1
|
Ahmad R, Bhat KS, Nagal V, Nakate UT, Ahmad A, Alshammari MB, Alam S, Lee BI. Surface-engineered vertically-aligned ZnO nanorod for sensitive non-enzymatic electrochemical monitoring of cholesterol. Heliyon 2024; 10:e37847. [PMID: 39315144 PMCID: PMC11417317 DOI: 10.1016/j.heliyon.2024.e37847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Developing highly sensitive and selective non-enzymatic electrochemical biosensors for disease biomarker detection has become challenging in healthcare applications. However, advances in material science are opening new avenues for creating more dependable biosensing technologies. In this context, the present work introduces a novel approach by engineering a hybrid structure of zinc oxide nanorod (ZnO NR) modified with iron oxide nanoparticle (Fe2O3 NP) on an FTO electrode. This Fe2O3 NP-ZnO NR hybrid material functions as a nanozyme, facilitating the catalysis of cholesterol and enabling the direct transfer of electrons to the fluorine-doped tin oxide (FTO) electrode, limiting the need for costly and traditional enzymes in the detection process. This innovative non-enzymatic cholesterol biosensor showcases remarkable sensitivity, registering at 642.8 μA/mMcm2 within a linear response range of up to 9.0 mM. It also exhibits a low detection limit (LOD) of ∼12.4 μM, ensuring its capability to detect minimal concentrations of cholesterol accurately. Moreover, the developed biosensor displays exceptional selectivity by effectively distinguishing cholesterol molecules from other interfering biological species, while exhibiting outstanding stability and reproducibility. Our findings indicate that the Fe2O3 NP-ZnO NR hybrid nanostructure on the FTO electrode holds promise for enhancing biosensor stability. Furthermore, the present device fabrication platform offers versatility, as it can be adapted with various enzymes or modified with different metal oxides, potentially broadening its applicability in a wide range of biomarkers detection.
Collapse
Affiliation(s)
- Rafiq Ahmad
- ‘New-Senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way, 138602, Singapore
| | - Vandana Nagal
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Umesh T. Nakate
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14263, United States
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan, 48513, Republic of Korea
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
2
|
Shen M, Yuan L, Zhang J, Wang X, Zhang M, Li H, Jing Y, Zeng F, Xie J. Phytosterols: Physiological Functions and Potential Application. Foods 2024; 13:1754. [PMID: 38890982 PMCID: PMC11171835 DOI: 10.3390/foods13111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary intake of natural substances to regulate physiological functions is currently regarded as a potential way of promoting health. As one of the recommended dietary ingredients, phytosterols that are natural bioactive compounds distributed in plants have received increasing attention for their health effects. Phytosterols have attracted great attention from scientists because of many physiological functions, for example, cholesterol-lowering, anticancer, anti-inflammatory, and immunomodulatory effects. In addition, the physiological functions of phytosterols, the purification, structure analysis, synthesis, and food application of phytosterols have been widely studied. Nowadays, many bioactivities of phytosterols have been assessed in vivo and in vitro. However, the mechanisms of their pharmacological activities are not yet fully understood, and in-depth investigation of the relationship between structure and function is crucial. Therefore, a contemporaneous overview of the extraction, beneficial properties, and the mechanisms, as well as the current states of phytosterol application, in the food field of phytosterols is provided in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (M.S.); (L.Y.); (J.Z.); (X.W.); (M.Z.); (H.L.); (Y.J.); (F.Z.)
| |
Collapse
|
3
|
Guo Q, Wang D, Ma F, Fang M, Zhang L, Li P, Yu L. MOF-derived nanozyme CuOx@C and its application for cascade colorimetric detection of phytosterols. Mikrochim Acta 2024; 191:312. [PMID: 38717599 DOI: 10.1007/s00604-024-06389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.
