1
|
Staveckienė J, Medveckienė B, Jarienė E, Kulaitienė J. Effects of Different Ripening Stages on the Content of the Mineral Elements and Vitamin C of the Fruit Extracts of Solanum Species: S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum. PLANTS (BASEL, SWITZERLAND) 2024; 13:343. [PMID: 38337877 PMCID: PMC10857400 DOI: 10.3390/plants13030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Studies on the mineral and vitamin C contents of different species and ripening stages of Solanum fruits are very limited. The aim of the research was to evaluate the content of the mineral elements and vitamin C of four different Solanum species (S. melanocerasum-SM, S. nigrum-SN, S. villosum-SV and S. retroflexum-SR), and three ripening stages. The mineral composition of Solanum fruits was detected using a CEM MARS 6® (Matthews, NC, USA) digestion system outfitted with a 100 mL Teflon vessel, by microwave-assisted extraction (MAE). In total, eleven mineral elements were detected (K, Ca, Mg, P, Fe, Na, Cu, B, Mn, Al, and Zn). Vitamin C content was assessed by a spectrophotometric method. Depending on the ripening stage/species, content of microelements ranged from 756.48 mg kg-1 DW in SV fruits at ripening stage III, to 211.12 mg kg-1 DW in SM fruits at ripening stage III. The dominant microelement was Fe. The total content of macroelements in Solanum fruits ranged from 26,104.95 mg kg-1 DW in SV fruits at ripening stage II to 67,035.23 mg kg-1 DW in SR fruits at ripening stage I. The dominant macroelement was K. The data from two experimental years showed that the significantly highest content of vitamin C was in SM fruits and ranged from 48.15 mg 100 g-1 at ripening stage I to 45.10 mg 100 g-1 at ripening stage III.
Collapse
Affiliation(s)
- Jūratė Staveckienė
- Department of Plant Biology and Food Sciences, Vytautas Magnus University Agriculture Academy, 44001 Kaunas, Lithuania; (B.M.); (E.J.); (J.K.)
| | | | | | | |
Collapse
|
2
|
Mosayyeb Zadeh A, Mirghelenj SA, Daneshyar M, Eslami M, Karimi Torshizi MA, Zhandi M. Effects of dietary supplementation of tomato pomace (Solanum lycopersicum L.) and L-Arg on reproductive performance of aged male broiler breeders. Poult Sci 2023; 102:102614. [PMID: 36965255 PMCID: PMC10064435 DOI: 10.1016/j.psj.2023.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
This study aimed to investigate the effects of different dietary supplementation of tomato pomace (TP) and L-arginine (L-Arg) supplementation on sperm characteristics, reproductive performance, and semen biochemical components of aged commercial male broiler breeders. Thirty Ross 308 male broiler breeders (58 wk old) were provided and assigned to 5 dietary treatment groups, including control (CON), 5% TP (TPS-5), 10% TP (TPS-10), 15% TP (TPS-15), and L-Arg supplemented (10% above the recommendation, LAS-10). The results indicated that the semen volume increased in the TPS-15 group compared to that of the LAS-10 (and CON on wk 9) throughout the study (P < 0.05). The sperm concentration significantly increased in TPS-10 and TPS-15 groups in comparison to the other experimental groups. On wk 5 and 7, the sperm viability increased in all TPS groups compared to the CON and LAS-10, while on wk 9, it only increased in the TPS-10 group in comparison to the LAS-10 group (P < 0.05). The hypo-osmotic swelling test decreased in the LAS-10 group compared to the other experimental groups on wk 5 and all TPS groups on wk 7 and 9 (P < 0.05). The sperm total motility and forward progressive motility decreased in the LAS-10 group compared to the other experimental groups (P < 0.05). In contrast, unprogressive motility and immotile sperms were increased in the LAS-10 group compared to the other experimental groups (P < 0.05). In addition, the sperm penetration and fertility rate increased in TPS-10 and TPS-15 groups in comparison to CON and LAS-10 groups (P < 0.05). However, hatchability was reduced in the LAS-10 group (P < 0.05). The semen adenosine triphosphate increased in TPS-10, TPS-15, and LAS-10 groups compared to the CON (P < 0.05). Finally, the semen TAC and superoxidase dismutase decreased in the LAS-10 group (P < 0.05), while the glutathione peroxidase increased in the TPS-15 group (P < 0.05). In conclusion, 15% dietary TPS is recommended to improve the reproductive performance of aged commercial male broiler breeders.
