, Department of Health Sciences, Kyushu University, Fukuoka, Japan.
| | - Shingo Baba
- Department of Clinical Radiology, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Sasaki
- Division of Medical Quantum Science, Department of Health Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Lassmann M, Eberlein U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Ann ICRP 2018; 47:187-195. [PMID: 29664326 DOI: 10.1177/0146645318756253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Systemic or locoregionally administered alpha-particle emitters are highly potent therapeutic agents used in oncology that are fundamentally novel in their mechanism and, most likely, overcome radiation resistance as the alpha particles emitted have a short range and a high linear energy transfer. The use of alpha emitters in a clinic environment requires extra measures with respect to imaging, dosimetry, and radiation protection. This is shown for the example of 223Ra dichloride therapy. After intravenous injection, 223Ra leaves the blood and is taken up rapidly in bone and bone metastases; it is mainly excreted via the intestinal tract. 223Ra can be imaged in patients with a gamma camera. Dosimetry shows that, after a series of six treatments for a 70-kg person with an overall administered activity of 23 MBq, 223Ra results in an absorbed alpha dose of approximately 17 Gy to the bone endosteum and approximately 1.7 Gy to the red bone marrow. During administration, special care must be taken to ensure that no spill is present on the skin of either the patient or staff. Due to the low dose rate, the treatment is normally performed on an outpatient basis; the patient and carers should receive written instructions about the therapy and radiation protection.
Collapse
Affiliation(s)
- M Lassmann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - U Eberlein
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| |
Collapse
|
32
|
Pratt BE, Hindorf C, Chittenden SJ, Parker CC, Flux GD. Excretion and whole-body retention of radium-223 dichloride administered for the treatment of bone metastases from castration resistant prostate cancer. Nucl Med Commun 2018; 39:125-130. [PMID: 29189490 DOI: 10.1097/mnm.0000000000000783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of the study was to determine the fraction of administered activity that was excreted and retained by a small cohort of patients who each received treatment with radium-223 dichloride (Ra). Ra is an α-emitting radionuclide that has been approved for use in the treatment of bone metastases that are secondary to castration resistant prostate cancer. PATIENTS AND METHODS Six patients received two weight-based administrations of Ra 6 weeks apart. Activity excreted in the urine and faeces during the first 48 h following each treatment was assessed by direct counting of the excreta. During the same period the whole-body retention of Ra was also determined using a single probe counting system. The results of the excreta counting and the whole-body counting were compared to determine whether whole-body counting was a suitable surrogate for assessing excretion. Further whole-body retention counts were made at around 3, 4, 7 and 42 days following treatment. RESULTS Patterns of excretion and retention of Ra varied significantly between patients, but were similar for each patient's pair of treatments. The cumulative maximum activity excreted in the initial 8-h period following the Ra administration was 2.6% that increased to 39% at 48 h. The median excreted activity at ~1 and 6 weeks after treatment was 70 and 86%, respectively. Skeletal retention of Ra at 6 weeks ranged from 11 to 60% of the administered activity.
Collapse
Affiliation(s)
- Brenda E Pratt
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research
| | - Cecilia Hindorf
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research
| | - Sarah J Chittenden
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research
| | | | - Glenn D Flux
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research
| |
Collapse
|
33
|
Marcu L, Bezak E, Allen BJ. Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials. Crit Rev Oncol Hematol 2018; 123:7-20. [PMID: 29482781 DOI: 10.1016/j.critrevonc.2018.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/11/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Targeted therapy for cancer is a rapidly expanding and successful approach to the management of many intractable cancers. However, many immunotherapies fail in the longer term and there continues to be a need for improved targeted cancer cell toxicity, which can be achieved by radiolabelling the targeting vector with a radioisotope. Such constructs are successful in using a gamma ray emitter for imaging. However, traditionally, a beta emitter is used for therapeutic applications. The new approach is to use the short range and highly cytotoxic alpha radiation from alpha emitters to achieve improved efficacy and therapeutic gain. This paper sets out to review all experimental and theoretical comparisons of efficacy and therapeutic gain for alpha and beta emitters labelling the same targeting vector. The overall conclusion is that targeted alpha therapy is superior to targeted beta therapy, such that the use of alpha therapy in clinical settings should be expanded.
