1
|
Françon A, Delaunay K, Jaworski T, Lebon C, Picard E, Youale J, Behar-Cohen F, Torriglia A. Phototoxicity of low doses of light and influence of the spectral composition on human RPE cells. Sci Rep 2024; 14:6839. [PMID: 38514646 PMCID: PMC10957882 DOI: 10.1038/s41598-024-56980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Light is known to induce retinal damage affecting photoreceptors and retinal pigment epithelium. For polychromatic light, the blue part of the spectrum is thought to be the only responsible for photochemical damage, leading to the establishment of a phototoxicity threshold for blue light (445 nm). For humans it corresponds to a retinal dose of 22 J/cm2. Recent studies on rodents and non-human primates suggested that this value is overestimated. In this study, we aim at investigating the relevance of the current phototoxicity threshold and at providing new hints on the role of the different components of the white light spectrum on phototoxicity. We use an in vitro model of human induced pluripotent stem cells (hiPSC)-derived retinal pigment epithelial (iRPE) cells and exposed them to white, blue and red lights from LED devices at doses below 22 J/cm2. We show that exposure to white light at a dose of 3.6 J/cm2 induces an alteration of the global cellular structure, DNA damage and an activation of cellular stress pathways. The exposure to blue light triggers DNA damage and the activation of autophagy, while exposure to red light modulates the inflammatory response and inhibits autophagy.
Collapse
Affiliation(s)
- Anaïs Françon
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France
| | - Kimberley Delaunay
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France
| | - Thara Jaworski
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France
| | - Cécile Lebon
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France
| | - Emilie Picard
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France
| | - Jenny Youale
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France
- Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophtalmopole, 27, Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Department of Ophthalmology, Hôpital Foch, 40 Rue Worth, 92150, Suresnes, France
| | - Alicia Torriglia
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, Rue de L'école de Médecine, 75006, Paris, France.
| |
Collapse
|
2
|
Kumari A, Vertii A. Perspective: "Current understanding of NADs dynamics and mechanisms of Disease". Gene 2024; 894:147960. [PMID: 37923094 DOI: 10.1016/j.gene.2023.147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Chromatin architecture is essential for gene regulation, and multiple levels of the 3D chromatin organization exhibit dynamic changes during organismal development and cell differentiation. Heterochromatin, termed compartment B in Hi-C datasets, is a phase-separating gene-silencing form of chromatin, preferentially located at the two nuclear sites, nuclear (lamina-associate chromatin domains, LADs) and nucleoli (nucleoli-associated chromatin domains, NADs) peripheries. LADs and NADs contain both interchangeable and location-specific chromatin domains. Recent studies suggest striking dynamics in LADs and NADs during the differentiation of embryonic stem cells into neural progenitors and neurons. Here we discuss recent advances in understanding NADs changes during neuronal differentiation and future questions on how NADs integrity can contribute to healthy neurodevelopment and neurodevelopment diseases.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US
| | - Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US.
| |
Collapse
|
3
|
Françon A, Behar-Cohen F, Torriglia A. The blue light hazard and its use on the evaluation of photochemical risk for domestic lighting. An in vivo study. ENVIRONMENT INTERNATIONAL 2024; 184:108471. [PMID: 38335626 DOI: 10.1016/j.envint.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Nowadays artificial light highly increases human exposure to light leading to circadian rhythm and sleep perturbations. Moreover, excessive exposure of ocular structures to photons can induce irreversible retinal damage. Meta-analyses showed that sunlight exposure influences the age of onset and the progression of Age-related macular degeneration (AMD), the leading cause of blindness in people over fifty-year old. Currently, the blue-light hazard (BLH) curve is used in the evaluation of the phototoxicity of a light source for domestic lighting regulations. OBJECTIVES Here, we analyze the phototoxicity threshold in rats and investigate the role played by the light spectrum, assessing the relevance of the use of the BLH-weighting to define phototoxicity. METHODS We exposed albino rats to increasing doses of blue and white light, or to lights of different colors to evaluate the impact of each component of the white light spectrum on phototoxicity. Cellular mechanisms of cell death and cellular stress induced by light were analyzed. RESULTS Our results show that the phototoxicity threshold currently accepted for rats is overestimated by a factor of 50 when considering blue light and by a factor of 550 concerning white light. This is the result of the toxicity induced by green light that increases white light toxicity by promoting an inflammatory response. The content of green in white light induces 8 fold more invasion of macrophages in the retina than the content of blue light. Moreover, the use of BLH-weighting does not evaluate the amount of red radiations contained in white light that mitigates damage by inhibiting the nuclear translocation of L-DNase II and reducing by 33% the number of TUNEL-positive cells. DISCUSSION These findings question the current methods to determine the phototoxicity of a light source and show the necessity to take into account the entire emission spectrum. As current human phototoxicity thresholds were estimated with the same methods used for rats, our results suggest that they might need to be reconsidered.
Collapse
Affiliation(s)
- Anaïs Françon
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine, 75006 Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine, 75006 Paris, France; Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophtalmopole, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine, 75006 Paris, France.
| |
Collapse
|
4
|
Sha G, Jiang Z, Zhang W, Jiang C, Wang D, Tang D. The multifunction of HSP70 in cancer: Guardian or traitor to the survival of tumor cells and the next potential therapeutic target. Int Immunopharmacol 2023; 122:110492. [PMID: 37390645 DOI: 10.1016/j.intimp.2023.110492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Heat shock protein 70 (HSP70) is a highly conserved protein composed of nucleotide-binding domains (NBD) and C-terminal substrate binding domain (SBD) that can function as a "molecular chaperone". HSP70 was discovered to directly or indirectly play a regulatory role in both internal and external apoptosis pathways. Studies have shown that HSP70 can not only promote tumor progression, enhance tumor cell resistance and inhibit anticancer effects but also induce an anticancer response by activating immune cells. In addition, chemotherapy, radiotherapy and immunotherapy for cancer may be affected by HSP70, which has shown promising potential as an anticancer drug. In this review, we summarized the molecular structure and mechanism of HSP70 and discussed the dual effects of HSP70 on tumor cells and the possibility and potential methods of using HSP70 as a target to treat cancer.
Collapse
Affiliation(s)
- Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Chuwen Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| |
Collapse
|
5
|
Xu S, Gierisch ME, Schellhaus AK, Poser I, Alberti S, Salomons FA, Dantuma NP. Cytosolic stress granules relieve the ubiquitin-proteasome system in the nuclear compartment. EMBO J 2023; 42:e111802. [PMID: 36574355 PMCID: PMC9890234 DOI: 10.15252/embj.2022111802] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin-proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule-deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO-targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule-deficient cells. Stress granule-deficient cells showed an increase in the formation of mutant ataxin-1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | | | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB)Technische Universität DresdenDresdenGermany
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Heat Shock Protein Family A Member 1 Promotes Intracellular Amplification of Hepatitis B Virus Covalently Closed Circular DNA. J Virol 2023; 97:e0126122. [PMID: 36519896 PMCID: PMC9888207 DOI: 10.1128/jvi.01261-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) contains a partially double-stranded relaxed circular DNA (rcDNA) genome that is converted into a covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocyte by cellular DNA repair machinery. cccDNA associates with nucleosomes to form a minichromosome that transcribes RNA to support the expression of viral proteins and reverse transcriptional replication of viral DNA. In addition to the de novo synthesis from incoming virion rcDNA, cccDNA can also be synthesized from rcDNA in the progeny nucleocapsids within the cytoplasm of infected hepatocytes via the intracellular amplification pathway. In our efforts to identify cellular DNA repair proteins required for cccDNA synthesis using a chemogenetic screen, we found that B02, a small-molecule inhibitor of DNA homologous recombination repair protein RAD51, significantly enhanced the synthesis of cccDNA via the intracellular amplification pathway in human hepatoma cells. Ironically, neither small interfering RNA (siRNA) knockdown of RAD51 expression nor treatment with another structurally distinct RAD51 inhibitor or activator altered cccDNA amplification. Instead, it was found that B02 treatment significantly elevated the levels of multiple heat shock protein mRNA, and siRNA knockdown of HSPA1 expression or treatment with HSPA1 inhibitors significantly attenuated B02 enhancement of cccDNA amplification. Moreover, B02-enhanced cccDNA amplification was efficiently inhibited by compounds that selectively inhibit DNA polymerase α or topoisomerase II, the enzymes required for cccDNA intracellular amplification. Our results thus indicate that B02 treatment induces a heat shock protein-mediated cellular response that positively regulates the conversion of rcDNA into cccDNA via the authentic intracellular amplification pathway. IMPORTANCE Elimination or functional inactivation of cccDNA minichromosomes in HBV-infected hepatocytes is essential for the cure of chronic hepatitis B virus (HBV) infection. However, lack of knowledge of the molecular mechanisms of cccDNA metabolism and regulation hampers the development of antiviral drugs to achieve this therapeutic goal. Our findings reported here imply that enhanced cccDNA amplification may occur under selected pathobiological conditions, such as cellular stress, to subvert the dilution or elimination of cccDNA and maintain the persistence of HBV infection. Therapeutic inhibition of HSPA1-enhanced cccDNA amplification under these pathobiological conditions should facilitate the elimination of cccDNA and cure of chronic hepatitis B.