Collapse
Affiliation(s)
- Amir Mosayyeb Zadeh
- Department of Animal Science, College of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Seyyed Ali Mirghelenj
- Department of Animal Science, College of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
| | - Mohsen Daneshyar
- Department of Animal Science, College of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Mahdi Zhandi
- Department of Animal Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
3
|
Application of Exogenous Melatonin Improves Tomato Fruit Quality by Promoting the Accumulation of Primary and Secondary Metabolites. Foods 2022; 11:foods11244097. [PMID: 36553839 PMCID: PMC9778358 DOI: 10.3390/foods11244097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Melatonin plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how melatonin regulates primary and secondary metabolites during fruit growth and development are poorly understood. In this study, the surfaces of tomato fruit were sprayed with different concentrations of melatonin (0, 50, and 100 µmol·L-1) on the 20th day after anthesis; we used high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) to determine the changes in primary and secondary metabolite contents during fruit development and measured the activity of sucrose metabolizing enzymes during fruit development. Our results showed that 100 µmol·L-1 melatonin significantly promoted the accumulation of soluble sugar in tomato fruit by increasing the activities of sucrose synthase (SS), sucrose phosphate synthase (SPS), and acid convertase (AI). The application of 100 µmol·L-1 melatonin also increased the contents of ten amino acids in tomato fruit as well as decreased the contents of organic acids. In addition, 100 µmol·L-1 melatonin application also increased the accumulation of some secondary metabolites, such as six phenolic acids, three flavonoids, and volatile substances (including alcohols, aldehydes, and ketones). In conclusion, melatonin application improves the internal nutritional and flavor quality of tomato fruit by regulating the accumulation of primary and secondary metabolites during tomato fruit ripening. In the future, we need to further understand the molecular mechanism of melatonin in tomato fruit to lay a solid foundation for quality improvement breeding.
Collapse
|
4
|
Utilizing laser spectrochemical analytical methods for assessing the ripening progress of tomato. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractTo meet market demands and minimize losses, the tomato crop (Solanum Lycopersicum L.) requires a simple, rapid, and cost-effective method to distinguish between different maturity stages with high accuracy. This study aimed at evaluating two spectrochemical analytical techniques, namely laser-induced fluorescence (LIF) and laser-induced breakdown spectroscopy (LIBS), to discriminate three different maturity stages of tomato fruit (‘Green/Breaker’; ‘Turning/Pink’; and ‘Light-red/Red’). The simple linear regression confirmed the obtained LIF results with chlorophyll content (mg/100 g), hue angle (h°), and firmness (kg/cm2) of the different maturity stages (measured by conventional methods). Furthermore, the findings showed that the peak intensities of LIF spectra decreased with the chlorophyll content depletion during ripening. Moreover, the data exposed a reasonably good association between LIF spectra and chlorophyll content with a regression coefficient of 0.85. On the other hand, firmness and skin hue have shown an excellent predictor for the spectra with a high regression coefficient of 0.94. For LIBS spectra of each maturity stage, the ratios of Ca’s ionic-to-atomic spectral lines intensities have followed the same trend as conventionally measured firmness. The results demonstrated that LIF and LIBS are accurate, easy, and fast techniques used to define tomatoes’ different ripening stages. Both methods are useable in situ without any prior laboratory work.