Collapse
Affiliation(s)
- Loredana Marcu
- Department of Physics, Faculty of Science, 1 Universitatii street, University of Oradea, 410087, Romania; Sansom Institute for Health Research and the School of Health Sciences, University of South Australia, GPO Box 247, Adelaide SA 5001, Australia
| | - Eva Bezak
- Sansom Institute for Health Research and the School of Health Sciences, University of South Australia, GPO Box 247, Adelaide SA 5001, Australia; Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Barry J Allen
- School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia.
| |
Collapse
|
34
|
Poeppel TD, Handkiewicz-Junak D, Andreeff M, Becherer A, Bockisch A, Fricke E, Geworski L, Heinzel A, Krause BJ, Krause T, Mitterhauser M, Sonnenschein W, Bodei L, Delgado-Bolton RC, Gabriel M. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2017; 45:824-845. [PMID: 29234845 DOI: 10.1007/s00259-017-3900-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022]
Abstract
Radium Ra-223 dichloride (radium-223, Xofigo®) is a targeted alpha therapy approved for the treatment of castration-resistant prostate cancer (CRPC) with symptomatic bone metastases and no known visceral metastatic disease. Radium-223 is the first targeted alpha therapy in this indication providing a new treatment option, with evidence of a significant survival benefit, both in overall survival and in the time to the first symptomatic skeletal-related event. The skeleton is the most common metastatic site in patients with advanced prostate cancer. Bone metastases are a clinically significant cause of morbidity and mortality, often resulting in bone pain, pathologic fracture, or spinal cord compression necessitating treatment. Radium-223 is selectively accumulated in the bone, specifically in areas of high bone turnover, by forming complexes with the mineral hydroxyapatite (the inorganic matrix of the bone). The alpha radiation generated during the radioactive decay of radium-223 produces a palliative anti-tumour effect on the bone metastases. The purpose of this guideline is to assist nuclear medicine specialists in evaluating patients who might be candidates for treatment using radium-223, planning and performing this treatment, understanding and evaluating its consequences, and improving patient management during therapy and follow-up.
Collapse
Affiliation(s)
- Thorsten D Poeppel
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| | - Daria Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Centre of Oncology - MSC Institute, Gliwice, Poland
| | - Michael Andreeff
- Department of Nuclear Medicine, University Hospital Dresden, Dresden, Germany
| | - Alexander Becherer
- Department of Nuclear Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Andreas Bockisch
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Eva Fricke
- Department of Nuclear Medicine, Hospital Lippe, Lemgo, Germany
| | - Lilli Geworski
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hannover, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Thomas Krause
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Applied Diagnostics, Vienna, Austria
| | - Wilfried Sonnenschein
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberto C Delgado-Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, 4020, Linz, Austria.
- University Clinic of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
35
|
Umeda T, Miyaji N, Nakazawa S, Miwa K, Wagatsuma K, Motegi K, Takiguchi T, Koizumi M. [A Comparison of Planar Sensitivity and Spatial Resolution among Different Collimators and Energy Windows on 223Ra Imaging]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2017; 73:1132-1139. [PMID: 29151546 DOI: 10.6009/jjrt.2017_jsrt_73.11.1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study aimed to reveal the influence of combination of different collimators and energy windows on the planar sensitivity and the spatial resolution during experimental 223Ra imaging, and to determine optimal imaging parameters. METHODS A vial type source containing 223Ra solution (4.55 MBq / 5.6 ml) was placed in the air at 100 mm away from the collimator surface. Planar images were acquired with LEHR, LMEGP, ELEGP and MEGP collimators on two dual-head gamma cameras (Symbia intevo (Siemens) and Infinia 3 (GE)). We compared three energy window combinations: 1) single window at 82 keV, 2) double window at 82+154 keV, 3) triple window at 82+154+270 keV. The energy spectrum, the sensitivity and the spatial resolution, such as full-width at half-maximum (FWHM) and full-width at tenth-maximum (FWTM), of each collimator were assessed. RESULTS Five energy spectra (at around 82, 154, 270, 351 and 405 keV) were essentially observed among four collimators. The sensitivity was high for LEHR collimator, then ELEGP and LMEGP collimator was 3-4 fold, which is greater than MEGP collimator. The 82 keV energy window of four collimators has best spatial resolution. Moreover, the spatial resolution of the 82 keV energy window with LMEGP and ELEGP collimator was almost equal to that of the triple window with MEGP collimator. CONCLUSIONS Optimal imaging parameters were single energy window using LMEGP or ELEGP, and then triple energy window using MEGP collimator.