Collapse
|
7
|
Hasan A, Rizvi SF, Parveen S, Mir SS. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer. Life Sci 2022; 306:120852. [DOI: 10.1016/j.lfs.2022.120852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
|
8
|
Analysis of Therapeutic Targets of A Novel Peptide Athycaltide-1 in the Treatment of Isoproterenol-Induced Pathological Myocardial Hypertrophy. Cardiovasc Ther 2022; 2022:2715084. [PMID: 35599721 PMCID: PMC9085328 DOI: 10.1155/2022/2715084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial hypertrophy is a pathological feature of many heart diseases. This is a complex process involving all types of cells in the heart and interactions with circulating cells. This study is aimed at identifying the differentially expressed proteins (DEPs) in myocardial hypertrophy rats induced by isoprenaline (ISO) and treated with novel peptide Athycaltide-1 (ATH-1) and exploring the mechanism of its improvement. ITRAQ was performed to compare the three different heart states in control group, ISO group, and ATH-1 group. Pairwise comparison showed that there were 121 DEPs in ISO/control (96 upregulated and 25 downregulated), 47 DEPs in ATH-1/ISO (27 upregulated and 20 downregulated), and 116 DEPs in ATH-1/control (77 upregulated and 39 downregulated). Protein network analysis was then performed using the STRING software. Functional analysis revealed that Hspa1 protein, oxidative stress, and MAPK signaling pathway were significantly involved in the occurrence and development of myocardial hypertrophy, which was further validated by vivo model. It is proved that ATH-1 can reduce the expression of Hspa1 protein and the level of oxidative stress in hypertrophic myocardium and further inhibit the phosphorylation of p38 MAPK, JNK, and ERK1/2.
Collapse
|
9
|
Chung WC, Song MJ. Virus–Host Interplay Between Poly (ADP-Ribose) Polymerase 1 and Oncogenic Gammaherpesviruses. Front Microbiol 2022; 12:811671. [PMID: 35095818 PMCID: PMC8795711 DOI: 10.3389/fmicb.2021.811671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The gammaherpesviruses, include the Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, and murine gammaherpesvirus 68. They establish latent infection in the B lymphocytes and are associated with various lymphoproliferative diseases and tumors. The poly (ADP-ribose) polymerase-1 (PARP1), also called ADP-ribosyltransferase diphtheria-toxin-like 1 (ARTD1) is a nuclear enzyme that catalyzes the transfer of the ADP-ribose moiety to its target proteins and participates in important cellular activities, such as the DNA-damage response, cell death, transcription, chromatin remodeling, and inflammation. In gammaherpesvirus infection, PARP1 acts as a key regulator of the virus life cycle: lytic replication and latency. These viruses also develop various strategies to regulate PARP1, facilitating their replication. This review summarizes the roles of PARP1 in the viral life cycle as well as the viral modulation of host PARP1 activity and discusses the implications. Understanding the interactions between the PARP1 and oncogenic gammaherpesviruses may lead to the identification of effective therapeutic targets for the associated diseases.
Collapse
|
10
|
Hong Y, Wang Z, Rao Z, Wan J, Ling X, Zheng Q. Changes in Expressions of HSP27, HSP70, and Soluble Glycoprotein in Heart Failure Rats Complicated with Pulmonary Edema and Correlations with Cardiopulmonary Functions. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6733341. [PMID: 34337047 PMCID: PMC8315849 DOI: 10.1155/2021/6733341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022]
Abstract
The study is aimed at investigating the changes in expressions of heat shock protein 27 (HSP27), HSP70, and soluble glycoprotein (SGP) in heart failure (HF) rats complicated with pulmonary edema and exploring their potential correlations with cardiopulmonary functions. The rat model of HF was established, and the rats were divided into HF model group (model group, n = 15) and normal group (n = 15). After successful modeling, MRI and ECG were applied to detect the cardiac function indexes of the rats. The myocardial function indexes were determined, the injury of myocardial tissues was observed via hematoxylin and eosin (HE) staining, and the content of myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α) in the blood was measured. The partial pressure of oxygen (PaO2) and oxygenation index (OI) were observed, and the airway resistance and lung compliance were examined. Moreover, quantitative polymerase chain reaction (qPCR) and Western blotting assay were performed to detect the gene and protein expression levels of HSP27, HSP70, and SGP130. The levels of serum creatine kinase (CK), creatine (Cr), and blood urea nitrogen (BUN) were increased markedly in model group (p < 0.05). Model group had notably decreased fractional shortening (FS) and ejection fraction (EF) compared with normal group (p < 0.05), while the opposite results of left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) were detected. In model group, the content of serum MPO, MMP-9, and TNF-α was raised remarkably (p < 0.05), OI and PaO2 were reduced notably (p < 0.05), the airway resistance was increased (p < 0.05), and the lung compliance was decreased (p < 0.05). Obviously elevated gene and protein expression levels of HSP27, HSP70, and SGP130 were detected in model group (p < 0.05). The expressions of HSP27, HSP70, and SGP130 are increased in HF rats complicated with pulmonary edema, seriously affecting the cardiopulmonary functions of the rats.
Collapse
Affiliation(s)
- Yingcai Hong
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zheng Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zhanpeng Rao
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Jun Wan
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Xie'an Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Qijun Zheng
- Department of Cardiac Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| |
Collapse
|
11
|
Chen L, Gómez R, Weiss LC. Distinct Gene Expression Patterns of Two Heat Shock Protein 70 Members During Development, Diapause, and Temperature Stress in the Freshwater Crustacean Daphnia magna. Front Cell Dev Biol 2021; 9:692517. [PMID: 34277636 PMCID: PMC8281232 DOI: 10.3389/fcell.2021.692517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Dormancy is a lifecycle delay that allows organisms to escape suboptimal environmental conditions. As a genetically programmed type of dormancy, diapause is usually accompanied by metabolic depression and enhanced tolerance toward adverse environmental factors. However, the drivers and regulators that steer an organism’s development into a state of suspended animation to survive environmental stress have not been fully uncovered. Heat shock proteins 70 (HSP70s), which are often produced in response to various types of stress, have been suggested to play a role in diapause. Considering the diversity of the Hsp70 family, different family members may have different functions during diapause. In the present study, we demonstrate the expression of two hsp70 genes (A and B together with protein localization of B) throughout continuous and diapause interrupted development of Daphnia magna. Before and after diapause, the expression of Dmhsp70-A is low. Only shortly before diapause and during diapause, Dmhsp70-A is significantly upregulated and may therefore be involved in diapause preparation and maintenance. In contrast, Dmhsp70-B is expressed only in developing embryos but not in diapausing embryos. During continuous development, the protein of this Hsp70 family member is localized in the cytosol. When we expose both embryo types to heat stress, expression of both hsp70 genes increases only in developing embryos, and the protein of family member B is translocated to the nucleus. In this stress formation, this protein provides effective protection of nucleoplasmic DNA. As we also see this localization in diapausing embryos, it seems that Daphnia embryo types share a common subcellular strategy when facing dormancy or heat shock, i.e., they protect their DNA by HSP70B nuclear translocation. Our study underlines the distinctive roles that different Hsp70 family members play throughout continuous and diapause interrupted development.
Collapse
Affiliation(s)
- Luxi Chen
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics 2021; 20:100102. [PMID: 34048982 PMCID: PMC8255942 DOI: 10.1016/j.mcpro.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus. Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) localizes to nucleoli. PtdIns(3,4,5)P3 interactomics from isolated nuclei identifies nucleolar proteins. PARP1 interacts directly with polyphosphoinositides via several polybasic regions. PARP1 colocalizes with PtdIns(3,4,5)P3 in the nucleolus.
