1
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
2
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
3
|
Smith AG, Kliebe VM, Mishra S, McCall RP, Irvine MM, Blagg BSJ, Lei W. Anti-inflammatory activities of novel heat shock protein 90 isoform selective inhibitors in BV-2 microglial cells. Front Mol Biosci 2024; 11:1405339. [PMID: 38756532 PMCID: PMC11096514 DOI: 10.3389/fmolb.2024.1405339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a family of chaperone proteins that consists of four isoforms: Hsp90α, Hsp90β, glucose-regulated protein 94 (Grp94), and tumor necrosis factor type 1 receptor-associated protein (TRAP1). They are involved in modulating the folding, maturation, and activation of their client proteins to regulate numerous intracellular signaling pathways. Previous studies demonstrated that pan-Hsp90 inhibitors reduce inflammatory signaling pathways resulting in a reduction of inflammation and pain but show toxicities in cancer-related clinical trials. Further, the role of Hsp90 isoforms in inflammation remains poorly understood. This study aimed to determine anti-inflammatory activities of Hsp90 isoforms selective inhibitors on the lipopolysaccharide (LPS)-induced inflammation in BV-2 cells, a murine microglial cell line. The production of inflammatory mediators such as nitric oxide (NO), interleukin 1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) was measured. We also investigated the impact of Hsp90 isoform inhibitors on the activation of nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinases (MAPKs). We found that selective inhibitors of Hsp90β reduced the LPS-induced production of NO, IL-1β, and TNF-α via diminishing the activation of NF-κB and Extracellular signal-regulated kinases (ERK) MAPK. The Hsp90α, Grp94, TRAP1 inhibitors had limited effect on the production of inflammatory mediators. These findings suggest that Hsp90β is the key player in LPS-induced neuroinflammation. Thereby providing a more selective drug target for development of medications involved in pain management that can potentially contribute to the reduction of adverse side effects associated with Hsp90 pan inhibitors.
Collapse
Affiliation(s)
- Amanda G. Smith
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, United States
| | | | - Sanket Mishra
- Department of Chemistry and Biochemistry, University of Notre Dame College of Science, Notre Dame, IN, United States
| | - Ryan P. McCall
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, United States
| | - Megan M. Irvine
- Department of Pharmaceutical and Graduate Life Sciences, Manchester University Fort Wayne, Fort Wayne, IN, United States
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame College of Science, Notre Dame, IN, United States
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, United States
- Department of Pharmaceutical and Graduate Life Sciences, Manchester University Fort Wayne, Fort Wayne, IN, United States
| |
Collapse
|
4
|
Adhikari A, Park SW. Reduced GSH Acts as a Metabolic Cue of OPDA Signaling in Coregulating Photosynthesis and Defense Activation under Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3745. [PMID: 37960101 PMCID: PMC10648297 DOI: 10.3390/plants12213745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
12-oxo-phytodienoic acid (OPDA) is a primary precursor of jasmonates, able to trigger autonomous signaling cascades that activate and fine-tune plant defense responses, as well as growth and development. However, its mechanism of actions remains largely elusive. Here we describe a dual-function messenger of OPDA signaling, reduced glutathione (GSH), that cross-regulates photosynthesis machinery and stress protection/adaptation in concert, optimizing plant plasticity and survival potential. Under stress conditions, the rapid induction of OPDA production stimulates GSH accumulation in the chloroplasts, and in turn leads to protein S-glutathionylation in modulating the structure and function of redox-sensitive enzymes such as 2-cysteine (Cys) peroxiredoxin A (2CPA), a recycler in the water-water cycle. GSH exchanges thiol-disulfides with the resolving CysR175, while donating an electron (e-, H+) to the peroxidatic CysP53, of 2CPA, which revives its reductase activity and fosters peroxide detoxification in photosynthesis. The electron flow protects photosynthetic processes (decreased total non-photochemical quenching, NPQ(T)) and maintains its efficiency (increased photosystem II quantum yield, ΦII). On the other hand, GSH also prompts retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as Glutathione S-Transferase 6 (GST6) and GST8, and actuating defense responses against various ecological constraints such as salinity, excess oxidants and light, as well as mechanical wounding. We thus propose that OPDA regulates a unique metabolic switch that interfaces light and defense signaling, where it links cellular and environmental cues to a multitude of plant physiological, e.g., growth, development, recovery, and acclimation, processes.
Collapse
Affiliation(s)
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
5
|
Zhou X, Peng T, Zeng Y, Cai Y, Zuo Q, Zhang L, Dong S, Liu Y. Chromosome-level genome assembly of Niphotrichum japonicum provides new insights into heat stress responses in mosses. FRONTIERS IN PLANT SCIENCE 2023; 14:1271357. [PMID: 37920716 PMCID: PMC10619864 DOI: 10.3389/fpls.2023.1271357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
With a diversity of approximately 22,000 species, bryophytes (hornworts, liverworts, and mosses) represent a major and diverse lineage of land plants. Bryophytes can thrive in many extreme environments as they can endure the stresses of drought, heat, and cold. The moss Niphotrichum japonicum (Grimmiaceae, Grimmiales) can subsist for extended periods under heat and drought conditions, providing a good candidate for studying the genetic basis underlying such high resilience. Here, we de novo assembled the genome of N. japonicum using Nanopore long reads combined with Hi-C scaffolding technology to anchor the 191.61 Mb assembly into 14 pseudochromosomes. The genome structure of N. japonicum's autosomes is mostly conserved and highly syntenic, in contrast to the sparse and disordered genes present in its sex chromosome. Comparative genomic analysis revealed the presence of 10,019 genes exclusively in N. japonicum. These genes may contribute to the species-specific resilience, as demonstrated by the gene ontology (GO) enrichment. Transcriptome analysis showed that 37.44% (including 3,107 unique genes) of the total annotated genes (26,898) exhibited differential expression as a result of heat-induced stress, and the mechanisms that respond to heat stress are generally conserved across plants. These include the upregulation of HSPs, LEAs, and reactive oxygen species (ROS) scavenging genes, and the downregulation of PPR genes. N. japonicum also appears to have distinctive thermal mechanisms, including species-specific expansion and upregulation of the Self-incomp_S1 gene family, functional divergence of duplicated genes, structural clusters of upregulated genes, and expression piggybacking of hub genes. Overall, our study highlights both shared and species-specific heat tolerance strategies in N. japonicum, providing valuable insights into the heat tolerance mechanism and the evolution of resilient plants.
