1
|
Liang X, Chen R, Wang C, Wang Y, Zhang J. Targeting HSP90 for Cancer Therapy: Current Progress and Emerging Prospects. J Med Chem 2024; 67:15968-15995. [PMID: 39256986 DOI: 10.1021/acs.jmedchem.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Heat shock protein 90 (HSP90), a highly conserved member of the heat shock protein family, regulates various proteins and signaling pathways involved in cancer, making it a promising target for cancer therapy. Traditional HSP90 inhibitors have demonstrated significant antitumor potential in preclinical trials, with over 20 compounds advancing to clinical trials and showing promising results. However, the limited clinical efficacy and shared toxicity of these inhibitors restrict their further clinical use. Encouragingly, developing novel inhibitors using conventional medicinal chemistry approaches─such as selective inhibitors, dual inhibitors, protein-protein interaction inhibitors, and proteolysis-targeting chimeras─is expected to address these challenges. Notably, the selective inhibitor TAS-116 has already been successfully marketed. In this Perspective, we summarize the structure, biological functions, and roles of HSP90 in cancer, analyze the clinical status of HSP90 inhibitors, and highlight the latest advancements in novel strategies, offering insights into their future development.
Collapse
Affiliation(s)
- Xinqi Liang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ruixian Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| |
Collapse
|
2
|
Feng Y, Wang W, Zhang Y, Fu X, Ping K, Zhao J, Lei Y, Mou Y, Wang S. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis. Eur J Med Chem 2021; 229:114070. [PMID: 34968902 DOI: 10.1016/j.ejmech.2021.114070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Celastrol, a quinone methide triterpenoid, possesses potential anti-glioma activity. However, its relatively low activity limit its application as an effective agent for glioma treatment. In search for effective anti-glioma agents, this work designed and synthesized two series of celastrol C-3 OH and C-20 COOH derivatives 4a-4o and 6a-6o containing 1, 2, 3-triazole moiety. Their anti-glioma activities against four human glioma cell lines (A172, LN229, U87, and U251) were then evaluated using MTT assay in vitro. Results showed that compound 6i (IC50 = 0.94 μM) exhibited substantial antiproliferative activity against U251 cell line, that was 4.7-fold more potent than that of celastrol (IC50 = 4.43 μM). In addition, compound 6i remarkably inhibited the colony formation and migration of U251 cells. Further transmission electron microscopy and mitochondrial depolarization assays in U251 cells indicated that the potent anti-glioma activity of 6i was attributed to necroptosis. Mechanism investigation revealed that compound 6i induced necroptosis mainly by activating the RIP1/RIP3/MLKL pathway. Additionally, compound 6i exerted acceptable BBB permeability in mice and inhibited U251 cell proliferation in an in vivo zebrafish xenograft model, obviously. In summary, compound 6i might be a promising lead compound for potent celastrol derivatives as anti-glioma agents.
Collapse
Affiliation(s)
- Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Wenbao Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yu Lei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
3
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
4
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
5
|
Cao F, Wang Y, Peng B, Zhang X, Zhang D, Xu L. Effects of celastrol on Tau hyperphosphorylation and expression of HSF-1 and HSP70 in SH-SY5Y neuroblastoma cells induced by amyloid-β peptides. Biotechnol Appl Biochem 2018; 65:390-396. [PMID: 29274099 DOI: 10.1002/bab.1633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
To observe the effects of celastrol on Tau hyperphosphorylation induced by amyloid-β peptides (Aβ) in SH-SY5Y neuroblastoma cells, the changes of Tau hyperphosphorylation and the expression of heat shock protein 90 (HSP90), HSP70, and heat shock factor 1 (HSF-1) in SH-SY5Y cells treated with Aβ1-42 and celastrol were measured. Tau hyperphosphorylation and HSP90 expression induced by Aβ1-42 was also measured by Western blotting after HSP70 or HSF-1 knockdown by siRNA. The interaction between HSP70 and Tau or HSP70 and carboxyl terminus of HSP70 interacting protein (CHIP) was measured by co-immunoprecipitation. Compared with the control group, the expressions of HSP70 and HSF-1 were markedly decreased after the induction of Aβ1-42 , whereas the expressions of HSP90, Tau phospho S199/202, and Tau phospho S396 were markedly increased. Meanwhile, both celastrol treatment and knockdown of HSP70 or HSF-1 in SH-SY5Y cells significantly inhibited the Tau hyperphosphorylation and HSP90 expression induced by Aβ1-42 . Moreover, celastrol treatment had no effects on Aβ1-42 -induced decreased expression of HSP70 and HSF-1, Tau ubiquitination, and the interaction of HSP70/Tau and HSP70/CHIP. These results suggest that celastrol- inhibited Tau hyperphosphorylation may not be dependent on the cause of HSF-1/HSP70/CHIP-mediated ubiquitination of Tau.