Collapse
|
5
|
Wang S, Jin N, Jin L, Xiao X, Hu L, Liu Z, Wu Y, Xie Y, Zhu W, Lyu J, Yu J. Response of Tomato Fruit Quality Depends on Period of LED Supplementary Light. Front Nutr 2022; 9:833723. [PMID: 35174200 PMCID: PMC8841748 DOI: 10.3389/fnut.2022.833723] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Light is an important environmental factor that regulates the activity of metabolism-related biochemical pathways during tomato maturation. Using LED to improve lighting conditions during the process of tomato growth and development is a feasible and efficient method to improve the quality of tomato fruit. In this study, red and blue LEDs were used to supplement light on “MicroTom” tomato plants for different periods of time in the morning and evening, and the differences between the primary and secondary metabolites and other nutrient metabolites in the tomato fruit were analyzed using liquid chromatography and liquid chromatography mass spectrometry and other methods. Supplementing light in the morning promoted the accumulation of vitamin C, organic acids, amino acids, carotenoids, phenolic acids, and other health-promoting substances in the tomato fruits. Supplementing light in the evening significantly increased the content of sugars, flavonoids, and aromatic substances in tomato fruits, whereas the promoting effect of LED on the accumulation of amino acids and carotenoids was lower in the evening than in the morning. Both morning and evening light supplementation reduced the mineral content of fruit. In conclusion, morning light supplementation improved the nutritional quality of tomato fruits, while evening light supplementation improved their flavor.
Collapse
Affiliation(s)
- Shuya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yandong Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wen Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jian Lyu
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Jihua Yu
| |
Collapse
|
6
|
Ragályi P, Takács T, Füzy A, Uzinger N, Dobosy P, Záray G, Szűcs-Vásárhelyi N, Rékási M. Effect of Se-Enriched Irrigation Water on the Biomass Production and Elemental Composition of Green Bean, Cabbage, Potato and Tomato. PLANTS 2021; 10:plants10102086. [PMID: 34685895 PMCID: PMC8537221 DOI: 10.3390/plants10102086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Additional Selenium (Se) intake may be recommended in areas of Se deficiency to prevent various human diseases. One possibility for this is biofortification. In this experiment, the effect of irrigation water containing 100 and 500 µg L−1 Se, in the form of Na2SeO4, on green bean, cabbage, potato and tomato was investigated in a greenhouse pot experiment with sand, silty sand and silt soils. The chlorophyll content index was usually improved by Se and was significantly higher in potato in sand and silty sand and in tomato in silty sand and silt soils. The Se content of edible plant parts increased 63-fold in the 100 µg L−1 Se treatment and almost 400-fold in the 500 µg L−1 Se treatment, averaged over the four species and the three soils. Irrigation water with a Se content of 100 µg L−1 may be suitable for the production of functional food in the case of green beans, potatoes and tomatoes. However, due to its greater Se accumulation, cabbage should only be irrigated with a lower Se concentration. The use of Se-enriched irrigation water might be a suitable method for Se biofortification without a significant reduction in plant biomass production and without a remarkable modification of other macro- and microelement contents.
Collapse
Affiliation(s)
- Péter Ragályi
- Institute for Soil Sciences, Centre for Agricultural Research, Herman O. út 15., H-1022 Budapest, Hungary; (P.R.); (N.U.); (N.S.-V.); (M.R.)
| | - Tünde Takács
- Institute for Soil Sciences, Centre for Agricultural Research, Herman O. út 15., H-1022 Budapest, Hungary; (P.R.); (N.U.); (N.S.-V.); (M.R.)
- Correspondence: (T.T.); (A.F.)
| | - Anna Füzy
- Institute for Soil Sciences, Centre for Agricultural Research, Herman O. út 15., H-1022 Budapest, Hungary; (P.R.); (N.U.); (N.S.-V.); (M.R.)
- Correspondence: (T.T.); (A.F.)
| | - Nikolett Uzinger
- Institute for Soil Sciences, Centre for Agricultural Research, Herman O. út 15., H-1022 Budapest, Hungary; (P.R.); (N.U.); (N.S.-V.); (M.R.)
