1
|
Chen M, Li Y, Liu H, Zhang D, Guo Y, Shi QS, Xie X. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry. Int J Biol Macromol 2024; 279:135169. [PMID: 39218172 DOI: 10.1016/j.ijbiomac.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.
Collapse
Affiliation(s)
- Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangdong Dimei New Materials Technology Co. Ltd., 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huiming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Dandan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Xiaobao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| |
Collapse
|
2
|
Wolabu TW, Mahmood K, Chen F, Torres-Jerez I, Udvardi M, Tadege M, Cong L, Wang Z, Wen J. Mutating alfalfa COUMARATE 3-HYDROXYLASE using multiplex CRISPR/Cas9 leads to reduced lignin deposition and improved forage quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1363182. [PMID: 38504900 PMCID: PMC10948404 DOI: 10.3389/fpls.2024.1363182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Alfalfa (Medicago sativa L.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting the COUMARATE 3-HYDROXYLASE (MsC3H) gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon of MsC3H were designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa via Agrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles of MsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, and Msc3h-158) with different mutation events in MsC3H were characterized in detail. Homozygous mutation of MsC3H in these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, and in vitro true dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing of MsC3H successfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality.
Collapse
Affiliation(s)
- Tezera W. Wolabu
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Kashif Mahmood
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Fang Chen
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Ivone Torres-Jerez
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Michael Udvardi
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Million Tadege
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Lili Cong
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiangqi Wen
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| |
Collapse
|
3
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Song C, Guo Y, Shen W, Yao X, Xu H, Zhao Y, Li R, Lin J. PagUNE12 encodes a basic helix-loop-helix transcription factor that regulates the development of secondary vascular tissue in poplar. PLANT PHYSIOLOGY 2023; 192:1046-1062. [PMID: 36932687 PMCID: PMC10231459 DOI: 10.1093/plphys/kiad152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/01/2023]
Abstract
Secondary growth in woody plants generates new cells and tissues via the activity of the vascular cambium and drives the radial expansion of stems and roots. It is regulated by a series of endogenous factors, especially transcription factors. Here, we cloned the basic helix-loop-helix (bHLH) transcription factor gene UNFERTILIZED EMBRYO SAC12 (UNE12) from poplar (Populus alba × Populus glandulosa Uyeki) and used biochemical, molecular, and cytological assays to investigate the biological functions and regulatory mechanism of PagUNE12. PagUNE12 mainly localized in the nucleus and possessed transcriptional activation activity. It was widely expressed in vascular tissues, including primary phloem and xylem and secondary phloem and xylem. Poplar plants overexpressing PagUNE12 showed significantly reduced plant height, shorter internodes, and curled leaves compared with wild-type plants. Optical microscopy and transmission electron microscopy revealed that overexpressing PagUNE12 promoted secondary xylem development, with thicker secondary cell walls than wild-type poplar. Fourier transform infrared spectroscopy, confocal Raman microscopy, and 2D Heteronuclear Single Quantum Correlation analysis indicated that these plants also had increased lignin contents, with a lower relative abundance of syringyl lignin units and a higher relative abundance of guaiacyl lignin units. Therefore, overexpressing PagUNE12 promoted secondary xylem development and increased the lignin contents of secondary xylem in poplar, suggesting that this gene could be used to improve wood quality in the future.
Collapse
Affiliation(s)
- Chengwei Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
| | - Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Shen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Yao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
5
|
Bryant N, Zhang J, Feng K, Shu M, Ployet R, Chen JG, Muchero W, Yoo CG, Tschaplinski TJ, Pu Y, Ragauskas AJ. Novel candidate genes for lignin structure identified through genome-wide association study of naturally varying Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2023; 14:1153113. [PMID: 37215291 PMCID: PMC10197963 DOI: 10.3389/fpls.2023.1153113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023]
Abstract
Populus is a promising lignocellulosic feedstock for biofuels and bioproducts. However, the cell wall biopolymer lignin is a major barrier in conversion of biomass to biofuels. To investigate the variability and underlying genetic basis of the complex structure of lignin, a population of 409 three-year-old, naturally varying Populus trichocarpa genotypes were characterized by heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR). A subsequent genome-wide association study (GWAS) was conducted using approximately 8.3 million single nucleotide polymorphisms (SNPs), which identified 756 genes that were significantly associated (-log10(p-value)>6) with at least one lignin phenotype. Several promising candidate genes were identified, many of which have not previously been reported to be associated with lignin or cell wall biosynthesis. These results provide a resource for gaining insights into the molecular mechanisms of lignin biosynthesis and new targets for future genetic improvement in poplar.