Collapse
Affiliation(s)
- Fanfan Cao
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New District, Shanghai, People's Republic of China
| | - Ying Wang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New District, Shanghai, People's Republic of China
| | - Bin Peng
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New District, Shanghai, People's Republic of China
| | - Xue Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New District, Shanghai, People's Republic of China
| | - Denghai Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New District, Shanghai, People's Republic of China.,U972, Inserm, Bâtiment Lavoisier, Hôpital Paul Brousse, Villejuif, Cedex, France
| | - Limin Xu
- Department of Clinical Lab, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New District, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Wang W, Ha C, Lin T, Wang D, Wang Y, Gong M. Celastrol attenuates pain and cartilage damage via SDF-1/CXCR4 signalling pathway in osteoarthritis rats. ACTA ACUST UNITED AC 2017; 70:81-88. [PMID: 28994112 DOI: 10.1111/jphp.12835] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Celastrol has attracted wide interests for its anticancer and anti-inflammation properties, and studies have demonstrated that celastrol negatively modulates the stromal cell-derived factor-1 (SDF-1) and receptor C-X-C chemokine receptor type 4 (CXCR4) signalling. We aim in this study to investigate the effects of celastrol in osteoarthritis (OA) in vivo and explored the underlying molecular mechanisms. METHODS We established a monoiodoacetate (MIA)-induced rat OA model and evaluated the joint pain and cartilage damage with or without celastrol treatments. We further assessed the alterations of the SDF-1/CXCR4 pathway and cartilage-specific genes, at both mRNA and protein levels. KEY FINDINGS Celastrol significantly attenuated the joint pain and cartilage damage induced by MIA in OA rats and suppressed the upregulation of SDF-1/CXCR4 and associated genes caused by MIA injections. Furthermore, MIA induced a decrease in cartilage-specific genes which was also prevented by celastrol treatments. CONCLUSIONS Celastrol ameliorate OA in vivo as evidenced by the attenuated joint pain and less cartilage damage in OA rats given celastrol treatments, an effect mediated via suppression of the SDF-1/CXCR4 pathway.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Orthopedic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China.,Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Chengzhi Ha
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Tao Lin
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dawei Wang
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuanhe Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingzhi Gong
- Department of Orthopedic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Figueiredo SA, Salvador JA, Cortés R, Cascante M. Novel celastrol derivatives with improved selectivity and enhanced antitumour activity: Design, synthesis and biological evaluation. Eur J Med Chem 2017; 138:422-437. [DOI: 10.1016/j.ejmech.2017.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/22/2022]
|
8
|
Wang R, Gu X, Dai W, Ye J, Lu F, Chai Y, Fan G, Gonzalez FJ, Duan G, Qi Y. A lipidomics investigation into the intervention of celastrol in experimental colitis. MOLECULAR BIOSYSTEMS 2017; 12:1436-44. [PMID: 27021137 DOI: 10.1039/c5mb00864f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celastrol is well known for its anti-inflammatory and anti-cancer effects. In this study, the efficacy of celastrol against dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice was established and the mechanism was investigated using lipidomics. Celastrol treatment significantly alleviated DSS-induced colitis in mice, as revealed by the body weight, colon length, scores of rectal bleeding and diarrhea, serum TNF-α level, and histological analysis results. Lipidomics analysis based on UPLC/MS revealed characteristic changes in the metabolic profiles of the colitis mice, with altered levels of lipid markers associated with IBD, including LPC18 : 0, LPC18 : 1, LPC18 : 2, sphingomyelin (SM), and increased LPC18 : 0/LPC18 : 1 and LPC18 : 0/LPC18 : 2 ratios. For the celastrol-treated colitis mice, however, levels of the above lipid markers were restored, together with recovered saturated LPC/unsaturated LPC ratios. Accordingly, using GC-MS analysis, increased stearic acid (C18 : 0)/oleic acid (C18 : 1) and stearic acid (C18 : 0)/linoleic acid (C18 : 2) ratios were observed in colitis mice, which were later recovered after celastrol treatment. Quantitative real-time PCR analysis revealed that the liver expression of stearoyl-coenzyme A desaturase 1 (SCD1), the key enzyme controlling the desaturation of saturated fatty acid, was dramatically inhibited in IBD mice, and was obviously recovered after celastrol treatment. These results suggest that the increased saturated LPC/unsaturated LPC (and saturated fatty acid/unsaturated fatty acid) ratios associated with SCD1 down-regulation could be regarded as biomarkers of colitis, and celastrol alleviates DSS-induced colitis partially via up-regulation of SCD1, restoring the altered balance between stearic acid- and oleic acid-derived lipid species, which plays an important role in alleviating colitis. In all, this study provided the scientific basis for further development of celastrol in treating IBD.