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; (P.D.); (G.Z.)
| | - Gyula Záray
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; (P.D.); (G.Z.)
| | - Nóra Szűcs-Vásárhelyi
- Institute for Soil Sciences, Centre for Agricultural Research, Herman O. út 15., H-1022 Budapest, Hungary; (P.R.); (N.U.); (N.S.-V.); (M.R.)
| | - Márk Rékási
- Institute for Soil Sciences, Centre for Agricultural Research, Herman O. út 15., H-1022 Budapest, Hungary; (P.R.); (N.U.); (N.S.-V.); (M.R.)
| |
Collapse
|
7
|
Torres‐Vargas OL, Luzardo‐Ocampo I, Hernandez‐Becerra E, Rodríguez‐García ME. Physicochemical Characterization of Unripe and Ripe Chontaduro (
Bactris gasipaes
Kunth) Fruit Flours and Starches. STARCH-STARKE 2021. [DOI: 10.1002/star.202000242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Olga Lucia Torres‐Vargas
- Universidad del Quindío, Facultad de Ciencias Agroindustriales Grupo de Investigación en Ciencias Agroindustriales Armenia Quindio Colombia
| | - Ivan Luzardo‐Ocampo
- Research and Graduate Program in Food Science, School of Chemistry Universidad Autónoma de Querétaro Queretaro Qro 76010 Mexico
- Instituto de Neurobiología Universidad Nacional Autónoma de México Juriquilla 76230 México
| | - Ezequiel Hernandez‐Becerra
- Ciencias de la Salud Universidad del Valle de México, Campus Querétaro Naranjos Punta Juriquilla 1000, Santa Rosa Jáurequi Querétaro Qro México
| | - Mario E. Rodríguez‐García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México Campus Juriquilla Queretaro Qro 76230 Mexico
| |
Collapse
|
8
|
Experimental investigation of innovative active packaging biofilms using electrical impedance spectroscopy. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Erika C, Griebel S, Naumann M, Pawelzik E. Biodiversity in Tomatoes: Is It Reflected in Nutrient Density and Nutritional Yields Under Organic Outdoor Production? FRONTIERS IN PLANT SCIENCE 2020; 11:589692. [PMID: 33329651 PMCID: PMC7732668 DOI: 10.3389/fpls.2020.589692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
In many regions of the world, human nutrition is still characterized by an insufficient intake of essential nutrients like minerals such as iron (Fe) and zinc (Zn). In view of decreasing resources and a growing world population, the efficiency and the sustainability of cultivation systems should be considered not only in terms of crop yield and profit margin but also in terms of the yield of essential nutrients. Tomatoes are the most consumed vegetable in the world. Organic outdoor tomato cultivation is generally characterized by a higher diversity of varieties and lower fertilization input compared to conventional production. A 2-year field experiment with a set of 20 cultivars was performed to evaluate their variation regarding fruit mineral concentrations [potassium (K), calcium (Ca), magnesium (Mg), phosphorous (P), Fe, and Zn], their contribution to the dietary reference intake (DRI), and the nutritional yields (adults ha-1 year-1). Results show that mineral concentrations differed significantly by cultivar and by year. However, even though significant genotype-by-year effects appear, several cultivars exhibit high genotype stability across years for the single traits studied. Taking this together with medium-to-high heritability, genetics strongly controls most studied traits. Among the cultivars, the contribution of 100 g fresh fruits varied from 4.5 to 7.7% for K, 0.8 to 1.8% for Ca, 2.3 to 4.4% for Mg, 3 to 6.6% for P, 3.1 to 6.9% for Fe, and 1.9 to 4.2% for Zn to meet daily requirements. Based on average fruit yields per hectare, the cultivars varied with regard to the nutritional yields for all the studied minerals, but most strongly for Fe (44-120 adults ha-1 year-1) and Zn (22-84 adults ha-1 year-1). In terms of contribution to the DRI and nutritional yield for Fe, the cocktail cultivar "Bartelly F1" produced the highest results, while for Zn the salad cultivar "Bocati F1" showed the highest values. Our results show that the targeted use of tomato biodiversity in organic outdoor production can be suitable to achieve high fruit yields as well as to produce high nutritional yields per unit area, thus contributing to more effective land use and improved food security. These findings also provide valuable insights for tomato breeders to improve the tomato fruit quality while maintaining yield.