Collapse
|
13
|
The HSP70 chaperone as sensor of the NEDD8 cycle upon DNA damage. Biochem Soc Trans 2021; 49:1075-1083. [PMID: 34156462 DOI: 10.1042/bst20200381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Molecular chaperones are essential components of the protein quality control system and maintenance of homeostasis. Heat Shock Protein 70 (HSP70), a highly evolutionarily conserved family of chaperones is a key regulator of protein folding, oligomerisation and prevents the aggregation of misfolded proteins. HSP70 chaperone function depends on the so-called 'HSP70-cycle', where HSP70 interacts with and is released from substrates via ATP hydrolysis and the assistance of HSP70 co-factors/co-chaperones, which also provide substrate specificity. The identification of regulatory modules for HSP70 allows the elucidation of HSP70 specificity and target selectivity. Here, we discuss how the HSP70 cycle is functionally linked with the cycle of the Ubiquitin-like molecule NEDD8. Using as an example the DNA damage response, we present a model where HSP70 acts as a sensor of the NEDD8 cycle. The NEDD8 cycle acts as a regulatory module of HSP70 activity, where conversion of poly-NEDD8 chains into mono-NEDD8 upon DNA damage activates HSP70, facilitating the formation of the apoptosome and apoptosis execution.
Collapse
|
14
|
Chaouhan HS, Jha RR, Patel DK, Kar Chowdhuri D. Cr(VI)-induced DNA damage is lessened by the modulation of hsp70 via increased GSH de novo synthesis in Drosophila melanogaster. J Biochem Mol Toxicol 2021; 35:e22819. [PMID: 34056787 DOI: 10.1002/jbt.22819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a genotoxic chemical, and in the chemical-exposed organism, oxidative stress is one of the leading causative mechanisms of genotoxicity. Heat shock protein-70 (Hsp70) is reported to be modulated in environmental chemical exposed organisms. Inadequate information on the protective role of Hsp70 in chemical-induced DNA lesions prompted us to investigate this possibility in a well-studied genetically tractable in vivo model Drosophila melanogaster. In the midgut cells of Cr(VI)-exposed hsp70-knockout (KO), -knockdown (KD), and -overexpression Drosophila strains, no significant change in double-strand breaks generation was observed in comparison to similarly exposed w 1118 and the respective genetic control strain after 48 h. Therefore, the role of hsp70 was investigated on oxidative DNA damage induction in the exposed organisms after 24 h. Oxidized DNA lesions (particularly oxidized purine-based lesions), 8-oxo-dG level, and oxidative stress endpoints were found to be significantly elevated in hsp70-KO and -KD strains in comparison to similarly exposed w 1118 and respective genetic control strain. On the contrary, in ubiquitous hsp70-overexpression strain exposed to Cr(VI), these endpoints were significantly lowered concurrently with increased GSH level through elevated gclc, and gclm expression, Gclc level, and GCL activity. The study suggests that as a consequence of hsp70 overexpression, the augmented GSH level in cells vis-a-vis GSH de novo synthesis can counteract Cr(VI)-induced oxidized DNA lesions.
Collapse
Affiliation(s)
- Hitesh S Chaouhan
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Rakesh R Jha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.,Environmental Monitoring Laboratory, Regulatory Toxicology Group, Environmental Toxicology Group, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Devendra K Patel
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.,Environmental Monitoring Laboratory, Regulatory Toxicology Group, Environmental Toxicology Group, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Mukherjee J, Pandita A, Kamalakar C, Johannessen TC, Ohba S, Tang Y, Dalle-Ore CL, Bjerkvig R, Pieper RO. RETRACTED: A subset of PARP inhibitors induces lethal telomere fusion in ALT-dependent tumor cells. Sci Transl Med 2021; 13:13/592/eabc7211. [PMID: 33952676 DOI: 10.1126/scitranslmed.abc7211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/07/2020] [Accepted: 02/26/2021] [Indexed: 12/30/2022]
Abstract
About 10% of all tumors, including most lower-grade astrocytoma, rely on the alternative lengthening of telomere (ALT) mechanism to resolve telomeric shortening and avoid limitations on their growth. Here, we found that dependence on the ALT mechanism made cells hypersensitive to a subset of poly(ADP-ribose) polymerase inhibitors (PARPi). We found that this hypersensitivity was not associated with PARPi-created genomic DNA damage as in most PARPi-sensitive populations but rather with PARPi-induced telomere fusion. Mechanistically, we determined that PARP1 was recruited to the telomeres of ALT-dependent cells as part of a DNA damage response. By recruiting MRE11 and BRCC3 to stabilize TRF2 at the ends of telomeres, PARP1 blocked chromosomal fusion. Exposure of ALT-dependent tumor cells to a subset of PARPi induced a conformational change in PARP1 that limited binding to MRE11 and BRCC3 and delayed release of the TRF2-mediated block on lethal telomeric fusion. These results therefore provide a basis for PARPi treatment of ALT-dependent tumors, as well as establish chromosome fusion as a biomarker of their activity.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Ajay Pandita
- Core Diagnostics, 3535 Breakwater Avenue, Hayward, CA 94545, USA
| | - Chatla Kamalakar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Tor-Christian Johannessen
- The Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5019, Bergen, Norway
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, Toyoake 4701192, Aichi, Japan
| | - Yongjian Tang
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Cecilia L Dalle-Ore
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Rolf Bjerkvig
- The Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5019, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, L-1526, Luxembourg
| | - Russell O Pieper
- Department of Neurosurgery and The Brain Tumor Center, University of California-San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Zeni O, Romeo S, Sannino A, Palumbo R, Scarfì MR. Evidence of bystander effect induced by radiofrequency radiation in a human neuroblastoma cell line. ENVIRONMENTAL RESEARCH 2021; 196:110935. [PMID: 33647301 DOI: 10.1016/j.envres.2021.110935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
In previous studies we demonstrated that radiofrequency (RF) electromagnetic fields (EMF) is able to reduce DNA damage induced by a subsequent treatment with genotoxic agents, resembling the adaptive response, a phenomenon well known in radiobiology. In this study we report on the capability of the culture medium from SH-SY5Y neuroblastoma cells exposed to 1950 MHz to elicit, in recipient non-exposed cells, a reduction of menadione-induced DNA damage (P < 0.05; comet assay), indicating the capability of non-ionizing radiation to elicit a bystander effect. A comparable reduction was also detected in cultures directly exposed to the same EMF conditions (P < 0.05), confirming the adaptive response. In the same exposure conditions, we also evidenced an increase of heat shock protein 70 (hsp70) in culture medium of cells exposed to RF with respect to sham exposed ones (P < 0.05; western blot analysis), while no differences were detected in the intracellular content of hsp70. On the whole, our results evidence a protective effect of RF against menadione-induced DNA damage in directly and non-directly exposed cells, and suggest hsp70 pathway to be investigated as one of the potential candidate underpinning the interaction between RF exposure and biological systems.
Collapse
Affiliation(s)
- Olga Zeni
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| | - Stefania Romeo
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| | - Anna Sannino
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| | - Rosanna Palumbo
- CNR-Institute for Biostructures and Bioimaging, Via Mezzocannone, 16, 80134, Naples, Italy.
| | - Maria Rosaria Scarfì
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| |
Collapse
|
17
|
Pedrana G, Larrañaga C, Diaz A, Viotti H, Lombide P, Cavestany D, Vickers MH, Martin GB, Sloboda DM. Maternal undernutrition during pregnancy and lactation increases transcription factors, ETV5 and GDNF, and alters regulation of apoptosis and heat shock proteins in the testis of adult offspring in the rat. Reprod Fertil Dev 2021; 33:484-496. [PMID: 33883060 DOI: 10.1071/rd20260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
We tested whether changes in Sertoli cell transcription factors and germ cell heat shock proteins (HSPs) are linked to the effects of maternal undernutrition on male offspring fertility. Rats were fed ad libitum with a standard diet (CONTROL) throughout pregnancy and lactation or with 50% of CONTROL intake throughout pregnancy (UNP) or lactation (UNL) or both periods (UNPL). After postnatal Day 21, 10 male pups per group were fed a standard diet ad libitum until postnatal Day 160 when testes were processed for histological, mRNA and immunohistochemical analyses. Compared with CONTROL: caspase-3 was increased in UNP and UNPL (P=0.001); Bax was increased in UNL (P=0.002); Bcl-2 (P<0.0001) was increased in all underfed groups; glial cell line-derived neurotrophic factor (P=0.002) was increased in UNP and UNL; E twenty-six transformation variant gene 5 and HSP70 were increased, and HSP90 was diminished in all underfed groups (P<0.0001). It appears that maternal undernutrition during pregnancy and lactation disrupts the balance between proliferation and apoptosis in germ cells, increasing germ cell production and perhaps exceeding the support capacity of the Sertoli cells. Moreover, fertility could be further compromised by changes in meiosis and spermiogenesis mediated by germ cell HSP90 and HSP70.