Collapse
Affiliation(s)
- Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| | - Jin Zhang
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Mengjun Shu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Raphael Ployet
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Timothy J. Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
6
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
7
|
De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, Boerjan W. Engineering Curcumin Biosynthesis in Poplar Affects Lignification and Biomass Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:943349. [PMID: 35860528 PMCID: PMC9289561 DOI: 10.3389/fpls.2022.943349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 06/02/2023]
Abstract
Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars mainly due to the presence of lignin. By engineering plants to partially replace traditional lignin monomers with alternative ones, lignin degradability and extractability can be enhanced. Previously, the alternative monomer curcumin has been successfully produced and incorporated into lignified cell walls of Arabidopsis by the heterologous expression of DIKETIDE-CoA SYNTHASE (DCS) and CURCUMIN SYNTHASE2 (CURS2). The resulting transgenic plants did not suffer from yield penalties and had an increased saccharification yield after alkaline pretreatment. Here, we translated this strategy into the bio-energy crop poplar. Via the heterologous expression of DCS and CURS2 under the control of the secondary cell wall CELLULOSE SYNTHASE A8-B promoter (ProCesA8-B), curcumin was also produced and incorporated into the lignified cell walls of poplar. ProCesA8-B:DCS_CURS2 transgenic poplars, however, suffered from shoot-tip necrosis and yield penalties. Compared to that of the wild-type (WT), the wood of transgenic poplars had 21% less cellulose, 28% more matrix polysaccharides, 23% more lignin and a significantly altered lignin composition. More specifically, ProCesA8-B:DCS_CURS2 lignin had a reduced syringyl/guaiacyl unit (S/G) ratio, an increased frequency of p-hydroxyphenyl (H) units, a decreased frequency of p-hydroxybenzoates and a higher fraction of phenylcoumaran units. Without, or with alkaline or hot water pretreatment, the saccharification efficiency of the transgenic lines was equal to that of the WT. These differences in (growth) phenotype illustrate that translational research in crops is essential to assess the value of an engineering strategy for applications. Further fine-tuning of this research strategy (e.g., by using more specific promoters or by translating this strategy to other crops such as maize) might lead to transgenic bio-energy crops with cell walls more amenable to deconstruction without settling in yield.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Paula Oyarce
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yukiko Tsuji
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Thijs Vangeel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | | | | | - Bert Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | - John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
8
|
Wang Y, Gui C, Wu J, Gao X, Huang T, Cui F, Liu H, Sethupathy S. Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Front Bioeng Biotechnol 2022; 10:917459. [PMID: 35845403 PMCID: PMC9283729 DOI: 10.3389/fbioe.2022.917459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin is essential for plant growth, structural integrity, biotic/abiotic stress resistance, and water transport. Besides, lignin constitutes 10–30% of lignocellulosic biomass and is difficult to utilize for biofuel production. Over the past few decades, extensive research has uncovered numerous metabolic pathways and genes involved in lignin biosynthesis, several of which have been highlighted as the primary targets for genetic manipulation. However, direct manipulation of lignin biosynthesis is often associated with unexpected abnormalities in plant growth and development for unknown causes, thus limiting the usefulness of genetic engineering for biomass production and utilization. Recent advances in understanding the complex regulatory mechanisms of lignin biosynthesis have revealed new avenues for spatial and temporal modification of lignin in lignocellulosic plants that avoid growth abnormalities. This review explores recent work on utilizing specific transcriptional regulators to modify lignin biosynthesis at both tissue and cellular levels, focusing on using specific promoters paired with functional or regulatory genes to precisely control lignin synthesis and achieve biomass production with desired properties. Further advances in designing more appropriate promoters and other regulators will increase our capacity to modulate lignin content and structure in plants, thus setting the stage for high-value utilization of lignin in the future.
Collapse
Affiliation(s)
- Yongli Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| | - Cunjin Gui
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangyan Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xing Gao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| |
Collapse
|
9
|
Hu S, Kamimura N, Sakamoto S, Nagano S, Takata N, Liu S, Goeminne G, Vanholme R, Uesugi M, Yamamoto M, Hishiyama S, Kim H, Boerjan W, Ralph J, Masai E, Mitsuda N, Kajita S. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:358-376. [PMID: 35044002 DOI: 10.1111/tpj.15674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Lignin is a phenolic polymer deposited in the plant cell wall, and is mainly polymerized from three canonical monomers (monolignols), i.e. p-coumaryl, coniferyl and sinapyl alcohols. After polymerization, these alcohols form different lignin substructures. In dicotyledons, monolignols are biosynthesized from phenylalanine, an aromatic amino acid. Shikimate acts at two positions in the route to the lignin building blocks. It is part of the shikimate pathway that provides the precursor for the biosynthesis of phenylalanine, and is involved in the transesterification of p-coumaroyl-CoA to p-coumaroyl shikimate, one of the key steps in the biosynthesis of coniferyl and sinapyl alcohols. The shikimate residue in p-coumaroyl shikimate is released in later steps, and the resulting shikimate becomes available again for the biosynthesis of new p-coumaroyl shikimate molecules. In this study, we inhibited cytosolic shikimate recycling in transgenic hybrid aspen by accelerated phosphorylation of shikimate in the cytosol through expression of a bacterial shikimate kinase (SK). This expression elicited an increase in p-hydroxyphenyl units of lignin and, by contrast, a decrease in guaiacyl and syringyl units. Transgenic plants with high SK activity produced a lignin content comparable to that in wild-type plants, and had an increased processability via enzymatic saccharification. Although expression of many genes was altered in the transgenic plants, elevated SK activity did not exert a significant effect on the expression of the majority of genes responsible for lignin biosynthesis. The present results indicate that cytosolic shikimate recycling is crucial to the monomeric composition of lignin rather than for lignin content.
Collapse
Affiliation(s)
- Shi Hu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Sarah Liu
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core Ghent, VIB, Ghent, Belgium
| | - Mikiko Uesugi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shojiro Hishiyama
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Japan
| | - Hoon Kim
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
10
|
Su M, Liu Y, Lyu J, Zhao S, Wang Y. Chemical and Structural Responses to Downregulated p-Hydroxycinnamoyl-Coenzyme A: Quinate/Shikimate p-Hydroxycinnamoyltransferase in Poplar Cell Walls. FRONTIERS IN PLANT SCIENCE 2022; 12:679230. [PMID: 35154167 PMCID: PMC8830424 DOI: 10.3389/fpls.2021.679230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Unraveling the impact of lignin reduction on cell wall construction of poplar stems is important for accurate understanding the regulatory role of biosynthetic genes. However, few cell-level studies have been conducted on the changes in lignin, other important cell wall composition, and the structural properties of transgenic poplar stems at different developmental stages. In this work, the content and microdistributions of cell wall composition as well as the morphological characteristics of cells were studied for p-hydroxycinnamoyl-coenzyme A:quinate/shikimate p-hydroxycinnamoyltransferase (HCT) downregulated transgenic poplar 84K (Populus alba × P. glandulosa cl. '84k') at different developmental stages. Results show that the lignin contents of the upper, middle, and basal parts of HCT transgenic poplar stems were significantly decreased by 10.84, 7.40, and 7.75%, respectively; and the cellulose contents increased by 8.20, 6.45, and 3.31%, respectively, compared with the control group. The cellulose/lignin ratio of HCT transgenic poplars was therefore increased, especially in the upper sections, where it was 23.2% higher. Raman results indicate the appearance of p-hydroxyphenyl units (H) and a decrease in the ratio of syringyl/guaiacyl (S/G) lignin monomers in fiber cell walls of HCT transgenic poplars. In addition, microstructure observations revealed that the fiber and vessel cells of the HCT transgenic poplars exhibited thin cell walls and large lumen diameters. Compared with the control group, the cell wall thickness of fiber and vessel cells decreased by 6.50 and 10.93% on average, respectively. There was a 13.6% decrease in the average ratio of the cell wall thickness to the lumen diameter and an increase in fiber length and width of 5.60 and 6.11%, respectively. In addition, downregulation of HCT did not change the orientation of cellulosic microfibrils, but it led to an 11.1% increase of the cellulose crystallinity in cell walls compared to the control poplars. The information obtained herein could lead to a better understanding of the effects of genetic modifications on wood cell walls.