Collapse
Affiliation(s)
- Renping Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xueqin Gu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weiquan Dai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jun Ye
- Shanghai Zhabei Institute for Food and Drug Control, Shanghai 200436, China
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Guorong Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gengli Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China. and Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
9
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
10
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ. Cytotoxic effect of celastrol alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells. Tumour Biol 2017; 39:1010428317698369. [DOI: 10.1177/1010428317698369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The influence of celastrol alone or in combination with paclitaxel on survival of anaplastic thyroid carcinoma cells was investigated. In 8505C and SW1736 cells, after treatment of celastrol, cell viability decreased, and cytotoxic activity increased. The protein levels of heat shock protein (hsp) 90, hsp70, Bax, death receptor 5, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase, phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-c-Jun N-terminal kinase (JNK) were elevated, and those of Bcl2, phospho-nuclear factor-kappaB (NF-κB), and total and phospho-Akt were reduced. The endoplasmic reticulum stress markers expression and reactive oxygen species production were enhanced. In celastrol-treated cells, N-acetylcysteine increased cell viability and phospho-NF-κB protein levels, and decreased reactive oxygen species production and cytotoxic activity. The protein levels of cyclooxygenase 2, phospho-ERK1/2, phospho-JNK and Bip were diminished. After treatment of both celastrol and paclitaxel, compared with paclitaxel alone, cell viability and the percentage of viable cells were reduced, and death rate and cytotoxic activity were elevated. The protein levels of phospho-ERK1/2, phospho-JNK, Bip, and cyclooxygenase 2, and reactive oxygen species production were enhanced. All of the Combination Index values calculated by Chou–Talalay equation were lower than 1.0, implying the synergism between celastrol and paclitaxel in induction of cell death. In conclusion, our results suggest that celastrol induces cytotoxicity through involvement of Bcl2 family proteins and death receptor, and modulation of phospho-NF-κB, Akt, and mitogen-activated protein kinase in association with endoplasmic reticulum stress and reactive oxygen species production in anaplastic thyroid carcinoma cells. Moreover, celastrol synergizes with paclitaxel in induction of cytotoxicity in anaplastic thyroid carcinoma cells.
Collapse
Affiliation(s)
- Si Hyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun Goo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Chul Sik Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Hee Ihm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Moon Gi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hyung Joon Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seong Jin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Hernandes C, Pereira AMS, Severino P. Compounds From Celastraceae Targeting Cancer Pathways and Their Potential Application in Head and Neck Squamous Cell Carcinoma: A Review. Curr Genomics 2016; 18:60-74. [PMID: 28503090 PMCID: PMC5321769 DOI: 10.2174/1389202917666160803160934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/28/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the head and neck is one of the most common cancer types worldwide. It initiates on the epithelial lining of the upper aerodigestive tract, at most instances as a consequence of tobacco and alcohol consumption. Treatment options based on conventional therapies or targeted therapies under development have limited efficacy due to multiple genetic alterations typically found in this cancer type. Natural products derived from plants often possess biological activities that may be valuable in the development of new therapeutic agents for cancer treatment. Several genera from the family Celastraceae have been studied in this context. This review reports studies on chemical constituents isolated from species from the Celastraceae family targeting cancer mechanisms studied to date. These results are then correlated with molecular characteristics of head and neck squamous cell carcinoma in an attempt to identify constituents with potential application in the treatment of this complex disease at the molecular level.