Collapse
Affiliation(s)
- Xuping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Peng
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuying Zeng
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zuo
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| |
Collapse
|
6
|
Guihur A, Bourgine B, Rebeaud ME, Goloubinoff P. Design of an Arabidopsis thaliana reporter line to detect heat-sensing and signaling mutants. PLANT METHODS 2023; 19:56. [PMID: 37291595 DOI: 10.1186/s13007-023-01033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Global warming is a major challenge for plant survival and growth. Understanding the molecular mechanisms by which higher plants sense and adapt to upsurges in the ambient temperature is essential for developing strategies to enhance plant tolerance to heat stress. Here, we designed a heat-responsive Arabidopsis thaliana reporter line that allows an in-depth investigation of the mechanisms underlying the accumulation of protective heat-shock proteins (HSPs) in response to high temperature. METHODS A transgenic Arabidopsis thaliana reporter line named "Heat-Inducible Bioluminescence And Toxicity" (HIBAT) was designed to express from a conditional heat-inducible promoter, a fusion gene encoding for nanoluciferase and D-amino acid oxidase, whose expression is toxic in the presence of D-valine. HIBAT seedlings were exposed to different heat treatments in presence or absence of D-valine and analyzed for survival rate, bioluminescence and HSP gene expression. RESULTS Whereas at 22 °C, HIBAT seedlings grew unaffected by D-valine, and all survived iterative heat treatments without D-valine, 98% died following heat treatments on D-valine. The HSP17.3B promoter was highly specific to heat as it remained unresponsive to various plant hormones, Flagellin, H2O2, osmotic stress and high salt. RNAseq analysis of heat-treated HIBAT seedlings showed a strong correlation with expression profiles of two wild type lines, confirming that HIBAT does not significantly differ from its Col-0 parent. Using HIBAT, a forward genetic screen revealed candidate loss-of-function mutants, apparently defective either at accumulating HSPs at high temperature or at repressing HSP accumulation at non-heat-shock temperatures. CONCLUSION HIBAT is a valuable candidate tool to identify Arabidopsis mutants defective in the response to high temperature stress. It opens new avenues for future research on the regulation of HSP expression and for understanding the mechanisms of plant acquired thermotolerance.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Baptiste Bourgine
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mathieu E Rebeaud
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Cai G, Xu Y, Zhang S, Chen T, Liu G, Li Z, Zhu Y, Wang G. A tomato chloroplast-targeted DnaJ protein, SlDnaJ20 maintains the stability of photosystem I/II under chilling stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2139116. [PMID: 36408837 PMCID: PMC9683050 DOI: 10.1080/15592324.2022.2139116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
DnaJ proteins are key molecular chaperones that act as a part of the stress response to stabilize plant proteins, thereby maintaining protein homeostasis under stressful conditions. Herein we used transgenic plants to explore the role of the tomato (Solanum lycopersicum) SlDnaJ20 chloroplast DnaJ protein in to the resistance of these proteins to cold. When chilled, transgenic plants exhibited superior cold resistance, with reduced growth inhibition and cellular damage and increased fresh mass and chlorophyll content relative to control. These transgenic plants further exhibited increased Fv/Fm, P700 oxidation, φRo, and δRo relative to control plants under chilling conditions. Under these same cold conditions, these transgenic plants also exhibited higher levels of core proteins in the photosystem I (PSI) and II (PSII) complexes (PsaA and PsaB; D1 and D2) relative to control wild-type plants. Together these results suggested that the overexpression of SlDnaJ20 is sufficient to maintain PSI and PSII complex stability and to alleviate associated photoinhibition of these complexes, thereby increasing transgenic plant resistance to cold stress.
Collapse
Affiliation(s)
- Guohua Cai
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Yujie Xu
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Shuxia Zhang
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Tingting Chen
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Gan Liu
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Zhengyue Li
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Youshuang Zhu
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| | - Guodong Wang
- School of Biological Sciences, Jining Medical University, Ri’zhao, 276800, P.R. China
| |
Collapse
|
8
|
Inflammatory response to retrotransposons drives tumor drug resistance that can be prevented by reverse transcriptase inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2213146119. [PMID: 36449545 PMCID: PMC9894111 DOI: 10.1073/pnas.2213146119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Activation of endogenous retrotransposons frequently occurs in cancer cells and contributes to tumor genomic instability. To test whether inhibition of retrotranspositions has an anticancer effect, we used treatment with the nucleoside reverse transcriptase inhibitor (NRTI) stavudine (STV) in mouse cancer models, MMTV-HER2/Neu and Th-MYCN, that spontaneously develop breast cancer and neuroblastoma, respectively. In both cases, STV in drinking water did not affect tumor incidence nor demonstrate direct antitumor effects. However, STV dramatically extended progression-free survival in both models following an initial complete response to chemotherapy. To approach the mechanism underlying this phenomenon, we analyzed the effect of NRTI on the selection of treatment-resistant variants in tumor cells in culture. Cultivation of mouse breast carcinoma 4T1 in the presence of STV dramatically reduced the frequency of cells capable of surviving treatment with anticancer drugs. Global transcriptome analysis demonstrated that the acquisition of drug resistance by 4T1 cells was accompanied by an increase in the constitutive activity of interferon type I and NF-κB pathways and an elevated expression of LINE-1 elements, which are known to induce inflammatory responses via their products of reverse transcription. Treatment with NRTI reduced NF-κB activity and reverted drug resistance. Furthermore, the inducible expression of LINE-1 stimulated inflammatory response and increased the frequency of drug-resistant variants in a tumor cell population. These results indicate a mechanism by which retrotransposon desilencing can stimulate tumor cell survival during treatment and suggest reverse transcriptase inhibition as a potential therapeutic approach for targeting the development of drug-resistant cancers.