Collapse
Affiliation(s)
- Minglei Su
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianxiong Lyu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yurong Wang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
11
|
Peng XP, Bian J, Yao SQ, Ma CY, Wen JL. Effects of P-Coumarate 3-Hydroxylase Downregulation on the Compositional and Structural Characteristics of Lignin and Hemicelluloses in Poplar Wood ( Populus alba × Populus glandulosa). Front Bioeng Biotechnol 2021; 9:790539. [PMID: 34869298 PMCID: PMC8634402 DOI: 10.3389/fbioe.2021.790539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Elucidating the chemical and structural characteristics of hemicelluloses and lignin in the p-coumarate 3-hydroxylase (C3H) down-regulated poplar wood will be beneficial to the upstream gene validation and downstream biomass conversion of this kind of transgenic poplar. Herein, the representative hemicelluloses and lignin with unaltered structures were prepared from control (CK) and C3H down-regulated 84K poplars. Modern analytical techniques, such as 13C NMR, 2D-HSQC NMR, and gel chromatography (GPC), were performed to better delineate the structural changes of hemicelluloses and lignin caused by transgenesis. Results showed that both the hemicelluloses (H-CK and H-C3H) extracted from control and C3H down-regulated poplar wood have a chain backbone of (1→4)-β-D-Xylan with 4-O-Me-α-D-GlcpA as side chain, and the branch degree of the H-C3H is higher than that of H-CK. With regarding to the lignin macromolecules, NMR results demonstrated that the syringyl/guaiacyl (S/G) ratio and dominant substructure β-O-4 linkages in C3H down-regulated poplar were lower than those of control poplar wood. By contrast, native lignin from C3H down-regulated poplar wood exhibited higher contents of p-hydroxybenzoate (PB) and p-hydroxyphenyl (H) units. In short, C3H down-regulation resulted in the chemical and structural changes of the hemicelluloses and lignin in these poplar wood. The identified structures will facilitate the downstream utilization and applications of lignocellulosic materials in the biorefinery strategy. Furthermore, this study could provide some illuminating results for genetic breeding on the improvement of wood properties and efficient utilization of poplar wood.
Collapse
Affiliation(s)
- Xiao-Peng Peng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Ding Y, Yu S, Wang J, Li M, Qu C, Li J, Liu L. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC PLANT BIOLOGY 2021; 21:246. [PMID: 34051742 PMCID: PMC8164251 DOI: 10.1186/s12870-021-03030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brassica napus L. (2n = 38, AACC) is one of the most important oil crops and sources of protein for animal feed worldwide. Lignin is a large molecule aromatic polymer and a major cell wall component. However, lignin in the seed coat reduces the availability and restricts the development of rapeseed cake. Therefore, it is critical to reduce the lignin content of the seed coat. Here, high-lignin (H-lignin) and low-lignin (L-lignin) content recombinant inbred lines (RILs) were selected from an RIL population for analysis. RESULTS The cross-section results indicated that the seed coat of the H-lignin lines was thicker than that of the L-lignin lines, especially the palisade layer. The seed coats and embryos at 35, 40 and 46 days after flowering (DAF) were subjected to RNA sequencing (RNA-Seq), and the expression of the BnPAL and BnC4H gene families in the lignin pathway was significantly higher in the H-lignin seed coat than in the L-lignin seed coat. The Bn4CL gene family also showed this trend. In addition, among the genes related to plant hormone synthesis, BnaC02g01710D was upregulated and BnaA07g11700D and BnaC09g00190D were downregulated in H-lignin lines. Some transcription factors were upregulated, such as BnNAC080, BnNAC083, BnMYB9, BnMYB9-1, BnMYB60 and BnMYB60-1, while BnMYB91 was downregulated in H-lignin lines. Moreover, most genes of the flavonoid pathway, such as BnCHS and BnDFR, were strongly expressed in H-lignin seed coat. CONCLUSIONS In Our study, some key genes such as hormone synthesis genes, transcription factors and miRNAs related to lignin and flavonoid biosynthesis were identified. A regulatory model of B. napus seed coat lignin was proposed. These results provide new insight into lignin and flavonoid biosynthesis in B. napus.
Collapse
Affiliation(s)
- Yiran Ding
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shizhou Yu
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guizhou, 550008, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Maoteng Li
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Carpita NC, McCann MC. Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 2020; 295:15144-15157. [PMID: 32868456 PMCID: PMC7606688 DOI: 10.1074/jbc.rev120.014561] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Lignocellulosic biomass-the lignin, cellulose, and hemicellulose that comprise major components of the plant cell well-is a sustainable resource that could be utilized in the United States to displace oil consumption from heavy vehicles, planes, and marine-going vessels and commodity chemicals. Biomass-derived sugars can also be supplied for microbial fermentative processing to fuels and chemicals or chemically deoxygenated to hydrocarbons. However, the economic value of biomass might be amplified by diversifying the range of target products that are synthesized in living plants. Genetic engineering of lignocellulosic biomass has previously focused on changing lignin content or composition to overcome recalcitrance, the intrinsic resistance of cell walls to deconstruction. New capabilities to remove lignin catalytically without denaturing the carbohydrate moiety have enabled the concept of the "lignin-first" biorefinery that includes high-value aromatic products. The structural complexity of plant cell-wall components also provides substrates for polymeric and functionalized target products, such as thermosets, thermoplastics, composites, cellulose nanocrystals, and nanofibers. With recent advances in the design of synthetic pathways, lignocellulosic biomass can be regarded as a substrate at various length scales for liquid hydrocarbon fuels, chemicals, and materials. In this review, we describe the architectures of plant cell walls and recent progress in overcoming recalcitrance and illustrate the potential for natural or engineered biomass to be used in the emerging bioeconomy.