Collapse
Affiliation(s)
- Takuro Umeda
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Shuto Nakazawa
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Kenta Miwa
- School of Health Science, International University of Health and Welfare
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Kazuki Motegi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Tomohiro Takiguchi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Mitsuru Koizumi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| |
Collapse
|
36
|
Murray I, Chittenden SJ, Denis-Bacelar AM, Hindorf C, Parker CC, Chua S, Flux GD. The potential of 223Ra and 18F-fluoride imaging to predict bone lesion response to treatment with 223Ra-dichloride in castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2017; 44:1832-1844. [PMID: 28612079 PMCID: PMC6175045 DOI: 10.1007/s00259-017-3744-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE The aims of this study were to calculate bone lesion absorbed doses resulting from a weight-based administration of 223Ra-dichloride, to assess the relationship between those doses and corresponding 18F-fluoride uptake and to assess the potential of quantitative 18F-fluoride imaging to predict response to treatment. METHODS Five patients received two intravenous injections of 223Ra-dichloride, 6 weeks apart, at 110 kBq/kg whole-body weight. The biodistribution of 223Ra in metastatic lesions as a function of time after administration as well as associated lesion dosimetry were determined from serial 223Ra scans. PET/CT imaging using 18F-fluoride was performed prior to the first treatment (baseline), and at week 6 immediately before the second treatment and at week 12 after baseline. RESULTS Absorbed doses to metastatic bone lesions ranged from 0.6 Gy to 44.1 Gy. For individual patients, there was an average factor difference of 5.3 (range 2.5-11.0) between the maximum and minimum lesion dose. A relationship between lesion-absorbed doses and serial changes in 18F-fluoride uptake was demonstrated (r2 = 0.52). A log-linear relationship was demonstrated (r2 = 0.77) between baseline measurements of 18F-fluoride uptake prior to 223Ra-dichloride therapy and changes in uptake 12 weeks after the first cycle of therapy. Correlations were also observed between both 223Ra and 18F-fluoride uptake in lesions (r = 0.75) as well as between 223Ra absorbed dose and 18F-fluoride uptake (r = 0.96). CONCLUSIONS There is both inter-patient and intra-patient heterogeneity of absorbed dose estimates to metastatic lesions. A relationship between 223Ra lesion absorbed dose and subsequent lesion response was observed. Analysis of this small group of patients suggests that baseline uptake of 18F-fluoride in bone metastases is significantly correlated with corresponding uptake of 223Ra, the associated 223Ra absorbed dose and subsequent lesion response to treatment.
Collapse
Affiliation(s)
- Iain Murray
- Joint Department of Physics, Royal Marsden NHS Foundation Trust, Downs Rd., Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, London, UK.
| | - Sarah J Chittenden
- Joint Department of Physics, Royal Marsden NHS Foundation Trust, Downs Rd., Sutton, Surrey, SM2 5PT, UK
- The Institute of Cancer Research, London, UK
| | - Ana M Denis-Bacelar
- Joint Department of Physics, Royal Marsden NHS Foundation Trust, Downs Rd., Sutton, Surrey, SM2 5PT, UK
- The Institute of Cancer Research, London, UK
| | - Cecilia Hindorf
- Joint Department of Physics, Royal Marsden NHS Foundation Trust, Downs Rd., Sutton, Surrey, SM2 5PT, UK
- The Institute of Cancer Research, London, UK
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | - Sue Chua
- Department of Nuclear Medicine, Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Glenn D Flux
- Joint Department of Physics, Royal Marsden NHS Foundation Trust, Downs Rd., Sutton, Surrey, SM2 5PT, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
37
|
Matsubara N, Nagamori S, Wakumoto Y, Uemura H, Kimura G, Yokomizo A, Kikukawa H, Mizokami A, Kosaka T, Masumori N, Kawasaki Y, Yonese J, Nasu Y, Fukasawa S, Sugiyama T, Kinuya S, Hosono M, Yamaguchi I, Tsutsui H, Uemura H. Phase II study of radium-223 dichloride in Japanese patients with symptomatic castration-resistant prostate cancer. Int J Clin Oncol 2017; 23:173-180. [PMID: 28770408 PMCID: PMC5809574 DOI: 10.1007/s10147-017-1176-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/26/2017] [Indexed: 12/01/2022]
Abstract