Collapse
Affiliation(s)
- Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Mengxue Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
- Zhejiang Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China.
| |
Collapse
|
4
|
Buț MG, Jîtcă G, Imre S, Vari CE, Ősz BE, Jîtcă CM, Tero-Vescan A. The Lack of Standardization and Pharmacological Effect Limits the Potential Clinical Usefulness of Phytosterols in Benign Prostatic Hyperplasia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1722. [PMID: 37111945 PMCID: PMC10142909 DOI: 10.3390/plants12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of benign prostatic hyperplasia (BPH) markedly increases with age. Phytotherapeutic approaches have been developed over time owing to the adverse side effects of conventional medications such as 5-reductase inhibitors and α1-adrenergic receptor antagonists. Therefore, dietary supplements (DS) containing active compounds that benefit BPH are widely available. Phytosterols (PSs) are well recognized for their role in maintaining blood cholesterol levels; however, their potential in BPH treatment remains unexplored. This review aims to provide a general overview of the available data regarding the clinical evidence and a good understanding of the detailed pharmacological roles of PSs-induced activities at a molecular level in BPH. Furthermore, we will explore the authenticity of PSs content in DS used by patients with BPH compared to the current legislation and appropriate analytical methods for tracking DS containing PSs. The results showed that PSs might be a useful pharmacological treatment option for men with mild to moderate BPH, but the lack of standardized extracts linked with the regulation of DS containing PSs and experimental evidence to elucidate the mechanisms of action limit the use of PSs in BPH. Moreover, the results suggest multiple research directions in this field.
Collapse
Affiliation(s)
- Mădălina-Georgiana Buț
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - Camil Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Bianca Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Carmen-Maria Jîtcă
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| |
Collapse
|
5
|
Sillapachaiyaporn C, Chuchawankul S, Nilkhet S, Moungkote N, Sarachana T, Ung AT, Joon Baek S, Tencomnao T. Ergosterol isolated from cloud ear mushroom (Auricularia polytricha) attenuates bisphenol A-induced BV2 microglial cell inflammation. Food Res Int 2022; 157:111433. [DOI: 10.1016/j.foodres.2022.111433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
|
6
|
Hameedat F, Hawamdeh S, Alnabulsi S, Zayed A. High Performance Liquid Chromatography (HPLC) with Fluorescence Detection for Quantification of Steroids in Clinical, Pharmaceutical, and Environmental Samples: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061807. [PMID: 35335170 PMCID: PMC8949805 DOI: 10.3390/molecules27061807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids, their analysis is challenging due to their low levels and complex matrices of the samples. The efficiency and quick separation of the HPLC combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids. In this review, we covered HPLC-FLD methods reported in the literature for the steroids quantification in clinical, pharmaceutical, and environmental applications, focusing on the various approaches of fluorescent derivatization. The aspects related to analytical methodology including sample preparation, derivatization reagents, and chromatographic conditions will be discussed.
Collapse
Affiliation(s)
- Fatima Hameedat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
| | - Sahar Hawamdeh
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Soraya Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
| | - Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
- Correspondence: ; Tel.: +962-2-720-1000 (ext. 23240); Fax: +962-2-720-1075
| |
Collapse
|
7
|
Ul-Abideen Z, Ahmad HI, Nadeem M, Khan AA, Imran M, Majeed T, Jiang S, Elokil A. The therapeutic effect of bromocriptine as mesylate and estradiol valerate on serum and blood biochemistry of common quails. Poult Sci 2022; 101:101552. [PMID: 34942520 PMCID: PMC8704486 DOI: 10.1016/j.psj.2021.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 10/31/2022] Open
Abstract
Hematology and serum biochemistry study may provide antique knowledge about the physical status of individuals, making them a valuable tool to differentiate healthy animals from affected animals. We aimed to investigate Steroid safety levels in birds through ex-situ studies at regular therapeutic doses. A total of 100 birds were used for hematology and serum biochemistry. This study was designed into 2 trials over the summer and winter, each comprised 5, 10, 15, and 20 d. Each study group was based on 5 control group birds and 20 experimental group birds. A sum of 2 groups representing 2 different steroids trial groups was treated with therapeutic doses to the stretch of 5, 10, 15, and 20 d each season. A therapeutic dose of each of the steroids was given at the rate of 3 drops 2 times a day to each bird. Analysis of data reveals that steroids had severe effects on bird's (Coturnix coturnix) hematological parameters. In most trials, the hematological effects of bromocriptine as mesylate showed an increase in red blood cell count and white blood cell count. On the other hand, steroid estradiol valerate showed a decrease in these parameters. Effect of steroids on serum biochemistry profile indicate acute damage to vital organs, especially to liver and kidney, indicating an increase in cholesterol, total protein, albumin, urea, and uric acid. The overall effect of steroids on the bird's serum and biochemistry of quails were nearly similar but different only in their intensity.