Collapse
Affiliation(s)
- Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
14
|
Petit J, Salentijn EMJ, Paulo MJ, Denneboom C, van Loo EN, Trindade LM. Elucidating the Genetic Architecture of Fiber Quality in Hemp ( Cannabis sativa L.) Using a Genome-Wide Association Study. Front Genet 2020; 11:566314. [PMID: 33093845 PMCID: PMC7527631 DOI: 10.3389/fgene.2020.566314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/25/2020] [Indexed: 01/12/2023] Open
Abstract
Hemp (Cannabis sativa L.) is a bast-fiber crop with a great potential in the emerging bio-based economy. Yet, hemp breeding for fiber quality is restricted and that is mainly due to the limited knowledge of the genetic architecture of its fiber quality. A panel of 123 hemp accessions, with large phenotypic variability, was used to study the genetic basis of seven cell wall and bast fiber traits relevant to fiber quality. These traits showed large genetic variance components and high values of broad sense heritability in this hemp panel, as concluded from the phenotypic evaluation across three test locations with contrasting environments. The hemp panel was genotyped using restriction site associated DNA sequencing (RAD-seq). Subsequently, a large set (> 600,000) of selected genome-wide single nucleotide polymorphism (SNP) markers was used for a genome-wide association study (GWAS) approach to get insights into quantitative trait loci (QTLs) controlling fiber quality traits. In absence of a complete hemp genome sequence, identification of QTLs was based on the following characteristics: (i) association level to traits, (ii) fraction of explained trait variance, (iii) collinearity between QTLs, and (iv) detection across different environments. Using this approach, 16 QTLs were identified across locations for different fiber quality traits, including contents of glucose, glucuronic acid, mannose, xylose, lignin, and bast fiber content. Among them, six were found across the three environments. The genetic markers composing the QTLs that are common across locations are valuable tools to develop novel genotypes of hemp with improved fiber quality. Underneath the QTLs, 12 candidate genes were identified which are likely to be involved in the biosynthesis and modification of monosaccharides, polysaccharides, and lignin. These candidate genes were suggested to play an important role in determining fiber quality in hemp. This study provides new insights into the genetic architecture of fiber traits, identifies QTLs and candidate genes that form the basis for molecular breeding for high fiber quality hemp cultivars.
Collapse
Affiliation(s)
- Jordi Petit
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Elma M J Salentijn
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, Netherlands
| | - Christel Denneboom
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Eibertus N van Loo
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M Trindade
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Bryant ND, Pu Y, Tschaplinski TJ, Tuskan GA, Muchero W, Kalluri UC, Yoo CG, Ragauskas AJ. Transgenic Poplar Designed for Biofuels. TRENDS IN PLANT SCIENCE 2020; 25:881-896. [PMID: 32482346 DOI: 10.1016/j.tplants.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 05/12/2023]
Abstract
Members of the genus Populus (i.e., cottonwood, hybrid poplar) represent a promising source of lignocellulosic biomass for biofuels. However, one of the major factors negatively affecting poplar's efficient conversion to biofuel is the inherent recalcitrance to enzymatic saccharification due to cell wall components such as lignin. To this effect, there have been efforts to modify gene expression to reduce biomass recalcitrance by changing cell wall properties. Here, we review recent genetic modifications of poplar that led to change cell wall properties and the resulting effects on subsequent pretreatment efficacy and saccharification. Although genetic engineering's impacts on cell wall properties are not fully predictable, recent studies have shown promising improvement in the biological conversion of transgenic poplar to biofuels.
Collapse
Affiliation(s)
- Nathan D Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
16
|
Shekhar H, Kant G, Tripathi R, Sharma S, Mani A, Singh NK, Srivastava S. Structural insight of two 4-Coumarate CoA ligase ( 4CL) isoforms in Leucaena suggests targeted genetic manipulations could lead to better lignin extractability from the pulp. 3 Biotech 2020; 10:383. [PMID: 32802725 DOI: 10.1007/s13205-020-02375-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022] Open
Abstract
4-Coumarate: coenzyme A ligase (4CL) is a key enzyme involved in the early steps of the monolignol biosynthetic pathway. It is hypothesized to modulate S and G monolignol content in the plant. Lignin removal is imperative to the paper industry and higher S/G ratio governs better extractability of lignin and economics of the pulping process. This background prompted us to predict 3D structure of two isoforms of 4CL in Leucaena leucocephala and evaluate their substrate preferences. The 3D structure of Ll4CL1 and Ll4CL2 protein were created by homology modeling and further refined by loop refinement. Molecular docking studies suggested differential substrate preferences of both the isoforms. Ll4CL1 preferred sinapic acid (- 4.91 kcal/mole), ferulic acid (- 4.84 kcal/mole), hydroxyferulic acid (- 4.72 kcal/mole), and caffeic acid (- 4.71 kcal/mole), in their decreasing order. Similarly, Ll4CL2 preferred caffeic acid (- 6.56 kcal/mole, 4 H bonds), hydroxyferulic acid (- 6.56 kcal/mole, 3 H bonds), and ferulic acid (- 6.32 kcal/mole) and sinapic acid (- 5.00 kcal/mole) in their decreasing order. Further, active site residues were identified in both the isoforms and in silico mutation and docking analysis was performed. Our analysis suggested that ASP228, TYR262, and PRO326 for Ll4CL1 and SER165, LYS247 and PRO315 for Ll4CL2 were important for their functional activity. Based on differential substrate preferences of the two isoforms, as a first step towards genetically modified Leuaena having the desired phenotype, it can be proposed that over-expression of Ll4CL1 gene and/or down-regulation of Ll4CL2 gene could yield higher S/G ratio leading to better extractability of lignin.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Gaurav Kant
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Rahul Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - N K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| |
Collapse
|
17
|