Collapse
Affiliation(s)
- Graciela Pedrana
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay; and Corresponding author.
| | - Camila Larrañaga
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Alejandra Diaz
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Helen Viotti
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Paula Lombide
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Daniel Cavestany
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Graeme B Martin
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Canada; and Department of Pediatrics, McMaster University, Hamilton, L8S 4L8, Canada, and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4L8, Canada
| |
Collapse
|
18
|
Kumar C, Lakshmi PTV, Arunachalam A. Computational investigation of FDA approved drugs as selective PARP-1 inhibitors by targeting BRCT domain for cancer therapy. J Mol Graph Model 2021; 108:107919. [PMID: 34304979 DOI: 10.1016/j.jmgm.2021.107919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Poly(ADP-ribose) polymerase-1 is a promising target for the treatment of cancer due to its involvement in base excision repair pathways for repairing DNA single-strand breaks. However, available PARP-1 inhibitors target a highly conserved PARPs catalytic domain, which causes toxicity due to the off-target activity. Therefore, the present study was hypothesized to identify selective inhibitors by targeting specific protein-protein interacting (PPI) PARP-1 BRCT domain. Moreover, PPI hotspot residues (Gly399, Lys400, Leu401, Lys441 & Lys442) and a druggable pocket was detected to screen small molecule inhibitors. Hence, two FDA approved drug molecules (levoleucovorin and balsalazide) were recognized to fit in the druggable pocket. Since they are already under investigation for anti-cancer activity, thus could be further explored in PARP-1 sensitive cancer cells to expand their selectivity and develop as effective anti-cancer agents. Besides, the study also provides detailed structural insight of PARP-1 and XRCC1 complex through their BRCT domains.
Collapse
Affiliation(s)
- Chandan Kumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - P T V Lakshmi
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.
| | - Annamalai Arunachalam
- Postgraduate and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India
| |
Collapse
|
19
|
Vostakolaei MA, Hatami-Baroogh L, Babaei G, Molavi O, Kordi S, Abdolalizadeh J. Hsp70 in cancer: A double agent in the battle between survival and death. J Cell Physiol 2020; 236:3420-3444. [PMID: 33169384 DOI: 10.1002/jcp.30132] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The heat shock protein (Hsps) superfamily, also known as molecular chaperones, are highly conserved and present in all living organisms and play vital roles in protein fate. The HspA1A (Hsp70-1), called Hsp70 in this review, is expressed at low or undetectable levels in most unstressed normal cells, but numerous studies have shown that diverse types of tumor cells express Hsp70 at the plasma membrane that leads to resistance to programmed cell death and tumor progression. Hsp70 is released into the extracellular milieu in three forms including free soluble, complexed with cancer antigenic peptides, and exosome forms. Therefore, it seems to be a promising therapeutic target in human malignancies. However, a great number of studies have indicated that both intracellular and extracellular Hsp70 have a dual function. A line of evidence presented that intracellular Hsp70 has a cytoprotective function via suppression of apoptosis and lysosomal cell death (LCD) as well as that extracellular Hsp70 can promote tumorigenesis and angiogenesis. Other evidence showed intracellular Hsp70 can promote apoptosis and membrane-associated/extracellular Hsp70 can elicit antitumor innate and adaptive immune responses. Given the contradictory functions, as a "double agent," could Hsp70 be a promising tool in the future of targeted cancer therapies? To answer this question, in this review, we will discuss the functions of Hsp70 in cancers besides inhibition and stimulation strategies for targeting Hsp70 along with their challenges.
Collapse
Affiliation(s)
- Mehdi A Vostakolaei
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hatami-Baroogh
- Department of Reproduction and Development, Royan Institute for Animal Biotechnology, ACER, Isfahan, Iran
| | - Ghader Babaei
- Department of Biochemistry, Urmia University Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirafkan Kordi
- Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Choi SI, Lee JH, Kim RK, Jung U, Kahm YJ, Cho EW, Kim IG. HSPA1L Enhances Cancer Stem Cell-Like Properties by Activating IGF1Rβ and Regulating β-Catenin Transcription. Int J Mol Sci 2020; 21:ijms21186957. [PMID: 32971893 PMCID: PMC7555772 DOI: 10.3390/ijms21186957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Studies have shown that cancer stem cells (CSCs) are involved in resistance and metastasis of cancer; thus, therapies targeting CSCs have been proposed. Here, we report that heat shock 70-kDa protein 1-like (HSPA1L) is partly involved in enhancing epithelial–mesenchymal transition (EMT) and CSC-like properties in non-small cell lung cancer (NSCLC) cells. Aldehyde dehydrogenase 1 (ALDH1) is considered a CSC marker in some lung cancers. Here, we analyzed transcriptional changes in genes between ALDH1high and ALDH1low cells sorted from A549 NSCLC cells and found that HSPA1L was highly expressed in ALDH1high cells. HSPA1L played two important roles in enhancing CSC-like properties. First, HSPA1L interacts directly with IGF1Rβ and integrin αV to form a triple complex that is involved in IGF1Rβ activation. HSPA1L/integrin αV complex-associated IGF1Rβ activation intensified the EMT-associated cancer stemness and γ-radiation resistance through its downstream AKT/NF-κB or AKT/GSK3β/β-catenin activation pathway. Secondly, HSPA1L was also present in the nucleus and could bind directly to the promoter region of β-catenin to function as a transcription activator of β-catenin, an important signaling protein characterizing CSCs by regulating ALDH1 expression. HSPA1L may be a novel potential target for cancer treatment because it both enhances IGF1Rβ activation and regulates γβ-catenin transcription, accumulating CSC-like properties.
Collapse
Affiliation(s)
- Soo-Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Jei-Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Uhee Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
| | - Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
- Correspondence:
| |
Collapse
|
21
|
Agarwal S, Ganesh S. Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress. J Cell Sci 2020; 133:jcs245589. [PMID: 32503939 DOI: 10.1242/jcs.245589] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 08/31/2023] Open
Abstract
The heat shock response (HSR) is a conserved cellular defensive response against stresses such as temperature, oxidative stress and heavy metals. A significant group of players in the HSR is the set of molecular chaperones known as heat shock proteins (HSPs), which assist in the refolding of unfolded proteins and prevent the accumulation of damaged proteins. HSP genes are activated by the HSF1 transcription factor, a master regulator of the HSR pathway. A variety of stressors activate HSF1, but the key molecular players and the processes that directly contribute to HSF1 activation remain unclear. In this study, we show that heat shock induces perinuclear clustering of mitochondria in mammalian cells, and this clustering is essential for activation of the HSR. We also show that this perinuclear clustering of mitochondria results in increased levels of reactive oxygen species in the nucleus, leading to the activation of hypoxia-inducible factor-1α (HIF-1α). To conclude, we provide evidence to suggest that HIF-1α is one of the crucial regulators of HSF1 and that HIF-1α is essential for activation of the HSR during heat shock.
Collapse
Affiliation(s)
- Saloni Agarwal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
22
|
Advances in DNA Repair-Emerging Players in the Arena of Eukaryotic DNA Repair. Int J Mol Sci 2020; 21:ijms21113934. [PMID: 32486270 PMCID: PMC7313471 DOI: 10.3390/ijms21113934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA is constantly damaged by factors produced during natural metabolic processes as well as agents coming from the external environment. Considering such a wide array of damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair, new areas of research are emerging. New players in the field of DDR are constantly being discovered. The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may have a prominent role in DNA damage response and repair.
Collapse
|
23
|
42 °C heat stress pretreatment protects human melanocytes against 308-nm laser-induced DNA damage in vitro. Lasers Med Sci 2020; 35:1801-1809. [DOI: 10.1007/s10103-020-03012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/29/2020] [Indexed: 01/03/2023]
|
24
|
Xu J, Fang M, Li Z, Zhang M, Liu X, Peng Y, Wan Y, Chen J. Third-Generation Sequencing Reveals LncRNA-Regulated HSP Genes in the Populus x canadensis Moench Heat Stress Response. Front Genet 2020; 11:249. [PMID: 32457788 PMCID: PMC7221187 DOI: 10.3389/fgene.2020.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate plant responses to abiotic stresses. However, the short reads produced by second-generation sequencing technology make it difficult to accurately explore full-length transcripts, limiting the study of lncRNAs. In this study, we used third-generation long-read sequencing technology with the PacBio Sequel and Illumina platform to explore the role of lncRNAs in the heat stress response of Populus x canadensis Moench trees. We using 382,034,416 short reads to correct 4,297,179 long reads by resulted in 66,657 full-length transcripts, representing 33,840 genes. Then, 753 putative lncRNAs were identified, including 658 sense lncRNAs (87.38%), 41 long intervening/intergenic non-coding RNAs (lincRNAs) (5.44%), 12 antisense lncRNAs (1.59%), and 42 sense intronic lncRNAs (5.58%). Using the criteria | log2FC| ≥ 1 and q-value < 0.05, 3,493 genes and 78 lncRNAs were differentially expressed under the heat treatment. Furthermore, 923 genes were detected as targets of 43 differently expressed lncRNAs by cis regulation. Functional annotation demonstrated that these target genes were related to unfolded protein binding, response to stress, protein folding, and response to stimulus. Lastly, we identified a lncRNA–gene interaction network consisting of four lncRNAs and six genes [Heat Shock Protein 82 (HSP82), HSP83, Disease Resistance Protein 27 (DRL27), DnaJ family protein (DNJH), and two other predicted protein-coding genes], which showed that lncRNAs could regulate HSP family genes in response to heat stress in Populus. Therefore, our third-generation sequencing has improved the description of the P. canadensis transcriptome. The potential lncRNAs and HSP family genes identified here present a genetic resource to improve our understanding of the heat-adaptation mechanisms of trees.