Collapse
Affiliation(s)
- Camila Hernandes
- aAlbert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; bDepartment of Biotechnology, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Ana Maria Soares Pereira
- aAlbert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; bDepartment of Biotechnology, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Patricia Severino
- aAlbert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; bDepartment of Biotechnology, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Safe S, Kasiappan R. Natural Products as Mechanism-based Anticancer Agents: Sp Transcription Factors as Targets. Phytother Res 2016; 30:1723-1732. [DOI: 10.1002/ptr.5669] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology; Texas A&M University; College Station TX 77843-4466 USA
| | - Ravi Kasiappan
- Department of Veterinary Physiology and Pharmacology; Texas A&M University; College Station TX 77843-4466 USA
| |
Collapse
|
13
|
Sharma S, Mishra R, Walker BL, Deshmukh S, Zampino M, Patel J, Anamalai M, Simpson D, Singh IS, Kaushal S, Kaushal S. Celastrol, an oral heat shock activator, ameliorates multiple animal disease models of cell death. Cell Stress Chaperones 2015; 20:185-201. [PMID: 25300203 PMCID: PMC4255245 DOI: 10.1007/s12192-014-0536-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022] Open
Abstract
Protein homeostatic regulators have been shown to ameliorate single, loss-of-function protein diseases but not to treat broader animal disease models that may involve cell death. Diseases often trigger protein homeostatic instability that disrupts the delicate balance of normal cellular viability. Furthermore, protein homeostatic regulators have been delivered invasively and not with simple oral administration. Here, we report the potent homeostatic abilities of celastrol to promote cell survival, decrease inflammation, and maintain cellular homeostasis in three different disease models of apoptosis and inflammation involving hepatocytes and cardiomyocytes. We show that celastrol significantly recovers the left ventricular function and myocardial remodeling following models of acute myocardial infarction and doxorubicin-induced cardiomyopathy by diminishing infarct size, apoptosis, and inflammation. Celastrol prevents acute liver dysfunction and promotes hepatocyte survival after toxic doses of thioacetamide. Finally, we show that heat shock response (HSR) is necessary and sufficient for the recovery abilities of celastrol. Our observations may have dramatic clinical implications to ameliorate entire disease processes even after cellular injury initiation by using an orally delivered HSR activator.
Collapse
Affiliation(s)
- Sudhish Sharma
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Rachana Mishra
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Brandon L. Walker
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Savitha Deshmukh
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Manuela Zampino
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Jay Patel
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Mani Anamalai
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - David Simpson
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Ishwar S. Singh
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Shalesh Kaushal
- />Retina Specialty Institute, 6717 North 11th Place Suite C, Gainesville, FL 32605 USA
| | - Sunjay Kaushal
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| |
Collapse
|
14
|
Zanphorlin LM, Alves FR, Ramos CHI. The effect of celastrol, a triterpene with antitumorigenic activity, on conformational and functional aspects of the human 90kDa heat shock protein Hsp90α, a chaperone implicated in the stabilization of the tumor phenotype. Biochim Biophys Acta Gen Subj 2014; 1840:3145-52. [PMID: 24954307 DOI: 10.1016/j.bbagen.2014.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. RESULTS In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. CONCLUSION Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. GENERAL SIGNIFICANCE To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Collapse
Affiliation(s)
- Letícia M Zanphorlin
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fernanda R Alves
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
15
|
Hu Y, Wang S, Wu X, Zhang J, Chen R, Chen M, Wang Y. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:601-12. [PMID: 23916858 DOI: 10.1016/j.jep.2013.07.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) as the major histological subtype of primary liver cancer remains one of the most common malignancies worldwide. Due to the complicated molecular pathogenesis of HCC, the option for effective systemic treatment is quite limited. There exists a critical need to explore and evaluate possible alternative strategies for effective control of HCC. With a long history of clinical use, Chinese herbal medicine (CHM) is emerging as a noticeable choice for its multi-level, multi-target and coordinated intervention effects against HCC. With the aids of phytochemistry and molecular biological approaches, in the past decades many CHM-derived compounds have been carefully studied through both preclinical and clinical researches and have shown great potential in novel anti-HCC natural product development. The present review aimed at providing the most recent developments on anti-HCC compounds derived from CHM, especially their underlying pharmacological mechanisms. MATERIALS AND METHODS A systematic search of anti-HCC compounds from CHM was carried out focusing on literatures published both in English (PubMed, Scopus, Web of Science and Medline) and in Chinese academic databases (Wanfang and CNKI database). RESULTS In this review, we tried to give a timely and comprehensive update about the anti-HCC effects and targets of several representative CHM-derived compounds, namely curcumin, resveratrol, silibinin, berberine, quercetin, tanshinone II-A and celastrol. Their mechanisms of anti-HCC behaviors, potential side effects or toxicity and future research directions were discussed. CONCLUSION Herbal compounds derived from CHM are of much significance in devising new drugs and providing unique ideas for the war against HCC. We propose that these breakthrough findings may have important implications for targeted-HCC therapy and modernization of CHM.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Kang H, Lee M, Jang SW. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression. Biochem Biophys Res Commun 2013; 437:550-6. [DOI: 10.1016/j.bbrc.2013.06.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 01/10/2023]
|
17
|
Hu Y, Qi Y, Liu H, Fan G, Chai Y. Effects of celastrol on human cervical cancer cells as revealed by ion-trap gas chromatography–mass spectrometry based metabolic profiling. Biochim Biophys Acta Gen Subj 2013; 1830:2779-89. [DOI: 10.1016/j.bbagen.2012.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/04/2012] [Accepted: 10/29/2012] [Indexed: 12/24/2022]
|
18
|
Yu S, Zheng L, Li Y, Li C, Ma C, Li Y, Li X, Hao P. A cross-species analysis method to analyze animal models' similarity to human's disease state. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S18. [PMID: 23282076 PMCID: PMC3524072 DOI: 10.1186/1752-0509-6-s3-s18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. Results We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. Conclusions We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology.