Straub CT, Bing RG, Wang JP, Chiang VL, Adams MWW, Kelly RM. Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:43. [PMID: 32180826 PMCID: PMC7065347 DOI: 10.1186/s13068-020-01675-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Biological conversion of lignocellulosic biomass is significantly hindered by feedstock recalcitrance, which is typically assessed through an enzymatic digestion assay, often preceded by a thermal and/or chemical pretreatment. Here, we assay 17 lines of unpretreated transgenic black cottonwood (Populus trichocarpa) utilizing a lignocellulose-degrading, metabolically engineered bacterium, Caldicellulosiruptor bescii. The poplar lines were assessed by incubation with an engineered C. bescii strain that solubilized and converted the hexose and pentose carbohydrates to ethanol and acetate. The resulting fermentation titer and biomass solubilization were then utilized as a measure of biomass recalcitrance and compared to data previously reported on the transgenic poplar samples. RESULTS Of the 17 transgenic poplar lines examined with C. bescii, a wide variation in solubilization and fermentation titer was observed. While the wild type poplar control demonstrated relatively high recalcitrance with a total solubilization of only 20% and a fermentation titer of 7.3 mM, the transgenic lines resulted in solubilization ranging from 15 to 79% and fermentation titers from 6.8 to 29.6 mM. Additionally, a strong inverse correlation (R 2 = 0.8) between conversion efficiency and lignin content was observed with lower lignin samples more easily converted and solubilized by C. bescii. CONCLUSIONS Feedstock recalcitrance can be significantly reduced with transgenic plants, but finding the correct modification may require a large sample set to identify the most advantageous genetic modifications for the feedstock. Utilizing C. bescii as a screening assay for recalcitrance, poplar lines with down-regulation of coumarate 3-hydroxylase 3 (C3H3) resulted in the highest degrees of solubilization and conversion by C. bescii. One such line, with a growth phenotype similar to the wild-type, generated more than three times the fermentation products of the wild-type poplar control, suggesting that excellent digestibility can be achieved without compromising fitness of the tree.
Collapse
Affiliation(s)
- Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, EB-1, 911 Partners Way, Raleigh, NC 27695-7905 USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, EB-1, 911 Partners Way, Raleigh, NC 27695-7905 USA
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695 USA
| | - Vincent L. Chiang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695 USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, EB-1, 911 Partners Way, Raleigh, NC 27695-7905 USA
| |
Collapse
|
18
|
Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnol Adv 2019; 37:107422. [DOI: 10.1016/j.biotechadv.2019.107422] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/13/2023]
|
19
|
Chanoca A, de Vries L, Boerjan W. Lignin Engineering in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 10:912. [PMID: 31404271 PMCID: PMC6671871 DOI: 10.3389/fpls.2019.00912] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/27/2019] [Indexed: 05/19/2023]
Abstract
Wood is a renewable resource that is mainly composed of lignin and cell wall polysaccharides. The polysaccharide fraction is valuable as it can be converted into pulp and paper, or into fermentable sugars. On the other hand, the lignin fraction is increasingly being considered a valuable source of aromatic building blocks for the chemical industry. The presence of lignin in wood is one of the major recalcitrance factors in woody biomass processing, necessitating the need for harsh chemical treatments to degrade and extract it prior to the valorization of the cell wall polysaccharides, cellulose and hemicellulose. Over the past years, large research efforts have been devoted to engineering lignin amount and composition to reduce biomass recalcitrance toward chemical processing. We review the efforts made in forest trees, and compare results from greenhouse and field trials. Furthermore, we address the value and potential of CRISPR-based gene editing in lignin engineering and its integration in tree breeding programs.
Collapse
Affiliation(s)
- Alexandra Chanoca
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lisanne de Vries
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
20
|
Ralph J, Lapierre C, Boerjan W. Lignin structure and its engineering. Curr Opin Biotechnol 2019; 56:240-249. [PMID: 30921563 DOI: 10.1016/j.copbio.2019.02.019] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Studies on lignin structure and its engineering are inextricably and bidirectionally linked. Perturbations of genes on the lignin biosynthetic pathway may result in striking compositional and structural changes that in turn suggest novel approaches for altering lignin and even 'designing' the polymer to enhance its value or with a view toward its simpler removal from the cell wall polysaccharides. Basic structural studies on various native lignins increasingly refine our knowledge of lignin structure, and examining lignins in different species reveals the extent to which evolution and natural variation have resulted in the incorporation of 'non-traditional' phenolic monomers, including phenolics from beyond the monolignol biosynthetic pathway. As a result, the very definition of lignin continues to be expanded and refined.
Collapse
Affiliation(s)
- John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA; Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA.
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052, Gent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
21
|
Kulkarni KP, Tayade R, Asekova S, Song JT, Shannon JG, Lee JD. Harnessing the Potential of Forage Legumes, Alfalfa, Soybean, and Cowpea for Sustainable Agriculture and Global Food Security. FRONTIERS IN PLANT SCIENCE 2018; 9:1314. [PMID: 30283466 PMCID: PMC6157451 DOI: 10.3389/fpls.2018.01314] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/20/2018] [Indexed: 05/18/2023]
Abstract
Substantial improvements in access to food and increased purchasing power are driving many people toward consuming nutrition-rich foods causing an unprecedented demand for protein food worldwide, which is expected to rise further. Forage legumes form an important source of feed for livestock and have potential to provide a sustainable solution for food and protein security. Currently, alfalfa is a commercially grown source of forage and feed in many countries. However, soybean and cowpea also have the potential to provide quality forage and fodder for animal use. The cultivation of forage legumes is under threat from changing climatic conditions, indicating the need for breeding cultivars that can sustain and acclimatize to the negative effects of climate change. Recent progress in genetic and genomic tools have facilitated the identification of quantitative trait loci and genes/alleles that can aid in developing forage cultivars through genomics-assisted breeding. Furthermore, transgenic technology can be utilized to manipulate the genetic makeup of plants to improve forage digestibility for better animal performance. In this article, we assess the genetic potential of three important legume crops, alfalfa, soybean, and cowpea in supplying quality fodder and feed for livestock. In addition, we examine the impact of climate change on forage quality and discuss efforts made in enhancing the adaptation of the plant to the abiotic stress conditions. Subsequently, we suggest the application of integrative approaches to achieve adequate forage production amid the unpredictable climatic conditions.