Collapse
|
9
|
Zhao L, Jia T, Jiao Q, Hu X. Research Progress in J-Proteins in the Chloroplast. Genes (Basel) 2022; 13:1469. [PMID: 36011380 PMCID: PMC9407819 DOI: 10.3390/genes13081469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The J-proteins, also called DNAJ-proteins or heat shock protein 40 (HSP40), are one of the famous molecular chaperones. J-proteins, HSP70s and other chaperones work together as constitute ubiquitous types of molecular chaperone complex, which function in a wide variety of physiological processes. J-proteins are widely distributed in major cellular compartments. In the chloroplast of higher plants, around 18 J-proteins and multiple J-like proteins are present; however, the functions of most of them remain unclear. During the last few years, important progress has been made in the research on their roles in plants. There is increasing evidence that the chloroplast J-proteins play essential roles in chloroplast development, photosynthesis, seed germination and stress response. Here, we summarize recent research advances on the roles of J-proteins in the chloroplast, and discuss the open questions that remain in this field.
Collapse
Affiliation(s)
- Lu Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Tamadaddi C, Verma AK, Zambare V, Vairagkar A, Diwan D, Sahi C. J-like protein family of Arabidopsis thaliana: the enigmatic cousins of J-domain proteins. PLANT CELL REPORTS 2022; 41:1343-1355. [PMID: 35290497 DOI: 10.1007/s00299-022-02857-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
J-like proteins (JLPs) are emerging as ancillaries to the cellular chaperone network. They modulate functions of Hsp70:J-domain protein (JDP) systems in novel ways thereby having key roles in diverse plant processes. J-domain proteins (JDPs) form an obligate co-chaperone partnership with Hsp70s with their highly conserved J-domain to steer protein quality control processes in the cell. The HPD motif between helix II and helix III of the J-domain is crucial for JDP's interaction with Hsp70s. According to the most recent classification, J-like proteins (JLPs) form an extended class of the JDP family possessing a degenerate J-domain with the HPD motif non-conservatively replaced by other amino acid residues and hence are not able to interact with Hsp70s. Considering this most updated and acceptable JLP classification, we identified 21 JLPs in Arabidopsis thaliana that share a structurally conserved J-like domain (JLD), but lack the HPD motif. Analysis of publicly available gene expression data as well as real-time quantitative PCR performed for a few selected JLPs implicated some of these proteins in growth, development and stress response. Here, we summarize the current state of knowledge on plant JLPs and their involvement in vital plant cellular/metabolic processes, including chloroplast division, mitochondrial protein import and flowering. Finally, we propose possible modes of action for these highly elusive proteins and other DnaJ-related proteins (DNAJRs) in regulating the Hsp70 chaperone network.
Collapse
Affiliation(s)
- Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Vyankatesh Zambare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, India
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Avanti Vairagkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Danish Diwan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, University of Alabama, Birmingham, AL, USA
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
- IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal, 462066, MP, India.
| |
Collapse
|
11
|
Zhou Y, Wang Y, Xu F, Song C, Yang X, Zhang Z, Yi M, Ma N, Zhou X, He J. Small HSPs play an important role in crosstalk between HSF-HSP and ROS pathways in heat stress response through transcriptomic analysis in lilies (Lilium longiflorum). BMC PLANT BIOLOGY 2022; 22:202. [PMID: 35439940 PMCID: PMC9017035 DOI: 10.1186/s12870-022-03587-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND High temperature seriously limits the annual production of fresh cut lilies, which is one of the four major cut flowers in the global cut flower market. There were few transcriptomes focused on the gene expression of lilies under heat stress. In order to reveal the potential heat response patterns in bulbous plants and provide important genes for further genetic engineering techniques to improve thermotolerance of lily, RNA sequencing of lilies under heat treatments were conducted. RESULTS In this study, seedlings of Lilium longiflorum 'White Heaven' were heat-treated at 37 °C for different lengths of time (0 h, 0.5 h, 1 h, 3 h, 6 h, and 12 h with a 12 h-light/12 h-dark cycle). The leaves of these lily seedlings were immediately collected after heat treatments and quickly put into liquid nitrogen for RNA sequencing. 109,364,486-171,487,430 clean reads and 55,044 unigenes including 21,608 differentially expressed genes (DEGs) (fold change ≥2) were obtained after heat treatment. The number of DEGs increased sharply during the heat treatments of 0.5 h-1 h and 1 h-3 h compared to that of other periods. Genes of the heat stress transcription factor (HSF) family and the small heat shock proteins (small HSPs, also known as HSP20) family responded to heat stress early and quickly. Compared to that of the calcium signal and hormone pathways, DEGs of the HSF-HSP pathway and reactive oxygen species (ROS) pathway were significantly and highly induced. Moreover, they had the similar expression pattern in response to heat stress. Small HSPs family genes were the major components in the 50 most highly induced genes at each heat stress treatment and involved in ROS pathway in the rapid response to heat stress. Furthermore, the barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of LlHsfA2 caused a significantly reduced thermotolerance phenotype in Lilium longiflorum 'White Heaven', meanwhile decreasing the expression of small HSPs family genes and increasing the ROS scavenging enzyme ascorbate peroxidase (APX) genes, indicating the potential interplay between these two pathways. CONCLUSIONS Based on our transcriptomic analysis, we provide a new finding that small HSPs play important roles in crosstalk between HSF-HSP and ROS pathways in heat stress response of lily, which also supply the groundwork for understanding the mechanism of heat stress in bulbous plants.