Collapse
Affiliation(s)
- Cut Erika
- Division Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| | - Stefanie Griebel
- Division Plant Breeding Methodology, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| | - Marcel Naumann
- Division Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| | - Elke Pawelzik
- Division Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R. Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 2020; 62:1003-1034. [PMID: 33086895 DOI: 10.1080/10408398.2020.1832954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, MS, India
| | - Pravin Jadhav
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Vijay Kale
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Atul Sathe
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
11
|
Mohammed AE, Smit I, Pawelzik E, Keutgen AJ, Horneburg B. Organically grown outdoor tomato: fruit mineral nutrients and plant infection by Phytophthora infestans. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13165-019-00253-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Schulz M, Seraglio SKT, Della Betta F, Nehring P, Valese AC, Daguer H, Gonzaga LV, Costa ACO, Fett R. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res Int 2019; 122:627-634. [PMID: 31229121 DOI: 10.1016/j.foodres.2019.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/09/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
Abstract
The berries of the genus Rubus has been highlighted as important source of bioactive and health promoting constituents, however, information about chemical composition and antioxidant potential of the specie Rubus ulmifolius are still scarce. In this regard, this study aimed to assess the physicochemical characteristics, total monomeric anthocyanins (TMA), individual phenolics, minerals, sugars, and antioxidant properties of mature and fully mature R. ulmifolius. With the advance of maturation, changes in the physicochemical composition suggest pleasant characteristics for consumption especially in the fully mature stage. High levels of TMA and sugars (fructose and glucose) were also verified in the fully mature stage, as well as, expressive antioxidant potential, with values of 241.06 μM Fe+2 g-1 for ferric reducing antioxidant power and 28.22 mg gallic acid equivalent g-1 for Folin-Ciocalteu reducing capacity (all expressed in dry matter, DM). In contrast, minerals (potassium, calcium, sodium) and most of the studied phenolic compounds showed the highest concentrations in mature fruits. Among the phenolics investigated, 26 compounds were identified and quercetin and isoquercitrin were the predominant phenolic compounds in the fruit. The results reinforce the nutritive and antioxidant potential of Rubus ulmifolius in both maturation stages studied.
Collapse
Affiliation(s)
- Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil.
| | | | - Fabiana Della Betta
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Priscila Nehring
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Andressa Camargo Valese
- National Agricultural Laboratory (LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, 88102-600, São José, SC, Brazil
| | - Heitor Daguer
- National Agricultural Laboratory (LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, 88102-600, São José, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Coating development with modified starch and tomato powder for application in frozen dough. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Changes in Polyphenols Contents and Antioxidant Capacities of Organically and Conventionally Cultivated Tomato (Solanum lycopersicum L.) Fruits during Ripening. Int J Anal Chem 2017. [PMID: 28630627 PMCID: PMC5463128 DOI: 10.1155/2017/2367453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphenols of fruits and vegetables form an important part of human dietary compounds. Relatively little is known about accumulation of phenolics during fruits ripening process. The goal of this work was to study the changes in antioxidant activity and in content of 30 polyphenols during ripening of tomato fruits. Five organically and conventionally grown tomato cultivars were investigated at three different ripening stages. Phenolic compounds were extracted with methanol and extracts were analyzed by HPLC-DAD-MS/MS. During ripening, four different changing patterns were observed: (1) high level in green fruits with minimal changes; (2) continuous increase with maximum level in red-ripe fruits; (3) decrease; (4) increase and achieving maximum level at half-ripe stage. Similar change patterns were found for organic and conventional fruits. The accumulation patterns of phenolic compounds were similar in standard-type tomatoes but differed in several cases in cherry-type cultivar. Although contents of some polyphenols decreased during ripening, total phenolics and free radical scavenging activity increased in all studied cultivars and in case of both cultivation modes. The changes in content of phenolic compounds during ripening were greatly influenced by cultivars, but cultivation mode had only minor impact on dynamics in polyphenols contents in tomato fruits.
Collapse
|