Collapse
Affiliation(s)
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Aleem Ahmad Khan
- Department of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Veterinary Surgery and Pet Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China.
| | - Abdelmotaleb Elokil
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
8
|
Kolarič L, Šimko P. Simultaneous determination of cholesterol, stigmasterol, and β‐sitosterol contents in milk and dairy products. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lukáš Kolarič
- Faculty of Chemical and Food Technology Institute of Food Science and Nutrition Slovak University of Technology in Bratislava Bratislava Slovak Republic
| | - Peter Šimko
- Faculty of Chemical and Food Technology Institute of Food Science and Nutrition Slovak University of Technology in Bratislava Bratislava Slovak Republic
| |
Collapse
|
9
|
Benedetti B, Sanchez del Pulgar J, Di Lena G, Lombardi-Boccia G. Simultaneous analysis of 21 bioactive compounds in biorefinery oil: Multivariate optimization of a method based on liquid chromatography, atmospheric pressure chemical ionization and tandem mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Dai Y, Row KH. Imidazole-modified C 6 -chitosan derivatives used to extract β-sitosterol from edible oil samples with a microwave-assisted solid phase extraction method. J Sep Sci 2021; 44:3924-3932. [PMID: 34459118 DOI: 10.1002/jssc.202100503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
β-Sitosterol is a major bioactive constituent in plants with potent anticancer effects against many human cancer cells, but its bioavailability and therapeutic efficacy are limited by its poor solubility in water. In this study, C6 -imidazole chitosan, C6 -1-methylimidazole chitosan, C6 -1-ethylimidazole chitosan, C6 -1-vinylimidazole chitosan, C6 -1-allylimidazole chitosan, and C6 -1-butylimidazole chitosan were prepared to extract β-sitosterol from edible oil samples via ultrasonic-assisted solid liquid extraction. The structures and properties of the newly synthesized products were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and elemental analysis. The extraction abilities of the derivatives were tested in the experiment with high-performance liquid chromatography (limit of detection 0.21 μg/g and limit of quantification 0.67 μg/g), and the % relative standard deviation (<3.25%) and recovery values of the prepared chitosan derivatives toward β-sitosterol (average: 100.20%) were acceptable. The spiked interday and intraday recoveries of β-sitosterol were 102.60 ± 2.78 and 103.90 ± 3.04%, respectively. The actual amounts of β-sitosterol extracted from three real samples using C6 -imidazole chitosan according to the solid phase extraction method were 3302.40, 901.70, and 2045.60 mg/kg for corn oil, olive oil, and pea oil, respectively.