Collapse
Affiliation(s)
| | - Rupesh Tayade
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sovetgul Asekova
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, South Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - J. Grover Shannon
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
22
|
Takeda Y, Tobimatsu Y, Karlen SD, Koshiba T, Suzuki S, Yamamura M, Murakami S, Mukai M, Hattori T, Osakabe K, Ralph J, Sakamoto M, Umezawa T. Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:796-811. [PMID: 29890017 DOI: 10.1111/tpj.13988] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3'H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on the structure and properties of grass cell walls. C3'H-knockdown lines generated via RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non-acylated lignin units, with grass-specific γ-p-coumaroylated lignin units remaining apparently unchanged. Suppression of C3'H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross-linking ferulates. Collectively, our data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking. We also demonstrated that C3'H-suppressed rice displays enhanced biomass saccharification.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Steven D Karlen
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinya Murakami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Mai Mukai
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - John Ralph
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
23
|
Kim H, Padmakshan D, Li Y, Rencoret J, Hatfield RD, Ralph J. Characterization and Elimination of Undesirable Protein Residues in Plant Cell Wall Materials for Enhancing Lignin Analysis by Solution-State Nuclear Magnetic Resonance Spectroscopy. Biomacromolecules 2017; 18:4184-4195. [DOI: 10.1021/acs.biomac.7b01223] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hoon Kim
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Dharshana Padmakshan
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Yanding Li
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department
of Biological System Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| | - Jorge Rencoret
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, 41012 Seville, Spain
| | - Ronald D. Hatfield
- USDA-ARS Dairy Forage Research Center, 1925 Linden Drive West, Madison, Wisconsin 53706, United States
| | - John Ralph
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department
of Biological System Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
24
|
Auxenfans T, Crônier D, Chabbert B, Paës G. Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:36. [PMID: 28191037 PMCID: PMC5297051 DOI: 10.1186/s13068-017-0718-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/26/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Biorefining of lignocellulosic biomass has become one of the most valuable alternatives for the production of multi-products such as biofuels. Pretreatment is a prerequisite to increase the enzymatic conversion of the recalcitrant lignocellulose. However, there is still considerable debate regarding the key features of biomass impacting the cellulase accessibility. In this study, we evaluate the structural and chemical features of three different representative biomasses (Miscanthus × giganteus, poplar and wheat straw), before and after steam explosion pretreatment at increasing severities, by monitoring chemical analysis, SEM, FTIR and 2D NMR. RESULTS Regardless the biomass type, combined steam explosion pretreatment with dilute sulfuric acid impregnation resulted in significant improvement of the cellulose conversion. Chemical analyses revealed that the pretreatment selectively degraded the hemicellulosic fraction and associated cross-linking ferulic acids. As a result, the pretreated residues contained mostly cellulosic glucose and lignin. In addition, the pretreatment directly affected the cellulose crystallinity but these variations were dependent upon the biomass type. Important chemical modifications also occurred in lignin since the β-O-4' aryl-ether linkages were found to be homolytically cleaved, followed by some recoupling/recondensation to β-β' and β-5' linkages, regardless the biomass type. Finally, 2D NMR analysis of the whole biomass showed that the pretreatment preferentially degraded the syringyl-type lignin fractions in miscanthus and wheat straw while it was not affected in the pretreated poplar samples. CONCLUSIONS Our findings provide an enhanced understanding of parameters impacting biomass recalcitrance, which can be easily generalized to both woody and non-woody biomass species. Results indeed suggest that the hemicellulose removal accompanied by the significant reduction in the cross-linking phenolic acids and the redistribution of lignin are strongly correlated with the enzymatic saccharification, by loosening the cell wall structure thus allowing easier cellulase accessibility. By contrast, we have shown that the changes in the syringyl/guaiacyl ratio and the cellulose crystallinity do not seem to be relevant factors in assessing the enzymatic digestibility. Some biomass type-dependent and easily measurable FTIR factors are highly correlated to saccharification.
Collapse
Affiliation(s)
- Thomas Auxenfans
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - David Crônier
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Brigitte Chabbert
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Gabriel Paës
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
25
|
Wang H, Li K, Hu X, Liu Z, Wu Y, Huang C. Genome-wide association analysis of forage quality in maize mature stalk. BMC PLANT BIOLOGY 2016; 16:227. [PMID: 27769176 PMCID: PMC5073832 DOI: 10.1186/s12870-016-0919-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/12/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant digestibility of silage maize (Zea mays L.) has a large influence on nutrition intake for animal feeding. Improving forage quality will enhance the utilization efficiency and feeding value of forage maize. Dissecting the genetic basis of forage quality will improve our understanding of the complex nature of cell wall biosynthesis and degradation, which is also helpful for breeding good quality silage maize. RESULTS Acid detergent fiber (ADF), neutral detergent fiber (NDF) and in vitro dry matter digestibility (IVDMD) of stalk were evaluated in a diverse maize population, which is comprised of 368 inbred lines and planted across seven environments. Using a mixed model accounting for population structure and polygenic background effects, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) significantly associated with forage quality. Scanning 559,285 SNPs across the whole genome, 73, 41 and 82 SNPs were found to be associated with ADF, NDF, and IVDMD, respectively. Each significant SNP explained 4.2 %-6.2 % of the phenotypic variation. Underlying these associated loci, 56 genes were proposed as candidate genes for forage quality. CONCLUSIONS Of all the candidate genes proposed by GWAS, we only found a C3H gene (ZmC3H2) that is directly involved in cell wall component biosynthesis. The candidate genes found in this study are mainly involved in signal transduction, stress resistance, and transcriptional regulation of cell wall biosynthetic gene expression. Adding high digestibility maize into the association panel would be helpful for increasing genetic variability and identifying more genes associated with forage quality traits. Cloning and functional validation of these genes would be helpful for understanding the molecular mechanism of the fiber content and digestibility. These findings provide us new insights into cell wall formation and deposition.