Collapse
Affiliation(s)
- Yunzhuan Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yue Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Fuxiang Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Cunxu Song
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xi Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
12
|
The Role of Hyperthermia in the Treatment of Peritoneal Surface Malignancies. Curr Oncol Rep 2022; 24:875-887. [PMID: 35325402 DOI: 10.1007/s11912-022-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Hyperthermia is used to treat peritoneal surface malignancies (PSM), particularly during hyperthermic intraperitoneal chemotherapy (HIPEC). This manuscript provides a focused update of hyperthermia in the treatment of PSM. RECENT FINDINGS The heterogeneous response to hyperthermia in PSM can be explained by tumor and treatment conditions. PSM tumors may resist hyperthermia via metabolic and immunologic adaptation. The thermodynamics of HIPEC are complex and require computational fluid dynamics (CFD). The clinical evidence supporting the benefit of hyperthermia is largely observational. Continued research will allow clinicians to characterize and predict the individual response of PSM to hyperthermia. The application of hyperthermia in current HIPEC protocols is mostly empirical. Thus, modeling heat transfer with CFD is a necessary task if we are to achieve consistent and reproducible hyperthermia. Although observational evidence suggests a survival benefit of hyperthermia, no clinical trial has tested the individual role of hyperthermia in PSM.
Collapse
|
13
|
Quantitative Comparison of HSF1 Activators. Mol Biotechnol 2022; 64:873-887. [PMID: 35218516 PMCID: PMC9259536 DOI: 10.1007/s12033-022-00467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The heat shock response (HSR) pathway is a highly conserved rescue mechanism, which protects the cells from harmful insults disturbing the cellular protein homeostasis via expression of chaperones. Furthermore, it was demonstrated to play crucial roles in various diseases like neurodegeneration and cancer. For neurodegenerative diseases, an overexpression of chaperones is a potential therapeutic approach to clear the cells from non-functional protein aggregates. Therefore, activators of the HSR pathway and its master regulator HSF1 are under close observation. There are numerous HSR activators published in the literature using different model systems, experimental designs, and readout assays. The aim of this work was to provide a quantitative comparison of a broad range of published activators using a newly developed HSF responsive dual-luciferase cell line. Contrary to natural target genes, which are regulated by multiple input pathways, the artificial reporter exclusively reacts to HSF activity. In addition, the results were compared to endogenous heat shock protein expression. As a result, great differences in the intensity of pathway activation were observed. In addition, a parallel viability assessment revealed high variability in the specificity of the drugs. Furthermore, the differences seen compared to published data indicate that some activators exhibit tissue-specific differences leading to interesting assumptions about the regulation of HSF1.
Collapse
|
14
|
The function of the co-chaperone ERdj4 in diverse (patho-)physiological conditions. Cell Mol Life Sci 2021; 79:9. [PMID: 34950970 PMCID: PMC8702508 DOI: 10.1007/s00018-021-04082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces a well-orchestrated cellular response to reduce the protein burden within the ER. This unfolded protein response (UPR) is controlled primarily by three transmembrane proteins, IRE1α, ATF6, and PERK, the activity of which is controlled by BiP, the ER-resident Hsp70 protein. Binding of BiP to co-chaperones via their highly conserved J-domains stimulates the intrinsic ATPase activity of BiP, thereby providing the energy necessary for (re-)folding of proteins, or for targeting of misfolded proteins to the degradation pathway, processes specified and controlled by the respective co-chaperone. In this review, our aim is to elucidate the function of the co-chaperone ERDJ4, also known as MDG1, MDJ7, or DNAJB9. Knockout and knockin experiments clearly point to the central role of ERDJ4 in controlling lipogenesis and protein synthesis by promoting degradation of SREBP1c and the assembly of the protein complex mTORC2. Accumulating data reveal that ERDJ4 controls epithelial-to-mesenchymal transition, a central process during embryogenesis, in wound healing, and tumor development. Overexpression of ERdj4 has been shown to improve engraftment of transplanted human stem cells, possibly due to its ability to promote cellular survival in stressed cells. High ERDJ4-plasma levels are specific for fibrillary glomerulonephritis and serve as a diagnostic marker. As outlined in this review, the functions of ERDJ4 are manifold, depending on the cellular (patho-) physiological state, the cellular protein repertoire, and the subcellular localization of ERDJ4.
Collapse
|
15
|
Ginsberg SD, Joshi S, Sharma S, Guzman G, Wang T, Arancio O, Chiosis G. The penalty of stress - Epichaperomes negatively reshaping the brain in neurodegenerative disorders. J Neurochem 2021; 159:958-979. [PMID: 34657288 PMCID: PMC8688321 DOI: 10.1111/jnc.15525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Adaptation to acute and chronic stress and/or persistent stressors is a subject of wide interest in central nervous system disorders. In this context, stress is an effector of change in organismal homeostasis and the response is generated when the brain perceives a potential threat. Herein, we discuss a nuanced and granular view whereby a wide variety of genotoxic and environmental stressors, including aging, genetic risk factors, environmental exposures, and age- and lifestyle-related changes, act as direct insults to cellular, as opposed to organismal, homeostasis. These two concepts of how stressors impact the central nervous system are not mutually exclusive. We discuss how maladaptive stressor-induced changes in protein connectivity through epichaperomes, disease-associated pathologic scaffolds composed of tightly bound chaperones, co-chaperones, and other factors, impact intracellular protein functionality altering phenotypes, that in turn disrupt and remodel brain networks ranging from intercellular to brain connectome levels. We provide an evidence-based view on how these maladaptive changes ranging from stressor to phenotype provide unique precision medicine opportunities for diagnostic and therapeutic development, especially in the context of neurodegenerative disorders including Alzheimer's disease where treatment options are currently limited.