Collapse
Affiliation(s)
- Yunliang Dai
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, Korea
| |
Collapse
|
11
|
Analysis of Phytosterols Content in Italian-Standard Espresso Coffee. BEVERAGES 2021. [DOI: 10.3390/beverages7030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to assess for the first time the content of phytosterols (PS) in espresso coffee (EC) to deepen the knowledge about the phytochemicals and health potentials of coffee brews. PS were extracted by hot saponification from 14 EC samples produced with coffee originating from 13 coffee-producing countries. PS were identified and quantified by high-performance liquid chromatography (HPLC) after derivatization. Among the detected PS, β-sitosterol (4.1–18.2 mg/L) was the most abundant followed by stigmasterol (1.1–4.9 mg/L), campesterol (0.9–4.7 mg/L), and cycloartenol (0.3–2.0 mg/L). Total PS fraction ranged from 6.5 mg/L to 30.0 mg/L with an average level of 15.7 ± 5.8 mg/L. Therefore, a standard cup of EC (25 mL) could provide 0.4 ± 0.1 mg of PS.
Collapse
|
12
|
Han C, Zhou H, Wu W, Chen X, Li H, Li Y, Feng D. Development and Validation of a Method to Simultaneously Determine Multiple Sterols in Diversiform Food Substrates with UPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Qian Z, Wu Z, Li C, Tan G, Hu H, Li W. A green liquid chromatography method for rapid determination of ergosterol in edible fungi based on matrix solid-phase dispersion extraction and a core-shell column. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3337-3343. [PMID: 32930220 DOI: 10.1039/d0ay00714e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing a green analytical method for the analysis of components in food samples is an important research aspect of liquid chromatography (LC). The traditional LC method usually consumes a lot of toxic solvent for sample extraction and LC separation. In the current study, a green analytical method for the rapid determination of ergosterol in edible fungi was established. The sample was extracted and purified by matrix solid-phase dispersion (MSPD) with a green solution (ethanol and water). The LC separation was performed using a Poroshell 120 SB-C18 (4.6 × 30 mm, 2.7 μm) column with a green mobile phase (94% ethanol) at a flow rate of 1.0 mL min-1. The detection wavelength was set at 283 nm. The calibration curve of ergosterol showed good linearity (R = 0.9999) within the test range (4.21-25.27 μg mL-1). The RSD of precision was less than 2.0% and the recovery was 100.4% (RSD = 3.23%). The developed method was successfully applied to quantitative analysis of ergosterol in six edible fungi and the contents of ergosterol were in the range of 1.68-4.02 mg g-1. Only 11.5 mL ethanol water solution was used in the sample extraction and LC separation in the newly developed method, and no toxic organic solvents were used. The total analysis time was less than 15.5 min, about 12-14 min for sample extraction and 1.5 min for LC analysis. This method was environmentally friendly and time-saving, which is helpful to improve the quality evaluation of edible fungi.
Collapse
Affiliation(s)
- Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
- School of Rehabilitation, Xiangnan University, Chenzhou, China
| | - Zi Wu
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Chunhong Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Guoying Tan
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Hankun Hu
- Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wenjia Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| |
Collapse
|
14
|
Hikihara R, Yamasaki Y, Shikata T, Nakayama N, Sakamoto S, Kato S, Hatate H, Tanaka R. Analysis of Phytosterol, Fatty Acid, and Carotenoid Composition of 19 Microalgae and 6 Bivalve Species. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1749744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Risako Hikihara
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yasuhiro Yamasaki
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Japan
| | - Tomoyuki Shikata
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi, Japan
| | - Natsuko Nakayama
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi, Japan
| | - Setsuko Sakamoto
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi, Japan
| | - Sueo Kato
- Faculty of Human Development, Kokugakuin University, Yokohama, Japan
| | - Hideo Hatate
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryusuke Tanaka
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
15
|
Nzekoue FK, Caprioli G, Ricciutelli M, Cortese M, Alesi A, Vittori S, Sagratini G. Development of an innovative phytosterol derivatization method to improve the HPLC-DAD analysis and the ESI-MS detection of plant sterols/stanols. Food Res Int 2020; 131:108998. [PMID: 32247468 DOI: 10.1016/j.foodres.2020.108998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/26/2022]
Abstract