Collapse
Affiliation(s)
- Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
26
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew Chem Int Ed Engl 2016; 55:8164-215. [PMID: 27311348 PMCID: PMC6680216 DOI: 10.1002/anie.201510351] [Citation(s) in RCA: 796] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/28/2016] [Indexed: 12/23/2022]
Abstract
Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.
Collapse
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Matthew T Clough
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, and Department of Biochemistry, University of Wisconsin, Madison, WI, 53726, USA.
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510351] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ Großbritannien
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Matthew T. Clough
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, and Department of Biochemistry University of Wisconsin Madison WI 53726 USA
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| |
Collapse
|
28
|
Fornalé S, Rencoret J, Garcia-Calvo L, Capellades M, Encina A, Santiago R, Rigau J, Gutiérrez A, Del Río JC, Caparros-Ruiz D. Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:272-82. [PMID: 26025540 DOI: 10.1016/j.plantsci.2015.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 05/21/2023]
Abstract
Coumarate 3-hydroxylase (C3H) catalyzes a key step of the synthesis of the two main lignin subunits, guaiacyl (G) and syringyl (S) in dicotyledonous species. As no functional data are available in regards to this enzyme in monocotyledonous species, we generated C3H1 knock-down maize plants. The results obtained indicate that C3H1 participates in lignin biosynthesis as its down-regulation redirects the phenylpropanoid flux: as a result, increased amounts of p-hydroxyphenyl (H) units, lignin-associated ferulates and the flavone tricin were detected in transgenic stems cell walls. Altogether, these changes make stem cell walls more degradable in the most C3H1-repressed plants, despite their unaltered polysaccharide content. The increase in H monomers is moderate compared to C3H deficient Arabidopsis and alfalfa plants. This could be due to the existence of a second maize C3H protein (C3H2) that can compensate the reduced levels of C3H1 in these C3H1-RNAi maize plants. The reduced expression of C3H1 alters the macroscopic phenotype of the plants, whose growth is inhibited proportionally to the extent of C3H1 repression. Finally, the down-regulation of C3H1 also increases the synthesis of flavonoids, leading to the accumulation of anthocyanins in transgenic leaves.
Collapse
Affiliation(s)
- Silvia Fornalé
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain.
| | | | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Universidad de León, 24071 León, Spain.
| | - Rogelio Santiago
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO) (unidad asociada a la Misión Biológica de Galicia, CSIC), Dpto. Biología Vegetal y Ciencias del Suelo, Facultad de Biología, Universidad de Vigo, Campus As Lagoas Marcosende, 36310, Vigo, Spain.
| | - Joan Rigau
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain.
| | - José-Carlos Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain.
| | - David Caparros-Ruiz
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.
| |
Collapse
|
29
|
Sykes RW, Gjersing EL, Foutz K, Rottmann WH, Kuhn SA, Foster CE, Ziebell A, Turner GB, Decker SR, Hinchee MAW, Davis MF. Down-regulation of p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla × E. grandis leads to improved sugar release. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:128. [PMID: 26312068 PMCID: PMC4550073 DOI: 10.1186/s13068-015-0316-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/13/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H, EC 1.14.13.36) were evaluated for cell wall composition and reduced recalcitrance. RESULTS Eucalyptus trees with down-regulated C4H or C3'H expression displayed lowered overall lignin content. The control samples had an average of 29.6 %, the C3'H reduced lines had an average of 21.7 %, and the C4H reduced lines had an average of 18.9 % lignin from wet chemical analysis. The C3'H and C4H down-regulated lines had different lignin compositions with average S/G/H ratios of 48.5/33.2/18.3 for the C3'H reduced lines and 59.0/39.8/1.2 for the C4H reduced lines, compared to the control with 65.9/33.2/1.0. Both the C4H and C3'H down-regulated lines had reduced recalcitrance as indicated by increased sugar release as determined using enzymatic conversion assays utilizing both no pretreatment and a hot water pretreatment. CONCLUSIONS Lowering lignin content rather than altering sinapyl alcohol/coniferyl alcohol/4-coumaryl alcohol ratios was found to have the largest impact on reducing recalcitrance of the transgenic eucalyptus variants. The development of lower recalcitrance trees opens up the possibility of using alternative pretreatment strategies in biomass conversion processes that can reduce processing costs.
Collapse
Affiliation(s)
- Robert W. Sykes
- />National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401-3393 USA
| | - Erica L. Gjersing
- />National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401-3393 USA
| | - Kirk Foutz
- />ArborGen Inc., 2011 Broadbank Ct., Ridgeville, SC 29472 USA
| | | | - Sean A. Kuhn
- />ArborGen Inc., 2011 Broadbank Ct., Ridgeville, SC 29472 USA
| | - Cliff E. Foster
- />Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
| | - Angela Ziebell
- />National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401-3393 USA
| | - Geoffrey B. Turner
- />Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401-3393 USA
| | - Stephen R. Decker
- />Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401-3393 USA
| | | | - Mark F. Davis
- />National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401-3393 USA
| |
Collapse
|
30
|
Sundin L, Vanholme R, Geerinck J, Goeminne G, Höfer R, Kim H, Ralph J, Boerjan W. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification. PLANT PHYSIOLOGY 2014; 166:1956-71. [PMID: 25315601 PMCID: PMC4256863 DOI: 10.1104/pp.114.245548] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 05/17/2023]
Abstract
ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production.
Collapse
Affiliation(s)
- Lisa Sundin
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Jan Geerinck
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - René Höfer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Hoon Kim
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - John Ralph
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| |
Collapse
|
31
|
Chantreau M, Portelette A, Dauwe R, Kiyoto S, Crônier D, Morreel K, Arribat S, Neutelings G, Chabi M, Boerjan W, Yoshinaga A, Mesnard F, Grec S, Chabbert B, Hawkins S. Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition. THE PLANT CELL 2014; 26:4462-82. [PMID: 25381351 PMCID: PMC4277216 DOI: 10.1105/tpc.114.130443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 10/19/2014] [Indexed: 05/24/2023]
Abstract
Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply.