Collapse
Affiliation(s)
- Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
- Departments of Psychiatry, Neuroscience & Physiology, the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York City, New York, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Gianny Guzman
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York City, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, New York, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| |
Collapse
|
16
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
17
|
Chen S, Qiu G. Overexpression of seagrass DnaJ gene ZjDjB1 enhances the thermotolerance of transgenic arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2043-2055. [PMID: 34629777 PMCID: PMC8484434 DOI: 10.1007/s12298-021-01063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
Seagrass meadows are one of the most important marine resources that grow along the coast. They provide habitat and a food source for animals. They also protect the coast, fix sediment and purify seawater. In the current period of global climate change, anomalies in coastal water temperatures are increasing. A sudden increase in water temperature owing to a heat wave can have a profound effect on seagrass. Zostera japonica is a type of intertidal seagrasses, which is exposed to the air at low tide. High temperatures in the summer often lead to a decline in seagrass meadows. DnaJ proteins, also known as J proteins, are a family of conserved chaperone proteins. They are designated as J proteins because they contain a highly conserved J domain. They function as chaperones of heat shock proteins in organisms. In this study, the role of DnaJ protein (ZjDjB1) of Z. japonica under heat stress was studied. ZjDjB1 was localized to the cytoplasm and nucleus. The overexpression of ZjDjB1 in Arabidopsis thaliana results in an increase in thermotolerance and a decrease in the accumulation of reactive oxygen species and also a reduction in membrane damage. ZjDjB1 may achieve this goal by maintaining a low activity of proteolytic enzymes.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536007 Guangxi China
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536007 Guangxi China
| |
Collapse
|
18
|
Kerschbaum S, Wegrostek C, Riegel E, Czerny T. Senescence in a cell culture model for burn wounds. Exp Mol Pathol 2021; 122:104674. [PMID: 34437877 DOI: 10.1016/j.yexmp.2021.104674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/25/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
Thermal injuries cause severe damage on the cellular and tissue level and are considered especially challenging in the clinical routine. Complex interactions of different cell types and pathways dictate the formation of burn wounds. Thus, complications like burn wound progression, where so far viable tissue becomes necrotic and the size and depth of the wound increases, are difficult to explain, mainly due to the lack of simple model systems. We tested the behavior of human fibroblasts after heat treatment. A prominent response of the cells is to activate the heat shock response (HSR), which is one of the primary emergency mechanisms of the cell to proteotoxic stress factors such as heat. However, after a powerful but not lethal heat shock we observed a delayed activation of the HSR. Extending this model system, we further investigated these static cells and observed the emergence of senescent cells. In particular, the cells became β-galactosidase positive, increased p16 levels and developed a senescence-associated secretory phenotype (SASP). The secretion of cytokines like IL-6 is reminiscent of burn wounds and generates a bystander effect in so far non-senescent cells. In agreement with burn wounds, a wave of cytokine secretion enhanced by invading immune cells could explain complications like burn wound progression. A simple cell culture model can thus be applied for the analysis of highly complex conditions in human tissues.
Collapse
Affiliation(s)
- Sarah Kerschbaum
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Christina Wegrostek
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria.
| |
Collapse
|
19
|
Bourgine B, Guihur A. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:710801. [PMID: 34434209 PMCID: PMC8381196 DOI: 10.3389/fpls.2021.710801] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 05/08/2023]
Abstract
Heat stress events are major factors limiting crop productivity. During summer days, land plants must anticipate in a timely manner upcoming mild and severe temperature. They respond by accumulating protective heat-shock proteins (HSPs), conferring acquired thermotolerance. All organisms synthetize HSPs; many of which are members of the conserved chaperones families. This review describes recent advances in plant temperature sensing, signaling, and response. We highlight the pathway from heat perception by the plasma membrane through calcium channels, such as cyclic nucleotide-gated channels, to the activation of the heat-shock transcription factors (HSFs). An unclear cellular signal activates HSFs, which act as essential regulators. In particular, the HSFA subfamily can bind heat shock elements in HSP promoters and could mediate the dissociation of bound histones, leading to HSPs transcription. Although plants can modulate their transcriptome, proteome, and metabolome to protect the cellular machinery, HSP chaperones prevent, use, and revert the formation of misfolded proteins, thereby avoiding heat-induced cell death. Remarkably, the HSP20 family is mostly tightly repressed at low temperature, suggesting that a costly mechanism can become detrimental under unnecessary conditions. Here, the role of HSP20s in response to HS and their possible deleterious expression at non-HS temperatures is discussed.