Background Radium-223 dichloride (radium-223) is the first targeted alpha therapy approved for the treatment of castration-resistant prostate cancer (CRPC) with bone metastases. This study investigated the efficacy and safety of radium-223 in Japanese patients with symptomatic CRPC and bone metastases. Methods In this open-label, multicenter, phase II study, patients with progressive, symptomatic CRPC and bone metastases were treated with radium-223 (55 kBq/kg, intravenously) in a 4-week cycle for six cycles. The primary endpoint was the percent change in total alkaline phosphatase (ALP) from baseline at 12 weeks. Secondary endpoints included the percent ALP change from baseline to end of treatment (EOT), ALP response rates, percent change in prostate-specific antigen (PSA) from baseline to 12 weeks and EOT, PSA response rates, overall survival (OS), and time to symptomatic skeletal events (SSEs). Adverse events were monitored throughout the study period. Results Of the 49 Japanese patients (median age 74 years), 28 completed all infusions. Mean percent change in total ALP and PSA from baseline to 12 weeks was −19.3 and +97.4%, respectively. One-year OS and SSE-free rate at the end of active follow-up were 78 and 89%, respectively. The ALP response rate was 31%, while the PSA response rate was 6%. Grade 3/4 treatment-emergent adverse events observed in ≥10% of patients included decreased lymphocyte count (14%), anemia (14%), anorexia (10%), and bone pain (10%). Conclusions Radium-223 is effective and well tolerated in Japanese patients with CRPC and bone metastases. Results were comparable with the Alpharadin in Symptomatic Prostate Cancer Patients (ALSYMPCA) trial. Clinical trial registration ClinicalTrials.gov NCT01929655. Electronic supplementary material The online version of this article (doi:10.1007/s10147-017-1176-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuaki Matsubara
- Division of Breast and Medical Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan.
| | - Satsohi Nagamori
- Department of Urology, National Hospital Organization Hokkaido Cancer Center, 2-3-54 Kikusui 4 Jo, Shiroishi-ku, Sapporo, Japan
| | - Yoshiaki Wakumoto
- Department of Urology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Japan
| | - Go Kimura
- Department of Urology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Akira Yokomizo
- Department of Urology, Harasanshin Hospital, 1-8, Taihakumachi, Hakata-ku, Fukuoka, Japan
| | - Hiroaki Kikukawa
- Department of Urology, National Hospital Organization Kumamoto Medical Center, 1-5 Ninomaru, Chuo-ku, Kumamoto, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Japan
| | - Yoshihide Kawasaki
- Department of Urology, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Junji Yonese
- Department of Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata, Okayama, Japan
| | - Satoshi Fukasawa
- Prostate Center and Division of Urology, Chiba Cancer Center, 666-2, Nitona-cho, Chuo-ku, Chiba, Japan
| | - Takayuki Sugiyama
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Seigo Kinuya
- The Japanese Society of Nuclear Medicine, 2-28-45, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Makoto Hosono
- The Japanese Society of Nuclear Medicine, 2-28-45, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Iku Yamaguchi
- Clinical Statistics, Bayer Yakuhin, Ltd, 2-4-9, Umeda, Kita-ku, Osaka, Japan
| | - Hirokazu Tsutsui
- Clinical Development Specialty Medicine, Bayer Yakuhin, Ltd, 2-4-9, Umeda, Kita-ku, Osaka, Japan
| | - Hiroji Uemura
- Department of Urology, Yokohama City University Medical Center, 4-57, Urafune-cho, Minami-ku, Yokohama, Japan
| |
Collapse
|
38
|
Flux GD. Imaging and dosimetry for radium-223: the potential for personalized treatment. Br J Radiol 2017; 90:20160748. [PMID: 28654303 PMCID: PMC5858794 DOI: 10.1259/bjr.20160748] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 11/14/2022] Open
Abstract
Radium-223 (223Ra) offers a new option for the treatment of bone metastases from prostate cancer. As cancer treatment progresses towards personalization, the potential for an individualized approach is exemplified in treatments with radiotherapeutics due to the unique ability to image in vivo the uptake and retention of the therapeutic agent. This is unmatched in any other field of medicine. Currently, 223Ra is administered according to standard fixed administrations, modified according to patient weight. Although gamma emissions comprise only 1% of the total emitted energy, there are increasing reports that quantitative imaging is feasible and can facilitate patient-specific dosimetry. The aim of this article is to review the application of imaging and dosimetry for 223Ra and to consider the potential for treatment optimization accordingly, in order to ensure clinical and cost effectiveness of this promising agent.