Collapse
Affiliation(s)
- Maxime Chantreau
- Université Lille Nord de France, Lille 1, UMR1281, F-59650 Villeneuve d'Ascq Cedex, France INRA, UMR1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, F-59650 Villeneuve d'Ascq, France
| | - Antoine Portelette
- INRA, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France Université de Reims Champagne-Ardenne, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - Rebecca Dauwe
- Université de Picardie Jules Verne, EA 3900, BIOPI, Laboratoire de Phytotechnologie, F-80037 Amiens Cedex 1, France
| | - Shingo Kiyoto
- INRA, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France Université de Reims Champagne-Ardenne, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - David Crônier
- INRA, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France Université de Reims Champagne-Ardenne, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - Kris Morreel
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, UGent, 9052 Gent, Belgium
| | - Sandrine Arribat
- Université Lille Nord de France, Lille 1, UMR1281, F-59650 Villeneuve d'Ascq Cedex, France INRA, UMR1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, F-59650 Villeneuve d'Ascq, France
| | - Godfrey Neutelings
- Université Lille Nord de France, Lille 1, UMR1281, F-59650 Villeneuve d'Ascq Cedex, France INRA, UMR1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, F-59650 Villeneuve d'Ascq, France
| | - Malika Chabi
- Université Lille Nord de France, Lille 1, UMR1281, F-59650 Villeneuve d'Ascq Cedex, France INRA, UMR1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, F-59650 Villeneuve d'Ascq, France
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, UGent, 9052 Gent, Belgium
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - François Mesnard
- Université de Picardie Jules Verne, EA 3900, BIOPI, Laboratoire de Phytotechnologie, F-80037 Amiens Cedex 1, France
| | - Sebastien Grec
- Université Lille Nord de France, Lille 1, UMR1281, F-59650 Villeneuve d'Ascq Cedex, France INRA, UMR1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, F-59650 Villeneuve d'Ascq, France
| | - Brigitte Chabbert
- INRA, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France Université de Reims Champagne-Ardenne, UMR614, Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - Simon Hawkins
- Université Lille Nord de France, Lille 1, UMR1281, F-59650 Villeneuve d'Ascq Cedex, France INRA, UMR1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, F-59650 Villeneuve d'Ascq, France
| |
Collapse
|
32
|
Lignin bioengineering. Curr Opin Biotechnol 2014; 26:189-98. [DOI: 10.1016/j.copbio.2014.01.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
|
33
|
Min DY, Jameel H, Chang HM, Lucia L, Wang ZG, Jin YC. The structural changes of lignin and lignin–carbohydrate complexes in corn stover induced by mild sodium hydroxide treatment. RSC Adv 2014. [DOI: 10.1039/c3ra47032f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Wen JL, Sun SN, Yuan TQ, Xu F, Sun RC. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process. BIORESOURCE TECHNOLOGY 2013; 150:278-286. [PMID: 24184648 DOI: 10.1016/j.biortech.2013.10.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry.
Collapse
Affiliation(s)
- Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 10083, PR China
| | | | | | | | | |
Collapse
|
35
|
Vanholme B, Cesarino I, Goeminne G, Kim H, Marroni F, Van Acker R, Vanholme R, Morreel K, Ivens B, Pinosio S, Morgante M, Ralph J, Bastien C, Boerjan W. Breeding with rare defective alleles (BRDA): a natural Populus nigra HCT mutant with modified lignin as a case study. THE NEW PHYTOLOGIST 2013; 198:765-776. [PMID: 23432219 DOI: 10.1111/nph.12179] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/02/2013] [Indexed: 05/18/2023]
Abstract
Next-generation (NG) sequencing in a natural population of Populus nigra revealed a mutant with a premature stop codon in the gene encoding hydroxycinnamoyl-CoA : shikimate hydroxycinnamoyl transferase1 (HCT1), an essential enzyme in lignin biosynthesis. The lignin composition of P. nigra trees homozygous for the defective allele was compared with that of heterozygous trees and trees without the defective allele. The lignin was characterized by phenolic profiling, lignin oligomer sequencing, thioacidolysis and NMR. In addition, HCT1 was heterologously expressed for activity assays and crosses were made to introduce the mutation in different genetic backgrounds. HCT1 converts p-coumaroyl-CoA into p-coumaroyl shikimate. The mutant allele, PnHCT1-Δ73, encodes a truncated protein, and trees homozygous for this recessive allele have a modified lignin composition characterized by a 17-fold increase in p-hydroxyphenyl units. Using the lignin pathway as proof of concept, we illustrated that the capture of rare defective alleles is a straightforward approach to initiate reverse genetics and accelerate tree breeding. The proposed breeding strategy, called 'breeding with rare defective alleles' (BRDA), should be widely applicable, independent of the target gene or the species.
Collapse
Affiliation(s)
- Bartel Vanholme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Igor Cesarino
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Geert Goeminne
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Hoon Kim
- Department of Biochemistry, and the DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Rebecca Van Acker
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Ruben Vanholme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Bart Ivens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Sara Pinosio
- Istituto di Genomica Applicata, 33100, Udine, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, 33100, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, Università di Udine, 33100, Udine, Italy
| | - John Ralph
- Department of Biochemistry, and the DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Catherine Bastien
- INRA - Unité Amélioration, Génétique et Physiologie forestières, Olivet, France
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| |
Collapse
|
36
|
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 2012; 7:1579-89. [PMID: 22864199 DOI: 10.1038/nprot.2012.064] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in nuclear magnetic resonance (NMR) technology have made it possible to rapidly screen plant material and discern whole cell wall information without the need to deconstruct and fractionate the plant cell wall. This approach can be used to improve our understanding of the biology of cell wall structure and biosynthesis, and as a tool to select plant material for the most appropriate industrial applications. This is particularly true in an era when renewable materials are vital to the emerging bio-based economies. This protocol describes procedures for (i) the preparation and extraction of a biological plant tissue, (ii) solubilization strategies for plant material of varying composition and (iii) 2D NMR acquisition (for typically 15 min-5 h) and integration methods used to elucidate lignin subunit composition and lignin interunit linkage distribution, as well as cell wall polysaccharide profiling. Furthermore, we present data that demonstrate the utility of this new NMR whole cell wall characterization procedure with a variety of degradative methods traditionally used for cell wall compositional analysis.
Collapse
Affiliation(s)
- Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|