Collapse
Affiliation(s)
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Llamas E, Torres‐Montilla S, Lee HJ, Barja MV, Schlimgen E, Dunken N, Wagle P, Werr W, Zuccaro A, Rodríguez‐Concepción M, Vilchez D. The intrinsic chaperone network of Arabidopsis stem cells confers protection against proteotoxic stress. Aging Cell 2021; 20:e13446. [PMID: 34327811 PMCID: PMC8373342 DOI: 10.1111/acel.13446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023] Open
Abstract
The biological purpose of plant stem cells is to maintain themselves while providing new pools of differentiated cells that form organs and rejuvenate or replace damaged tissues. Protein homeostasis or proteostasis is required for cell function and viability. However, the link between proteostasis and plant stem cell identity remains unknown. In contrast to their differentiated counterparts, we find that root stem cells can prevent the accumulation of aggregated proteins even under proteotoxic stress conditions such as heat stress or proteasome inhibition. Notably, root stem cells exhibit enhanced expression of distinct chaperones that maintain proteome integrity. Particularly, intrinsic high levels of the T-complex protein-1 ring complex/chaperonin containing TCP1 (TRiC/CCT) complex determine stem cell maintenance and their remarkable ability to suppress protein aggregation. Overexpression of CCT8, a key activator of TRiC/CCT assembly, is sufficient to ameliorate protein aggregation in differentiated cells and confer resistance to proteotoxic stress in plants. Taken together, our results indicate that enhanced proteostasis mechanisms in stem cells could be an important requirement for plants to persist under extreme environmental conditions and reach extreme long ages. Thus, proteostasis of stem cells can provide insights to design and breed plants tolerant to environmental challenges caused by the climate change.
Collapse
Affiliation(s)
- Ernesto Llamas
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Salvador Torres‐Montilla
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB Bellaterra Barcelona Spain
| | - Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - María Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB Bellaterra Barcelona Spain
| | - Elena Schlimgen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Nick Dunken
- Cluster of Excellence on Plant Sciences (CEPLAS) Institute for Plant Sciences University of Cologne Cologne Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Wolfgang Werr
- Developmental Biology Biocenter University of Cologne Cologne Germany
| | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences (CEPLAS) Institute for Plant Sciences University of Cologne Cologne Germany
| | - Manuel Rodríguez‐Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB Bellaterra Barcelona Spain
- Institute for Plant Molecular and Cell Biology (IBMCP) CSIC‐UPV Valencia Spain
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne Cologne Germany
- Faculty of Medicine University Hospital Cologne Cologne Germany
| |
Collapse
|
21
|
Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance. PLANT, CELL & ENVIRONMENT 2021; 44:2117-2133. [PMID: 33314263 PMCID: PMC8359368 DOI: 10.1111/pce.13975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and AquacultureUniversity of ZadarZadarCroatia
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
22
|
Marchetti F, Cainzos M, Cascallares M, Distéfano AM, Setzes N, López GA, Zabaleta E, Pagnussat GC. Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response. PLANT, CELL & ENVIRONMENT 2021; 44:2134-2149. [PMID: 33058168 DOI: 10.1111/pce.13914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
23
|
Ichino L, Boone BA, Strauskulage L, Harris CJ, Kaur G, Gladstone MA, Tan M, Feng S, Jami-Alahmadi Y, Duttke SH, Wohlschlegel JA, Cheng X, Redding S, Jacobsen SE. MBD5 and MBD6 couple DNA methylation to gene silencing through the J-domain protein SILENZIO. Science 2021; 372:eabg6130. [PMID: 34083448 PMCID: PMC8639832 DOI: 10.1126/science.abg6130] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023]
Abstract
DNA methylation is associated with transcriptional repression of eukaryotic genes and transposons, but the downstream mechanism of gene silencing is largely unknown. Here we describe two Arabidopsis methyl-CpG binding domain proteins, MBD5 and MBD6, that are recruited to chromatin by recognition of CG methylation, and redundantly repress a subset of genes and transposons without affecting DNA methylation levels. These methyl-readers recruit a J-domain protein, SILENZIO, that acts as a transcriptional repressor in loss-of-function and gain-of-function experiments. J-domain proteins often serve as co-chaperones with HSP70s. Indeed, we found that SILENZIO's conserved J-domain motif was required for its interaction with HSP70s and for its silencing function. These results uncover an unprecedented role of a molecular chaperone J-domain protein in gene silencing downstream of DNA methylation.
Collapse
Affiliation(s)
- Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon A Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Luke Strauskulage
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew A Gladstone
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Maverick Tan
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sascha H Duttke
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Steven E Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
25
|
Pei X, Zhang Y, Zhu L, Zhao D, Lu Y, Zheng J. Physiological and transcriptomic analyses characterized high temperature stress response mechanisms in Sorbus pohuashanensis. Sci Rep 2021; 11:10117. [PMID: 33980903 PMCID: PMC8115228 DOI: 10.1038/s41598-021-89418-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
Sorbus pohuashanensis (Hance) Hedl. is a Chinese native alpine tree species, but the problem of introducing S. pohuashanensis to low altitude areas has not been solved. In this study, we aimed to explore the molecular regulatory network of S. pohuashanensis in response to high-temperature stress using RNA-Sequencing technology and physiological and biochemical determination. Based on transcriptomic data, we obtained 1221 genes (752 up-regulated and 469 down-regulated) that were differentially expressed during 8 h 43℃ treatment and candidate genes were related to calcium signaling pathway, plant hormone signal transduction, heat shock factors, chaperones, ubiquitin mediated proteolysis, cell wall modification, ROS scavenging enzymes, detoxification and energy metabolism. The analysis of high temperature response at the physiological level and biochemical level were performed. The chlorophyll fluorescence parameters of leaf cells decreased, the content of osmotic regulators increased, and the activity of ROS scavenging enzymes decreased. The molecular regulatory network of S. pohuashanensis in response to high-temperature stress was preliminarily revealed in this study, which provides fundamental information improving introducing methods and discovering heat-tolerant genes involved in high-temperature stress in this species and provides a reference for other plants of the genus Sorbus.