Collapse
Affiliation(s)
- Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Meng Fang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhihao Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Maoning Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaoyu Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yuanyuan Peng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
25
|
Gvozdenov Z, Kolhe J, Freeman BC. The Nuclear and DNA-Associated Molecular Chaperone Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034009. [PMID: 30745291 PMCID: PMC6771373 DOI: 10.1101/cshperspect.a034009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintenance of a healthy and functional proteome in all cellular compartments is critical to cell and organismal homeostasis. Yet, our understanding of the proteostasis process within the nucleus is limited. Here, we discuss the identified roles of the major molecular chaperones Hsp90, Hsp70, and Hsp60 with client proteins working in diverse DNA-associated pathways. The unique challenges facing proteins in the nucleus are considered as well as the conserved features of the molecular chaperone system in facilitating DNA-linked processes. As nuclear protein inclusions are a common feature of protein-aggregation diseases (e.g., neurodegeneration), a better understanding of nuclear proteostasis is warranted.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801.,Department Chemie, Technische Universität München, Garching 85748, Germany
| | - Janhavi Kolhe
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Brian C Freeman
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
26
|
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019; 39:516-529. [DOI: 10.1038/s41388-019-1016-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
27
|
Liu T, Han Y, Liu Y, Zhao H. Genomewide identification and analysis of heat-shock proteins 70/110 to reveal their potential functions in Chinese soft-shelled turtle Pelodiscus sinensis. Ecol Evol 2019; 9:6968-6985. [PMID: 31467669 PMCID: PMC6712388 DOI: 10.1002/ece3.5264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/28/2023] Open
Abstract
Heat-shock proteins 70/110 (Hsp70/110) are vital molecular chaperones and stress proteins whose expression and production are generally induced by extreme temperatures or external stresses. The Hsp70/110 family is largely conserved in diverse animals. Although many reports have studied and elaborated on the characteristics of Hsp70/110 in various species, the systematic identification and analysis of Hsp70/110 are still poor in turtles. In this study, a genomewide search was performed, and 18 candidate PsHSP70/110 family genes were identified in Chinese soft-shelled turtle, Pelodiscus sinensis. These PsHSP70/110 proteins contained the conserved "heat shock protein 70" domain. Phylogenetic analysis of PsHSP70/110 and their homologs revealed evolutionary conservation of Hsp70/110 across different species. Tissue-specific expression analysis showed that these PsHSP70/110 genes were differentially expressed in different tissues of P. sinensis. Furthermore, to examine the putative biological functions of PsHSP70/110, the dynamic expression of PsHSP70/110 genes was analyzed in the testis of P. sinensis during seasonal spermatogenesis following germ cell apoptosis. Notably, genes such as PsHSPA1B-L, PsHSPA2, and PsHSPA8 were significantly upregulated in P. sinensis testes along with a seasonal decrease in apoptosis. Protein interaction prediction revealed that PsHSPA1B-L, PsHSPA2, and PsHSPA8 may interact with each other and participate in the MAPK signaling pathway. Moreover, immunohistochemical analysis showed that PsHSPA1B-L, PsHSPA2, and PsHSPA8 protein expression was associated with seasonal temperature variation. The expression profiling and interaction relationships of the PsHSPA1B-L, PsHSPA2, and PsHSPA8 proteins implied their potential roles in inhibiting the apoptosis of germ cells in P. sinensis. These results provide insights into PsHSP70/110 functions and will serve as a rich resource for further investigation of HSP70/110 family genes in P. sinensis and other turtles.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Yawen Han
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Ye Liu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Huiying Zhao
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| |
Collapse
|
28
|
Frezzato F, Raggi F, Martini V, Severin F, Trimarco V, Visentin A, Scomazzon E, Accordi B, Bresolin S, Piazza F, Facco M, Basso G, Semenzato G, Trentin L. HSP70/HSF1 axis, regulated via a PI3K/AKT pathway, is a druggable target in chronic lymphocytic leukemia. Int J Cancer 2019; 145:3089-3100. [PMID: 31044428 DOI: 10.1002/ijc.32383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
Considering the role played by the heat shock protein of 70 kDa (HSP70) in cancer, we characterized this protein and its major regulator, the heat shock factor 1 (HSF1), in chronic lymphocytic leukemia (CLL). We found both HSP70 and HSF1 overexpressed in CLL patients, correlated to poor prognosis and abnormally localized in the nucleus of leukemic B cells. The two proteins were strictly correlated each other and their levels decreased consensually in those patients responding to in vivo therapeutic regimens. HSP70 and HSF1 inhibition was proved to be effective in inducing a dose-dependent in vitro apoptosis of CLL B cells. Considering that HSF1 is finely regulated by kinases belonging to pathways triggered by rat sarcoma (RAS), we benefited from a previous proteomic study performed in CLL patients aiming to assess the activation/expression of key signaling proteins. We found that patients showing high levels of HSP70 also expressed high Akt-Ser473, thus activating HSF1. Inhibition of PI3K, which activates AKT, reduced the expression of HSF1 and HSP70. By contrast, HSP70-low patients displayed high activation of MEK1/2 and ERK1/2, known to negatively regulate HSF1. These data demonstrate that the HSP70 expression is regulated by the modulation of HSF1 activity through the activation of RAS-regulated pathways and suggest the HSP70/HSF1 interplay as an interesting target for antileukemic therapies. Finally, inhibition of PI3K, that activates AKT, reduced the expression of HSF1 and HSP70.
Collapse
Affiliation(s)
- Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Flavia Raggi
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Filippo Severin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Valentina Trimarco
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Edoardo Scomazzon
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Silvia Bresolin
- Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
29
|
An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons. Cell Rep 2019; 27:2212-2228.e7. [DOI: 10.1016/j.celrep.2019.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/05/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
|
30
|
Apostolopoulos A, Nakamura A, Yokoyama S, Aoshima M, Fujimoto R, Nakamura K, Ito R, Goto K. Nuclear Accumulation of HSP70 in Mouse Skeletal Muscles in Response to Heat Stress, Aging, and Unloading With or Without Reloading. Front Genet 2018; 9:617. [PMID: 30619453 PMCID: PMC6307543 DOI: 10.3389/fgene.2018.00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to investigate the nuclear accumulation of heat shock protein 70 (HSP70), a molecular chaperonin in mouse skeletal muscle in response to aging, heat stress, and hindlimb unloading with or without reloading. Profiles of HSP70-specific nuclear transporter Hikeshi in skeletal muscles were also evaluated. Heat stress-associated nuclear accumulation of HSP70 was observed in slow soleus (SOL) and fast plantaris (PLA) muscles of young (10-week-old) mice. Mean nuclear expression level of HSP70 in slow medial gastrocnemius (MGAS) and PLA muscles of aged (100-week-old) mice increased ~4.8 and ~1.7 times, compared to that of young (10-week-old) mice. Reloading following 2-week hindlimb unloading caused accumulation of HSP70 in myonuclei in MGAS and PLA of young mice ( p < 0.05). However, reloading-associated nuclear accumulation of HSP70 was not observed in both types of muscles of aged mice. On the other hand, 2-week hindlimb unloading had no impact on the nuclear accumulation of HSP70 in both muscles of young and aged mice. Nuclear expression level of Hikeshi in both MGAS and PLA in mice was suppressed by aging. No significant changes in the nuclear Hikeshi in both muscles were induced by unloading with or without reloading. Results of this study indicate that the nuclear accumulation of HSP70 might show a protective response against cellular stresses in skeletal muscle and that the protective response may be suppressed by aging. Protective response to aging might depend on muscle fiber types.