Collapse
Affiliation(s)
- Shuhao Yu
- Key Lab of Systems Biology/Key Laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shanmugam MK, Nguyen AH, Kumar AP, Tan BKH, Sethi G. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer. Cancer Lett 2012; 320:158-70. [PMID: 22406826 DOI: 10.1016/j.canlet.2012.02.037] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 01/08/2023]
Abstract
Over the last two decades, extensive research on plant-based medicinal compounds has revealed exciting and important pharmacological properties and activities of triterpenoids. Fruits, vegetables, cereals, pulses, herbs and medicinal plants are all considered to be biological sources of these triterpenoids, which have attracted great attention especially for their potent anti-inflammatory and anti-cancer activities. Published reports in the past have described the molecular mechanism(s) underlying the various biological activities of triterpenoids which range from inhibition of acute and chronic inflammation, inhibition of tumor cell proliferation, induction of apoptosis, suppression of angiogenesis and metastasis. However systematic analysis of various pharmacological properties of these important classes of compounds has not been done. In this review, we describe in detail the pre-clinical chemopreventive and therapeutic properties of selected triterpenoids that inhibit multiple intracellular signaling molecules and transcription factors involved in the initiation, progression and promotion of various cancers. Molecular targets modulated by these triterpenoids comprise, cytokines, chemokines, reactive oxygen intermediates, oncogenes, inflammatory enzymes such as COX-2, 5-LOX and MMPs, anti-apoptotic proteins, transcription factors such as NF-κB, STAT3, AP-1, CREB, and Nrf2 (nuclear factor erythroid 2-related factor) that regulate tumor cell proliferation, transformation, survival, invasion, angiogenesis, metastasis, chemoresistance and radioresistance. Finally, this review also analyzes the potential role of novel synthetic triterpenoids identified recently which mimic natural triterpenoids in physical and chemical properties and are moving rapidly from bench to bedside research.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|
20
|
Kannaiyan R, Hay HS, Rajendran P, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Chng WJ, Sethi G. Celastrol inhibits proliferation and induces chemosensitization through down-regulation of NF-κB and STAT3 regulated gene products in multiple myeloma cells. Br J Pharmacol 2012; 164:1506-21. [PMID: 21506956 DOI: 10.1111/j.1476-5381.2011.01449.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of pro-inflammatory transcription factors NF-κB and signal transducer and activator of transcription 3 (STAT3) is one of the major contributors to both pathogenesis and chemoresistance in multiple myeloma (MM), which results in high mortality rate. Thus, in the present study, we investigated whether celastrol could suppress the proliferation and induce chemosensitization of MM cells by interfering with NF-κB and STAT3 activation pathways. EXPERIMENTAL APPROACH The effects of celastrol were investigated using both a virtual predictive tumour cell system and different MM cell lines resistant to doxorubicin, melphalan and bortezomib. KEY RESULTS Celastrol inhibited the proliferation of MM cell lines regardless of whether they were sensitive or resistant to bortezomib and other conventional chemotherapeutic drugs. It also synergistically enhanced the apoptotic effects of thalidomide and bortezomib. This correlated with the down-regulation of various proliferative and anti-apoptotic gene products including cyclin D1, Bcl-2, Bcl-xL, survivin, XIAP and Mcl-1. These effects of celastrol were mediated through suppression of constitutively active NF-κB induced by inhibition of IκBα kinase activation; and the phosphorylation of IκBα and of p65. Celastrol also inhibited both the constitutive and IL6-induced activation of STAT3, which induced apoptosis as indicated by an increase in the accumulation of cells in the sub-G1 phase, an increase in the expression of pro-apoptotic proteins and activation of caspase-3. CONCLUSIONS AND IMPLICATIONS Thus, based on our experimental findings, we conclude that celastrol may have great potential as a treatment for MM and other haematological malignancies.
Collapse
Affiliation(s)
- Radhamani Kannaiyan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|