Collapse
Affiliation(s)
- Glenn D Flux
- Joint Department of Physics, Royal Marsden Hospital and Institute of
Cancer Research, Sutton, UK
| |
Collapse
|
39
|
Vogelzang NJ. Radium-223 dichloride for the treatment of castration-resistant prostate cancer with symptomatic bone metastases. Expert Rev Clin Pharmacol 2017. [PMID: 28649893 DOI: 10.1080/17512433.2017.1345624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Castration-resistant prostate cancer (CRPC) is associated with the development of bone metastases, increased mortality, and a reduction in the patient's quality of life (QOL). The management of metastatic CRPC (mCRPC) has rapidly evolved over the past decade, with a number of available therapeutic agents improving overall survival. Radium-223 dichloride (radium-223), the first targeted alpha therapy, improves survival accompanied by QOL benefits with a favorable safety profile. It is approved in over 40 countries for the treatment of patients with CRPC with symptomatic bone metastases and no known visceral metastatic disease. Areas covered: The current management of CRPC in men with bone metastases, and in particular the role of radium-223 in this setting, is reviewed and discussed. A search of bibliographic databases for peer-reviewed literature and major meetings was conducted. Expert commentary: In treating patients with mCRPC, the best sequencing and/or combination of radium-223 with other agents has yet to be fully elucidated. The role of radium-223 in treating patients with hormone-sensitive metastatic prostate cancer who are candidates for chemotherapy should also be investigated in well-designed trials. The ability to tailor radium-223 therapy to both the clinical and genetic profiles of CRPC patients would be a promising development.
Collapse
Affiliation(s)
- Nicholas J Vogelzang
- a Division of Hematology/Oncology , Comprehensive Cancer Centers of Nevada , Las Vegas , NV , USA
| |
Collapse
|
40
|
Uemura H, Uemura H, Matsubara N, Kinuya S, Hosono M, Yajima Y, Doi T. Safety and efficacy of radium-223 dichloride in Japanese patients with castration-resistant prostate cancer and bone metastases. Int J Clin Oncol 2017; 22:954-963. [PMID: 28478485 PMCID: PMC5608784 DOI: 10.1007/s10147-017-1130-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/26/2017] [Indexed: 11/30/2022]
Abstract
Background Radiation therapy with radium-223 dichloride improves overall survival, reduces symptomatic skeletal events in Caucasian patients with castration-resistant prostate cancer (CRPC) and bone metastases, and is well tolerated. We report here the results of the first efficacy and safety study of radium-223 dichloride in a Japanese population. Methods In this open-label, uncontrolled, non-randomized, phase I trial, radium-223 dichloride was given to Japanese patients with CRPC and ≥2 bone metastases in 4-week cycles. The patients were divided into three cohorts, with cohort 1 and the expansion cohort receiving injections of radium-223 dichloride [55 kBq/kg body weight (BW)] every 4 weeks (Q4W) for up to six injections, and cohort 2 receiving an initial single radium-223 dichloride injection of 110 kBq/kg BW followed by up to five injections of 55 kBq/kg BW Q4W. Safety was determined via adverse event (AE) reporting, and biochemical bone markers were assessed for treatment efficacy. Results In total 19 patients received at least one dose of radium-223 dichloride and 18 patients experienced at least one treatment-emergent AE (TEAE) of which the most common were anemia, thrombocytopenia, and lymphocytopenia. Serious AEs were reported in three patients but none were drug-related. In the patients of cohort 1 + expansion cohort (55 kBq/kg BW Q4W treatment; n = 16), prostate-specific antigen levels remained stable or slightly increased while the bone alkaline phosphatase (ALP) level significantly decreased. The response rates of bone ALP (≥30 and ≥50% reductions) were 81.8 and 36.4% at week 12, and 81.3 and 50.0% at the end of treatment. Conclusions Radium-223 dichloride was well tolerated in these Japanese patients and, at a dose of 55 kBq/kg BW, efficacy on biomarkers was as expected. The outcomes in Japanese patients were consistent with those reported in other non-Japanese populations. Trial registration ClinicalTrials.gov record NCT01565746.
Collapse
Affiliation(s)
- Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Japan.
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Nobuaki Matsubara
- Department of Breast and Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Seigo Kinuya
- The Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Makoto Hosono
- The Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Yoko Yajima
- Clinical Development Specialty Medicine, Product Development, Bayer Yakuhin, Ltd., Tokyo, Japan
| | - Toshihiko Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|