HPLC analyses of phytosterols are associated with the issues of sensitivity due to their high lipophilicity and their lack of chromophore. These problems could be solved through chemical modifications of plant sterols/stanols structures. Therefore, the present study aims to develop a new method for phytosterols derivatization. This method was performed using dansyl chloride (4 mg ml-1) as derivatizing agent and different reaction parameters have been optimized. The highest yields of phytosterol derivatization were obtained with 4-dimethylaminopyridine (DMAP) as catalyst at a concentration of 8 mg ml-1 and dichloromethane as reaction solvent. In addition, 40 ˚C was the best reaction temperature for 30 min as the best reaction time. This derivatization method presented a high reproducibility (%RSD = 1.2-2.7%) and a good linearity (R2 = 0.9982-0.9999). The UV absorption intensities after derivatization showed a 23-fold increment for plant sterols and a 400-fold increment for plant stanols. Moreover, this derivatization method allowed the use of high and more selective wavelengths of detection and improved the chromatographic separation of phytosterols. Furthermore, the developed method allowed the ESI-MS ionization and analysis of phytosterols. This method can therefore contribute to the improvement of the HPLC analyses of plant sterols/stanols.
Collapse
Affiliation(s)
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Manuela Cortese
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Alessandro Alesi
- Sabelli S.p.A., Zona Ind.le Basso Marino, 63100 Ascoli Piceno, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
16
|
Thiol radical-based chemical isotope labelling for sterols quantitation through high performance liquid chromatography-tandem mass spectrometry analysis. Anal Chim Acta 2020; 1097:110-119. [DOI: 10.1016/j.aca.2019.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
|
17
|
Wang S, Fan J, Xu L, Ye K, Shu T, Liu S. Enhancement of Antioxidant Activity in O/W Emulsion and Cholesterol-Reducing Capacity of Epigallocatechin by Derivatization with Representative Phytosterols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12461-12471. [PMID: 31613618 DOI: 10.1021/acs.jafc.9b04382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, derivatization of epigallocatechin (EGC) by representative phytosterols (stigmasterol and β-sitosterol) was performed employing Steglich esterification. The structural identity and purity of epigallocatechin β-sitosterol (ESi) and epigallocatechin stigmasterol (ESt) were confirmed by NMR, FT-IR, and HPLC-MS. Further evaluation of ESi and ESt revealed their extraordinary antioxidant activities in O/W emulsion. Two different radical sources in oil or aqueous phase were applied to explore the antioxidant behavior in O/W emulsion. The mechanism was further investigated by fluorescent microscopy and transmission electron microscopy (TEM). Furthermore, incorporation of EGC with stigmasterol and β-sitosterol notably enhanced the cholesterol-reducing activity. TEM studies suggested the hydrogen bonding of EGC strengthened the aggregation network of ESi and ESt in the bile salt micelle. The exceptional properties of ESi and ESt signified their intriguing utilization in the food industry.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Jiawen Fan
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Lujing Xu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Kai Ye
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Tong Shu
- Qinghai Food Inspection and Testing Institute , 12 Beidajie , Xining 810000 , China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
- Qinghai Food Inspection and Testing Institute , 12 Beidajie , Xining 810000 , China
| |
Collapse
|
18
|
Saha S, Walia S, Sharma K, Banerjee K. Suitability of stationary phase for LC analysis of biomolecules. Crit Rev Food Sci Nutr 2019; 60:2856-2873. [PMID: 31621391 DOI: 10.1080/10408398.2019.1665494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Biologically active compounds such as carotenoids/isoprenoids, vitamins, steroids, saponins, sugars, long chain fatty acids, and amino acids play a very important role in coordinating functions in living organisms. Determination of those substances is indispensable in advanced biological sciences. Engineered stationary phase in LC for the analysis of biomolecules has become easier with the development of chromatographic science. In general, C18 column is being used for routine analysis but specific columns are being used for specific molecule. Monolithic columns are found to have higher efficiency than normal column. Among recent introduction, triacontyl stationary phases, designed for the separation of carotenoid isomers, are widely used for the estimation of carotenoids. In comparison to conventional C18 phases, C30 phases exhibited superior shape selectivity for the separation of isomers of carotenoids. It is also found useful for better elution and analysis of tocopherols, vitamin K, sterols, and fatty acids. Vitamin K, E, and their isomers are also successfully resoluted and analyzed by using C30 column. Amino bonded phase column is specifically used for better elution of sugars, whereas phenyl columns are suitable for the separation and analysis of curcuminoids and taxol. Like triacontyl stationary phase, pentafluorophenyl columns are also used for the separation and analysis of carotenoids. Similarly, HILIC column are best suited for sugar analysis. All the stationary phases are made possible to resolute and analyze the target biomolecules better, which are the future of liquid chromatography. The present article focuses on the differential interaction between stationary phase and target biomolecules. The applicability of these stationary phases are reported in different matrices.