Collapse
Affiliation(s)
- Xin Pei
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Lingyi Zhu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Dongxue Zhao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Shandong Province, Jinan, 250102, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
26
|
Fauvet B, Finka A, Castanié-Cornet MP, Cirinesi AM, Genevaux P, Quadroni M, Goloubinoff P. Bacterial Hsp90 Facilitates the Degradation of Aggregation-Prone Hsp70-Hsp40 Substrates. Front Mol Biosci 2021; 8:653073. [PMID: 33937334 PMCID: PMC8082187 DOI: 10.3389/fmolb.2021.653073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 01/27/2023] Open
Abstract
In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.
Collapse
Affiliation(s)
- Bruno Fauvet
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Shemesh N, Jubran J, Dror S, Simonovsky E, Basha O, Argov C, Hekselman I, Abu-Qarn M, Vinogradov E, Mauer O, Tiago T, Carra S, Ben-Zvi A, Yeger-Lotem E. The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nat Commun 2021; 12:2180. [PMID: 33846299 PMCID: PMC8042005 DOI: 10.1038/s41467-021-22369-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms.
Collapse
Affiliation(s)
- Netta Shemesh
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shiran Dror
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Simonovsky
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chanan Argov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mehtap Abu-Qarn
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Vinogradov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omry Mauer
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
28
|
Jia T, Li F, Liu S, Dou J, Huang T. DnaJ Proteins Regulate WUS Expression in Shoot Apical Meristem of Arabidopsis. PLANTS 2021; 10:plants10010136. [PMID: 33445404 PMCID: PMC7827474 DOI: 10.3390/plants10010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
WUSCHEL (WUS) protein regulates stem cell function in shoot apical meristem of Arabidopsis. The expression of WUS gene is strictly regulated by developmental cues and environmental factors. As DnaJ domain-containing proteins, SDJ1 and SDJ3 have been proven to play an important role in transcriptional activation of promoter methylated genes. Here, we showed that three DnaJ domain-containing proteins including SDJ1 and SDJ3 can bind WUS protein as a complex, which further maintain the expression of WUS gene by binding to WUS promoter. We propose a model how DnaJ domain-containing proteins are involved in the self-regulation of WUS gene in stem cells maintenance of Arabidopsis.
Collapse
|
29
|
Chaudhury S, Keegan BM, Blagg BSJ. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med Res Rev 2021; 41:202-222. [PMID: 32844464 PMCID: PMC8485878 DOI: 10.1002/med.21729] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
Heat shock proteins (Hsps) are molecular chaperones that also play important roles in the activation of the heat shock response (HSR). The HSR is an evolutionary conserved and protective mechanism that is used to counter abnormal physiological conditions, stressors, and disease states, such as those exemplified in cancer and/or neurodegeneration. In normal cells, heat shock factor-1 (HSF-1), the transcription factor that regulates the HSR, remains in a dormant multiprotein complex that is formed upon association with chaperones (Hsp90, Hsp70, etc.), co-chaperones, and client proteins. However, under cellular stress, HSF-1 dissociates from Hsp90 and induces the transcriptional upregulation of Hsp70 to afford protection against the encountered cellular stress. As a consequence of both peripheral and central neuropathies, cellular stress occurs and results in the accumulation of unfolded and/or misfolded proteins, which can be counterbalanced by activation of the HSR. Since Hsp90 is the primary regulator of the HSR, modulation of Hsp90 by small molecules represents an attractive therapeutic approach against both peripheral and central neuropathies.
Collapse
Affiliation(s)
- Subhabrata Chaudhury
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bradley M Keegan
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
30
|
Fauvet B, Finka A, Castanié-Cornet MP, Cirinesi AM, Genevaux P, Quadroni M, Goloubinoff P. Bacterial Hsp90 Facilitates the Degradation of Aggregation-Prone Hsp70-Hsp40 Substrates. Front Mol Biosci 2021. [PMID: 33937334 DOI: 10.1101/451989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.
Collapse
Affiliation(s)
- Bruno Fauvet
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Liu W, Park SW. 12- oxo-Phytodienoic Acid: A Fuse and/or Switch of Plant Growth and Defense Responses? FRONTIERS IN PLANT SCIENCE 2021; 12:724079. [PMID: 34490022 PMCID: PMC8418078 DOI: 10.3389/fpls.2021.724079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 05/13/2023]
Abstract
12-oxo-Phytodienoic acid (OPDA) is a primary precursor of (-)-jasmonic acid (JA), able to trigger autonomous signaling pathways that regulate a unique subset of jasmonate-responsive genes, activating and fine-tuning defense responses, as well as growth processes in plants. Recently, a number of studies have illuminated the physiol-molecular activities of OPDA signaling in plants, which interconnect the regulatory loop of photosynthesis, cellular redox homeostasis, and transcriptional regulatory networks, together shedding new light on (i) the underlying modes of cellular interfaces between growth and defense responses (e.g., fitness trade-offs or balances) and (ii) vital information in genetic engineering or molecular breeding approaches to upgrade own survival capacities of plants. However, our current knowledge regarding its mode of actions is still far from complete. This review will briefly revisit recent progresses on the roles and mechanisms of OPDA and information gaps within, which help in understanding the phenotypic and environmental plasticity of plants.