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Ayane Nakamura
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Shingo Yokoyama
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Megumi Aoshima
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Risa Fujimoto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Kodai Nakamura
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Rika Ito
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan.,Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| |
Collapse
|
31
|
Kasioumi P, Vrazeli P, Vezyraki P, Zerikiotis S, Katsouras C, Damalas A, Angelidis C. Hsp70 (HSP70A1A) downregulation enhances the metastatic ability of cancer cells. Int J Oncol 2018; 54:821-832. [PMID: 30569142 PMCID: PMC6365026 DOI: 10.3892/ijo.2018.4666] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Heat shock protein 70 (Hsp70; also known as HSP70A1A) is one of the most induced proteins in cancer cells; however, its role in cancer has not yet been fully elucidated. In the present study, we proposed a hypothetical model in which the silencing of Hsp70 enhanced the metastatic properties of the HeLa, A549 and MCF7 cancer cell lines. We consider that the inability of cells to form cadherin-catenin complexes in the absence of Hsp70 stimulates their detachment from neighboring cells, which is the first step of anoikis and metastasis. Under these conditions, an epithelial-to-mesenchymal transition (EMT) pathway is activated that causes cancer cells to acquire a mesenchymal phenotype, which is known to possess a higher ability for migration. Therefore, we herein provide evidence of the dual role of Hsp70 which, according to international literature, first establishes a cancerous environment and then, as suggested by our team, regulates the steps of the metastatic process, including EMT and migration. Finally, the trigger for the anti-metastatic properties that are acquired by cancer cells in the absence of Hsp70 appears to be the destruction of the Hsp70-dependent heterocomplexes of E-cadherin/catenins, which function like an anchor between neighboring cells.
Collapse
Affiliation(s)
- Panagiota Kasioumi
- Department of General Biology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Paraskevi Vrazeli
- Department of General Biology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Stelios Zerikiotis
- Department of Physiology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christos Katsouras
- Department of Cardiology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexander Damalas
- Biotechnology and Nanomedicine Laboratory, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charalampos Angelidis
- Department of General Biology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
32
|
The increased expression of the inducible Hsp70 (HSP70A1A) in serum of patients with heart failure and its protective effect against the cardiotoxic agent doxorubicin. Mol Cell Biochem 2018; 455:41-59. [DOI: 10.1007/s11010-018-3469-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
|
33
|
Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, Covi V, Tabaracci G, Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 2018; 124:114-121. [PMID: 29864481 DOI: 10.1016/j.freeradbiomed.2018.05.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Treatment with low-dose ozone is successfully exploited as an adjuvant therapy in the treatment of several disorders. Although the list of medical applications of ozone therapy is increasing, molecular mechanisms underlying its beneficial effects are still partially known. Clinical and experimental evidence suggests that the therapeutic effects of ozone treatment may rely on its capability to mount a beneficial antioxidant response through activation of the nuclear factor erythroid-derived-like 2 (Nrf2) pathway. However, a conclusive mechanistic demonstration is still lacking. Here, we bridge this gap of knowledge by providing evidence that treatment with a low concentration of ozone in cultured cells promotes nuclear translocation of Nrf2 at the chromatin sites of active transcription and increases the expression of antioxidant response element (ARE)-driven genes. Importantly, we show that ozone-induced ARE activation can be reverted by the ectopic expression of the Nrf2 specific inhibitor Kelch-like ECH associated protein (Keap1), thus proving the role of the Nrf2 pathway in the antioxidant response induced by mild ozonisation.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
34
|
Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 2018; 23:303-315. [PMID: 28952019 PMCID: PMC5904076 DOI: 10.1007/s12192-017-0843-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
35
|
Cao X, Zhou Y, Sun H, Xu M, Bi X, Zhao Z, Shen B, Wan F, Hong Z, Lan L, Luo L, Guo Z, Yin Z. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells. Cancer Lett 2018. [PMID: 29524558 DOI: 10.1016/j.canlet.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation.
Collapse
Affiliation(s)
- Xiang Cao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Hongfang Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Miao Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Zhihui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China
| | - Binghui Shen
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhuan Hong
- Jiangsu Cancer Hospital, Nanjing, 210009, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, Jiangsu, PR China.
| | - Zhigang Guo
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, PR China.
| |
Collapse
|
36
|
Bengoetxea X, de Cerain AL, Azqueta A, Ramirez MJ. Purported Interactions of Amyloid-β and Glucocorticoids in Cytotoxicity and Genotoxicity: Implications in Alzheimer's Disease. J Alzheimers Dis 2018; 54:1085-1094. [PMID: 27589535 DOI: 10.3233/jad-160636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the presence of aggregates of the amyloid-β peptide (Aβ) that are believed to be neurotoxic. One of the purposed damaging mechanisms of Aβ is oxidative insult, which eventually could damage the cellular genome. Stress and associated increases in glucocorticoids (GCs) have been described as a risk factor for the development of AD, although the purported genotoxic effects of GCs have not been fully characterized. Therefore, it is possible to speculate about purported synergistic effects of GCs on the Aβ-driven genotoxic damage. This in vitro study addresses the single and combined cyto/genotoxic effects of Aβ and GCs in SH-SY5Y cells. Cytotoxicity was determined by the MTT assay, and the genotoxic effects were studied using the comet assay. A comet assay derivation allows for measuring the presence of the FPG-sensitive sites (mainly 8-oxoguanines) in the DNA, apart from the DNA strand breaks. Treatment with Aβ (10 μM, 72 h) induced cytotoxicity (35% decrease in cell viability) and DNA strand breaks, but had no significant effect on oxidative DNA damage (FPG sites). Corticosterone showed no effect on cell viability, genotoxicity, or reparation processes. Corticosterone was unable to neither reverse nor potentiate Aβ driven effects. The present results suggest the existence of alternative mechanisms for the Aβ driven damage, not involving oxidative damage of DNA. In addition, could be suggested that the interaction between Aβ and GCs in AD does not seem to involve DNA damage.
Collapse
|
37
|
Abstract
Heat shock protein 70 (Hsp70) is the most ubiquitous stress-inducible chaperone. It accumulates in the cells in response to a wide variety of physiological and environmental insults including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Intracellular Hsp70 is viewed as a cytoprotective protein. Indeed, this protein can inhibit key effectors of the apoptotic and autophagy machineries. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and can even cause their complete involution. However, HSP70 is also found in the extra-cellular space where it may signal via membrane receptors or endosomes to alter gene transcription and cellular function. Overall, Hsp70 extracellular function is believed to be immnunogenic and the term chaperokine to define the extracellular chaperones such as Hsp70 has been advanced. In this chapter the knowledge to date, as well as some emerging paradigms about the intra- and extra-cellular functions of Hsp70, are presented. The strategies targeting Hsp70 that are being developed in cancer therapy will also be discussed.
Collapse
Affiliation(s)
- Christophe Boudesco
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Sebastien Cause
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Gaëtan Jego
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| | - Carmen Garrido
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
38
|
Peksel B, Gombos I, Péter M, Vigh L, Tiszlavicz Á, Brameshuber M, Balogh G, Schütz GJ, Horváth I, Vigh L, Török Z. Mild heat induces a distinct "eustress" response in Chinese Hamster Ovary cells but does not induce heat shock protein synthesis. Sci Rep 2017; 7:15643. [PMID: 29142280 PMCID: PMC5688065 DOI: 10.1038/s41598-017-15821-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022] Open
Abstract
The current research on cellular heat stress management focuses on the roles of heat shock proteins (HSPs) and the proteostasis network under severe stress conditions. The mild, fever-type stress and the maintenance of membrane homeostasis are less well understood. Herein, we characterized the acute effect of mild, fever-range heat shock on membrane organization, and HSP synthesis and localization in two mammalian cell lines, to delineate the role of membranes in the sensing and adaptation to heat. A multidisciplinary approach combining ultrasensitive fluorescence microscopy and lipidomics revealed the molecular details of novel cellular “eustress”, when cells adapt to mild heat by maintaining membrane homeostasis, activating lipid remodeling, and redistributing chaperone proteins. Notably, this leads to acquired thermotolerance in the complete absence of the induction of HSPs. At higher temperatures, additional defense mechanisms are activated, including elevated expression of molecular chaperones, contributing to an extended stress memory and acquired thermotolerance.