Collapse
Affiliation(s)
- Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Walia
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushbu Sharma
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
19
|
Li Q, Tang X, Lu S, Wu J. Composition and tocopherol, fatty acid, and phytosterol contents in micro-endosperm ultra-high oil corn. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.0822182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
China has developed a new oil crop, micro-endosperm ultra-high oil corn, approved by the government in 2011 and named Huajian No. 1 (HJ-1). This study analyzed the nutrients in HJ-1 cold-pressed whole-seed oil, their composition and contents in tocopherols, fatty acids, and phytosterols and compares them with those of seven selected vegetable oils. HJ-1 oil contained α-, β-, γ-, and δ-tocopherol, with contents of 433.25 ± 0.13, 26.27 ± 0.08, 570.69 ± 0.27, and 38.41 ± 0.005 mg/kg, respectively, the highest nutritional values among the vegetable oils studied, except for soybean and palm oils. Gas chromatography was used for fatty acid analysis and seven were detected, with the main ones being palmitic, oleic, and linoleic acids. In HJ-1, the ratio of oleic to linoleic acid was close to 1:1, and b-sitosterol, campesterol, and stigmasterol were present with contents of 254.20 ± 0.11, 108.91 ± 0.19, and 105.67 ± 0.58 mg/kg, respectively.
Collapse
|
20
|
Fagundes MB, Falk RB, Facchi MMX, Vendruscolo RG, Maroneze MM, Zepka LQ, Jacob-Lopes E, Wagner R. Insights in cyanobacteria lipidomics: A sterols characterization from Phormidium autumnale biomass in heterotrophic cultivation. Food Res Int 2019; 119:777-784. [PMID: 30884716 DOI: 10.1016/j.foodres.2018.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/01/2023]
Abstract
Sterol profiles were obtained from cyanobacteria Phormidium autumnale, cultivated in a heterotrophic system using three distinct sources of carbon: glucose, sucrose, and agroindustrial slaughterhouse wastewater. A simultaneous saponification-extraction ultrasound-assisted method was performed to determine sterol and other non-saponified compounds in the dry biomasses. A total of 24 compounds were observed in the biomasses, including hope-22,29-en-3-one, squalene, and 22 other sterols. Using wastewater as a carbon source, the microalgae biomass produced a diversity of sterols such as stigmasterol (455.3 μg g-1) and β-sitosterol (279.0 μg g-1). However, with glucose it is possible to produce ergosterol (1033.3 μg g-1). Squalene was found in all the cultures, with 1440.4 μg g-1, 225.4 μg g-1, and 425.6 μg g-1 for glucose, sucrose, and slaughterhouse wastewater biomasses, respectively. Several intermediate compounds from those sterols were found. These data provide the construction of the sterol metabolism according to the literature for P. autumnale heterotrophically cultured.