Collapse
Affiliation(s)
- Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Ádám Tiszlavicz
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Mario Brameshuber
- Institute of Applied Physics - Biophysics, TU Wien, 1040, Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Gerhard J Schütz
- Institute of Applied Physics - Biophysics, TU Wien, 1040, Vienna, Austria
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
| |
Collapse
|
39
|
A proteomic portrait of dinoflagellate chromatin reveals abundant RNA-binding proteins. Chromosoma 2017; 127:29-43. [PMID: 28852823 DOI: 10.1007/s00412-017-0643-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022]
Abstract
Dinoflagellate chromatin is unique among eukaryotes, as the chromosomes are permanently condensed in a liquid crystal state instead of being packed in nucleosomes. However, how it is organized is still an unsolved mystery, in part due to the lack of a comprehensive catalog of dinoflagellate nuclear proteins. Here, we report the results of CHromatin Enrichment for Proteomics (CHEP) followed by shotgun mass spectrometry sequencing of the chromatin-associated proteins from the dinoflagellate Lingulodinum polyedra. Our analysis identified proteins involved in DNA replication and repair, transcription, and mRNA splicing, and showed a low level of contamination by proteins from other organelles. A limited number of proteins containing DNA-binding domains were found, consistent with the lack of diversity of these proteins in dinoflagellate transcriptomes. However, the number of proteins containing RNA-binding domains was unexpectedly high supporting a potential role for this type of protein in mediating gene expression and chromatin organization. We also identified a number of proteins involved in chromosome condensation and cell cycle progression as well as a single histone protein (H4). Our results provide the first detailed look at the nuclear proteins associated with the unusual chromatin structure of dinoflagellate nuclei and provide important insights into the biochemical basis of its structure and function.
Collapse
|
40
|
Boatti L, Rapallo F, Viarengo A, Marsano F. Toxic effects of mercury on the cell nucleus of Dictyostelium discoideum. ENVIRONMENTAL TOXICOLOGY 2017; 32:417-425. [PMID: 26888062 DOI: 10.1002/tox.22245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 01/15/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Governmental agencies (www.epa.gov/mercury) and the scientific community have reported on the high toxicity due to mercury. Indeed, exposure to mercury can cause severe injury to the central nervous system and kidney in humans. Beyond its recognized toxicity, little is known regarding the molecular mechanisms involved in the actions of this heavy metal. Mercury has been also observed to form insoluble fibrous protein aggregates in the cell nucleus. We used D. discoideum to evaluate micronuclei formation and, since mercury is able to induce oxidative stress that could bring to protein aggregation, we assessed nuclear protein carbonylation by Western Blot. We observed a significant increase in micronuclei formation and 14 carbonylated proteins were identified. Moreover, we used isotope-coded protein label (ICPL) and mass spectrometry analysis of proteins obtained by lysis of purified nuclei, before of tryptic digestion to quantify nuclear proteins affected by mercury. In particular, we examined the effects of mercury that associate a classical genotoxic assay to proteomic effects into the nucleus. The data present direct evidences for mercury genotoxicity, nuclear protein carbonylation, quantitative change in core histones, and the involvement of pseudouridine synthase in mercury toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 417-425, 2017.
Collapse
Affiliation(s)
- Lara Boatti
- Department of Science and Technological Innovation (DiSIT), Università Del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel, Alessandria, 11-15121, Italy
| | - Fabio Rapallo
- Department of Science and Technological Innovation (DiSIT), Università Del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel, Alessandria, 11-15121, Italy
| | - Aldo Viarengo
- Department of Science and Technological Innovation (DiSIT), Università Del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel, Alessandria, 11-15121, Italy
| | - Francesco Marsano
- Department of Science and Technological Innovation (DiSIT), Università Del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel, Alessandria, 11-15121, Italy
| |
Collapse
|
41
|
Boyko AA, Azhikina TL, Streltsova MA, Sapozhnikov AM, Kovalenko EI. HSP70 in human polymorphonuclear and mononuclear leukocytes: comparison of the protein content and transcriptional activity of HSPA genes. Cell Stress Chaperones 2017; 22:67-76. [PMID: 27783273 PMCID: PMC5225062 DOI: 10.1007/s12192-016-0744-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.
Collapse
Affiliation(s)
- Anna A Boyko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Tatyana L Azhikina
- Laboratory of Human Genes Structure and Functions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997.
| |
Collapse
|
42
|
PARP1 regulates the protein stability and proapoptotic function of HIPK2. Cell Death Dis 2016; 7:e2438. [PMID: 27787517 PMCID: PMC5134000 DOI: 10.1038/cddis.2016.345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a nuclear serine/threonine kinase that functions in DNA damage response and development. In the present study, we propose that the protein stability and proapoptotic function of HIPK2 are regulated by poly(ADP-ribose) polymerase 1 (PARP1). We present evidence indicating that PARP1 promotes the proteasomal degradation of HIPK2. The tryptophan-glycine-arginine (WGR) domain of PARP1 was necessary and sufficient for the promotion of HIPK2 degradation independently of the PARP1 enzymatic activity. The WGR domain mediated the interaction between HIPK2 and C-terminus of HSP70-interacting protein (CHIP) via HSP70. We found that CHIP can function as a ubiquitin ligase for HIPK2. The interaction between PAPR1 and HIPK2 was weakened following DNA damage. Importantly, PARP1 reduced the HIPK2-mediated p53 phosphorylation, proapoptotic transcriptional activity and cell death. These results suggest that PARP1 can modulate the tumor-suppressing function of HIPK2 by regulating the protein stability of HIPK2.
Collapse
|
43
|
Lui A, New J, Ogony J, Thomas S, Lewis-Wambi J. Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells. BMC Cancer 2016; 16:487. [PMID: 27421652 PMCID: PMC4947349 DOI: 10.1186/s12885-016-2490-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/30/2016] [Indexed: 01/12/2023] Open
Abstract
Background mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. Methods In this study we utilized two AI-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron microscopy were used to evaluate LC3-II production and autophagosome formation, while ERE-luciferase reporter, Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity. Results Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression (mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein (HSP90). Everolimus restored 4-hydroxy-tamoxifen (4OHT) sensitivity in MCF-7:5C cells and enhanced 4OHT sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus insensitivity in MCF-7 breast cancer cell lines. Conclusion This study provides additional insight into the mechanism(s) of action of everolimus that can be used to enhance the utility of mTOR inhibitors as part of combination therapy for AI-resistant breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2490-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asona Lui
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Jacob New
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Joshua Ogony
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Sufi Thomas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
44
|
Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 2016; 21:379-404. [PMID: 26865365 PMCID: PMC4837186 DOI: 10.1007/s12192-016-0676-6] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/23/2023] Open
Abstract
The 70-kDa heat shock protein (HSP70) family of molecular chaperones represents one of the most ubiquitous classes of chaperones and is highly conserved in all organisms. Members of the HSP70 family control all aspects of cellular proteostasis such as nascent protein chain folding, protein import into organelles, recovering of proteins from aggregation, and assembly of multi-protein complexes. These chaperones augment organismal survival and longevity in the face of proteotoxic stress by enhancing cell viability and facilitating protein damage repair. Extracellular HSP70s have a number of cytoprotective and immunomodulatory functions, the latter either in the context of facilitating the cross-presentation of immunogenic peptides via major histocompatibility complex (MHC) antigens or in the context of acting as "chaperokines" or stimulators of innate immune responses. Studies have linked the expression of HSP70s to several types of carcinoma, with Hsp70 expression being associated with therapeutic resistance, metastasis, and poor clinical outcome. In malignantly transformed cells, HSP70s protect cells from the proteotoxic stress associated with abnormally rapid proliferation, suppress cellular senescence, and confer resistance to stress-induced apoptosis including protection against cytostatic drugs and radiation therapy. All of the cellular activities of HSP70s depend on their adenosine-5'-triphosphate (ATP)-regulated ability to interact with exposed hydrophobic surfaces of proteins. ATP hydrolysis and adenosine diphosphate (ADP)/ATP exchange are key events for substrate binding and Hsp70 release during folding of nascent polypeptides. Several proteins that bind to distinct subdomains of Hsp70 and consequently modulate the activity of the chaperone have been identified as HSP70 co-chaperones. This review focuses on the regulation, function, and relevance of the molecular Hsp70 chaperone machinery to disease and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jürgen Radons
- Scientific Consulting International, Mühldorfer Str. 64, 84503, Altötting, Germany.
| |
Collapse
|
45
|
Kumar S, Stokes J, Singh UP, Scissum Gunn K, Acharya A, Manne U, Mishra M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett 2016; 374:156-166. [PMID: 26898980 PMCID: PMC5553548 DOI: 10.1016/j.canlet.2016.01.056] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 01/13/2023]
Abstract
In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - James Stokes
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Karyn Scissum Gunn
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA.
| |
Collapse
|
46
|
Roles of Cross-Membrane Transport and Signaling in the Maintenance of Cellular Homeostasis. Cell Mol Bioeng 2016; 9:234-246. [PMID: 27335609 PMCID: PMC4893050 DOI: 10.1007/s12195-016-0439-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/19/2016] [Indexed: 11/03/2022] Open
Abstract
Organelles allow specialized functions within cells to be localized, contained and independently regulated. This separation is oftentimes achieved by selectively permeable membranes, which enable control of molecular transport, signaling between compartments and containment of stress-inducing factors. Here we consider the role of a number of membrane systems within the cell: the plasma membrane, that of the endoplasmic reticulum, and then focusing on the nucleus, depository for chromatin and regulatory centre of the cell. Nuclear pores allow shuttling of ions, metabolites, proteins and mRNA to and from the nucleus. The activity of transcription factors and signaling molecules is also modulated by translocation across the nuclear envelope. Many of these processes require ‘active transportation’ against a concentration gradient and may be regulated by the nuclear pores, Ran-GTP activity and the nuclear lamina. Cells must respond to a combination of biochemical and physical inputs and we discuss too how mechanical signals are carried from outside the cell into the nucleus through integrins, the cytoskeleton and the ‘linker of nucleo- and cyto-skeletal’ (LINC) complex which spans the nuclear envelope. Regulation and response to signals and stresses, both internal and external, allow cells to maintain homeostasis within functional tissue.
Collapse
|
47
|
Bozaykut P, Ozer NK, Karademir B. Nrf2 silencing to inhibit proteolytic defense induced by hyperthermia in HT22 cells. Redox Biol 2016; 8:323-32. [PMID: 26966891 PMCID: PMC4789349 DOI: 10.1016/j.redox.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
Nrf2 pathway has been known to be protective against cancer progression however recent studies have revealed that the antioxidant activity of Nrf2 contributes to chemotherapy resistance. For many years, hyperthermia has been used as an additional therapy to increase the efficiency of chemotherapy and radiotherapy. Besides the positive effects of hyperthermia during treatment procedure, thermotolerance has been found to develop against heat treatment. Although the involved molecular mechanisms have not been fully clarified, heat shock proteins (HSP) and proteasome activity are known to be involved in the acquisition of thermotolerance. The aim of this study was to investigate the potential beneficial effects of combining hyperthermia with Nrf2 silencing to inhibit molecular mechanisms leading to induction of defense mechanisms in transcription level. Following heat treatment of HT22 cells, HSP70 and the proteasome levels and as well as proteasome activity were found to be elevated in the nucleus. Our results demonstrated that Nrf2 silencing reduced defense mechanisms against heat treatment both in antioxidant and proteolytic manner and Nrf2 may be a potential target for therapeutic approach in order to improve the beneficial effects of hyperthermia in cancer therapy. Hyperthermia increases HSP70, β5 levels and Proteasome activity in the nucleus. Nrf2 pathway contributes to thermotolerance by HO-1 and GSTα. Nrf2 contributes to thermotolerance via proteasome and HSP related degradation. Nrf2 Inhibition may be a useful approach to overcome the thermotolerance.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey; Department of Medical Biochemistry, International School of Medicine, Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medico University, Beykoz, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
48
|
Bukar Maina M, Al-Hilaly YK, Serpell LC. Nuclear Tau and Its Potential Role in Alzheimer's Disease. Biomolecules 2016; 6:9. [PMID: 26751496 PMCID: PMC4808803 DOI: 10.3390/biom6010009] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022] Open
Abstract
Tau protein, found in both neuronal and non-neuronal cells, forms aggregates in neurons that constitutes one of the hallmarks of Alzheimer’s disease (AD). For nearly four decades, research efforts have focused more on tau’s role in physiology and pathology in the context of the microtubules, even though, for over three decades, tau has been localised in the nucleus and the nucleolus. Its nuclear and nucleolar localisation had stimulated many questions regarding its role in these compartments. Data from cell culture, mouse brain, and the human brain suggests that nuclear tau could be essential for genome defense against cellular distress. However, its nature of translocation to the nucleus, its nuclear conformation and interaction with the DNA and other nuclear proteins highly suggest it could play multiple roles in the nucleus. To find efficient tau-based therapies, there is a need to understand more about the functional relevance of the varied cellular distribution of tau, identify whether specific tau transcripts or isoforms could predict tau’s localisation and function and how they are altered in diseases like AD. Here, we explore the cellular distribution of tau, its nuclear localisation and function and its possible involvement in neurodegeneration.
Collapse
Affiliation(s)
- Mahmoud Bukar Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Department of Human Anatomy, College of Medical Science, Gombe State University, Gombe 760, Nigeria.
| | - Youssra K Al-Hilaly
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Chemistry Department, College of Sciences, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
| |
Collapse
|
49
|
Abstract
All living organisms sense and respond to harmful changes in their intracellular and extracellular environment through complex signaling pathways that lead to changes in gene expression and cellular function in order to maintain homeostasis. Long non-coding RNAs (lncRNAs), a large and heterogeneous group of functional RNAs, play important roles in cellular response to stressful conditions. lncRNAs constitute a significant fraction of the genes differentially expressed in response to diverse stressful stimuli and, once induced, contribute to the regulation of downstream cellular processes, including feedback regulation of key stress response proteins. While many lncRNAs seem to be induced in response to a specific stress, there is significant overlap between lncRNAs induced in response to different stressful stimuli. In addition to stress-induced RNAs, several constitutively expressed lncRNAs also exert a strong regulatory impact on the stress response. Although our understanding of the contribution of lncRNAs to the cellular stress response is still highly rudimentary, the existing data point to the presence of a complex network of lncRNAs, miRNAs, and proteins in regulation of the cellular response to stress.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Alberto Valencia-Hipólito
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
50
|
Bethea CL, Reddy AP. Ovarian steroids regulate gene expression related to DNA repair and neurodegenerative diseases in serotonin neurons of macaques. Mol Psychiatry 2015; 20:1565-78. [PMID: 25600110 PMCID: PMC4508249 DOI: 10.1038/mp.2014.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/28/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022]
Abstract
Depression often accompanies the perimenopausal transition and it often precedes overt symptomology in common neurodegenerative diseases (NDDs, such as Alzheimer's, Parkinson's, Huntington, amyotrophic lateral sclerosis). Serotonin dysfunction is frequently found in the different etiologies of depression. We have shown that ovariectomized (Ovx) monkeys treated with estradiol (E) for 28 days supplemented with placebo or progesterone (P) on days 14-28 had reduced DNA fragmentation in serotonin neurons of the dorsal raphe nucleus, and long-term Ovx monkeys had fewer serotonin neurons than intact controls. We questioned the effect of E alone or E+P (estradiol supplemented with progesterone) on gene expression related to DNA repair, protein folding (chaperones), the ubiquitin-proteosome, axon transport and NDD-specific genes in serotonin neurons. Ovx macaques were treated with placebo, E or E+P (n=3 per group) for 1 month. Serotonin neurons were laser captured and subjected to microarray analysis and quantitative real-time PCR (qRT-PCR). Increases were confirmed with qRT-PCR in five genes that code for proteins involved in repair of strand breaks and nucleotide excision. NBN1, PCNA (proliferating nuclear antigen), GADD45A (DNA damage-inducible), RAD23A (DNA damage recognition) and GTF2H5 (gene transcription factor 2H5) significantly increased with E or E+P treatment (all analysis of variance (ANOVA), P<0.01). Chaperone genes HSP70 (heat-shock protein 70), HSP60 and HSP27 significantly increased with E or E+P treatment (all ANOVA, P<0.05). HSP90 showed a similar trend. Ubiquinase coding genes UBEA5, UBE2D3 and UBE3A (Parkin) increased with E or E+P (all ANOVA, P<0.003). Transport-related genes coding kinesin, dynein and dynactin increased with E or E+P treatment (all ANOVA, P<0.03). SCNA (α-synuclein) and ADAM10 (α-secretase) increased (both ANOVA, P<0.02) but PSEN1 (presenilin1) decreased (ANOVA, P<0.02) with treatment. APP decreased 10-fold with E or E+P administration. Newman-Keuls post hoc comparisons indicated variation in the response to E alone versus E+P across the different genes. In summary, E or E+P increased gene expression for DNA repair mechanisms in serotonin neurons, thereby rendering them less vulnerable to stress-induced DNA fragmentation. In addition, E or E+P regulated four genes encoding proteins that are often misfolded or malfunctioning in neuronal populations subserving overt NDD symptomology. The expression and regulation of these genes in serotonergic neurons invites speculation that they may mediate an underlying disease process in NDDs, which in turn may be ameliorated or delayed with timely hormone therapy in women.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive Sciencesm, Oregon National Primate Research Center Beaverton, OR 97006, Division of Neuroscience Oregon National Primate Research Center Beaverton, OR 97006, Department of Obstetrics and Gynecology Oregon Health and Science University Portland, OR 97201
| | - Arubala P. Reddy
- Division of Reproductive Sciencesm, Oregon National Primate Research Center Beaverton, OR 97006
| |
Collapse
|