Collapse
Affiliation(s)
- Mariane Bittencourt Fagundes
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Renata Bolzan Falk
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Michelle Maria Xavier Facchi
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Raquel Guidetti Vendruscolo
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Mariana Manzoni Maroneze
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Leila Queiroz Zepka
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil.
| |
Collapse
|
21
|
Ito M, Koba K, Hikihara R, Ishimaru M, Shibata T, Hatate H, Tanaka R. Analysis of functional components and radical scavenging activity of 21 algae species collected from the Japanese coast. Food Chem 2018; 255:147-156. [PMID: 29571460 DOI: 10.1016/j.foodchem.2018.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/25/2018] [Accepted: 02/13/2018] [Indexed: 11/26/2022]
Abstract
The functional chemical substances and the antioxidant activity of lipids in 21 marine algae along the Japanese coast were investigated. Principal component analysis was performed to detect any correlation between the chemical substances and algae phylum. Chlorophyta contained a high level of β-carotene. Rhodophyta contained high amounts of cholesterol, β-sitosterol, and saturated fatty acids. Phaeophyta were rich in fucosterol, α-tocopherol, fucoxanthin, and polyphenol. Phaeophyta algae also showed the highest antioxidant activity compared with other phylum. This suggests that Phaeophyta has the greatest potential to be used as a functional food. Consumption of the beneficial Phaeophyta species, such as Eisenia arborea Areschoug and Ecklonia cava Kjellman should be encouraged as not only as food products but also as nutraceuticals and dietary supplements. These beneficial ingredients should be encouraged to be studied in depth with the possibility to develop specific formulated products target to special consumer's population with added nutritional value.
Collapse
Affiliation(s)
- Meiko Ito
- Graduate School of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Kaisei Koba
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Risako Hikihara
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Mami Ishimaru
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Toshiyuki Shibata
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; Seaweed Biorefinery Research Center, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Hideo Hatate
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Ryusuke Tanaka
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan.
| |
Collapse
|
22
|
Mikami K, Ito M, Taya K, Kishimoto I, Kobayashi T, Itabashi Y, Tanaka R. Parthenosporophytes of the brown alga Ectocarpus siliculosus exhibit sex-dependent differences in thermotolerance as well as fatty acid and sterol composition. MARINE ENVIRONMENTAL RESEARCH 2018; 137:188-195. [PMID: 29459067 DOI: 10.1016/j.marenvres.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 05/11/2023]
Abstract
In the filamentous brown alga Ectocarpus siliculosus, male and female sex is expressed during the haploid parthenosporophyte phase of the life cycle. Here, we found that male parthenosporophytes displayed thermotolerance whereas female specimens displayed severely reduced viability at 25 °C and 28 °C. Profiling of polyunsaturated fatty acids showed that n-3 and n-6 were the predominant species in male and female parthenosporophytes, respectively, and that the n-3/n-6 fatty acid ratio was not affected by a temperature change. Both male and female parthenosporophytes contained the sterols fucosterol, cholesterol, and ergosterol, but these were present at higher levels at 10-25 °C in female specimens than in males. Thus, these fatty acids and sterols would be expected to make the membranes more rigid in the female compared to the male, which is opposite to the paradigm that increased rigidity confers thermotolerance. Our results suggest that the sex-dependent thermotolerance in E. siliculosus parthenosporophytes is not explained by the relationship between membrane fluidity and differences in fatty acids and sterol compositions.
Collapse
Affiliation(s)
- Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan; College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Pudong District, Shanghai 201306, China.
| | - Meiko Ito
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Gakuen-Kibanadai-nishi 1-1, Miyazaki 889-2192, Japan
| | - Kensuke Taya
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Ikuya Kishimoto
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Takuya Kobayashi
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Yutaka Itabashi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Ryusuke Tanaka
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Gakuen-Kibanadai-nishi 1-1, Miyazaki 889-2192, Japan
| |
Collapse
|