Collapse
|
32
|
Liu W, Barbosa Dos Santos I, Moye A, Park SW. CYP20-3 deglutathionylates 2-CysPRX A and suppresses peroxide detoxification during heat stress. Life Sci Alliance 2020; 3:e202000775. [PMID: 32732254 PMCID: PMC7409537 DOI: 10.26508/lsa.202000775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
In plants, growth-defense trade-offs occur because of limited resources, which demand prioritization towards either of them depending on various external and internal factors. However, very little is known about molecular mechanisms underlying their occurrence. Here, we describe that cyclophilin 20-3 (CYP20-3), a 12-oxo-phytodienoic acid (OPDA)-binding protein, crisscrosses stress responses with light-dependent electron reactions, which fine-tunes activities of key enzymes in plastid sulfur assimilations and photosynthesis. Under stressed states, OPDA, accumulates in the chloroplasts, binds and stimulates CYP20-3 to convey electrons towards serine acetyltransferase 1 (SAT1) and 2-Cys peroxiredoxin A (2CPA). The latter is a thiol-based peroxidase, protecting and optimizing photosynthesis by reducing its toxic byproducts (e.g., H2O2). Reduction of 2CPA then inactivates its peroxidase activity, suppressing the peroxide detoxification machinery, whereas the activation of SAT1 promotes thiol synthesis and builds up reduction capacity, which in turn triggers the retrograde regulation of defense gene expressions against abiotic stress. Thus, we conclude that CYP20-3 is a unique metabolic hub conveying resource allocations between plant growth and defense responses (trade-offs), ultimately balancing optimal growth phonotype.
Collapse
Affiliation(s)
- Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - Anna Moye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
33
|
Wu X, Wang J, Wu X, Hong Y, Li QQ. Heat Shock Responsive Gene Expression Modulated by mRNA Poly(A) Tail Length. FRONTIERS IN PLANT SCIENCE 2020; 11:1255. [PMID: 32922425 PMCID: PMC7456977 DOI: 10.3389/fpls.2020.01255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 05/31/2023]
Abstract
Poly(A) tail length (PAL) has been implicated in the regulation of mRNA translation activities. However, the extent of such regulation at the transcriptome level is less understood in plants. Herein, we report the development and optimization of a large-scale sequencing technique called the Assay for PAL-sequencing (APAL-seq). To explore the role of PAL on post-transcriptional modification and translation, we performed PAL profiling of Arabidopsis transcriptome in response to heat shock. Transcripts of 2,477 genes were found to have variable PAL upon heat treatments. Further study of the transcripts of 14 potential heat-responsive genes identified two distinct groups of genes. In one group, PAL was heat stress-independent, and in the other, PAL was heat stress-sensitive. Meanwhile, the protein expression of HSP70 and HSP17.6C was determined to test the impact of PAL on translational activity. In the absence of heat stress, neither gene demonstrated protein expression; however, under gradual or abrupt heat stress, both transcripts showed enhanced protein expression with elongated PAL. Interestingly, HSP17.6C protein levels were positively correlated with the severity of heat treatment and peaked when treated with abrupt heat. Our results suggest that plant genes have a high variability of PALs and that PAL contributes to swift posttranslational stress responses.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Jie Wang
- Department of Biology, Miami University, Oxford, OH, United States
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, China
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Department of Biology, Miami University, Oxford, OH, United States
| |
Collapse
|
34
|
Ciou HS, Tsai YL, Chiu CC. Arabidopsis chloroplast J protein DJC75/CRRJ mediates nitrate-promoted seed germination in the dark. ANNALS OF BOTANY 2020; 125:1091-1099. [PMID: 32157271 PMCID: PMC7262469 DOI: 10.1093/aob/mcaa040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Nitrate can stimulate seed germination of many plant species in the absence of light; however, the molecular mechanism of nitrate-promoted seed germination in the dark remains largely unclear and no component of this pathway has been identified yet. Here, we show that a plastid J-domain protein, DJC75/CRRJ, in arabidopsis (Arabidopsis thaliana) is important for nitrate-promoted seed germination in the dark. METHODS The expression of DJC75 during imbibition in the dark was investigated. The seed germination rate of mutants defective in DJC75 was determined in the presence of nitrate when light cues for seed germination were eliminated by the treatment of imbibed seeds with a pulse of far-red light to inactivate phytochrome B (phyB), or by assaying germination in the dark with seeds harbouring the phyB mutation. The germination rates of mutants defective in CRRL, a J-like protein related to DJC75, and in two chloroplast Hsp70s were also measured in the presence of nitrate in darkness. KEY RESULTS DJC75 was expressed during seed imbibition in the absence of light. Mutants defective in DJC75 showed seed germination defects in the presence of nitrate when light cues for seed germination were eliminated. Mutants defective in CRRL and in two chloroplast Hsp70s also exhibited similar seed germination defects. Upregulation of gibberellin biosynthetic gene GA3ox1 expression by nitrate in imbibed phyB mutant seeds was diminished when DJC75 was knocked out. CONCLUSIONS Our data suggest that plastid J-domain protein DJC75 regulates nitrate-promoted seed germination in the dark by upregulation of expression of the gibberellin biosynthetic gene GA3ox1 through an unknown mechanism and that DJC75 may work in concert with chloroplast Hsp70s to regulate nitrate-promoted seed germination. DJC75 is the first pathway component identified for nitrate-promoted seed germination in the dark.
Collapse
Affiliation(s)
- Huai-Syuan Ciou
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lun Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Elevated CO2 and temperature influence key proteins and metabolites associated with photosynthesis, antioxidant and carbon metabolism in Picrorhiza kurroa. J Proteomics 2020; 219:103755. [DOI: 10.1016/j.jprot.2020.103755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
|
36
|
Wang HQ, Liu P, Zhang JW, Zhao B, Ren BZ. Endogenous Hormones Inhibit Differentiation of Young Ears in Maize ( Zea mays L.) Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:533046. [PMID: 33193473 PMCID: PMC7642522 DOI: 10.3389/fpls.2020.533046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/06/2020] [Indexed: 05/10/2023]
Abstract
Global warming frequently leads to extreme temperatures, which pose a serious threat to the growth, development, and yield formation of crops such as maize. This study aimed to deeply explore the molecular mechanisms of young ear development under heat stress. We selected the heat-tolerant maize variety Zhengdan 958 (T) and heat-sensitive maize variety Xianyu 335 (S), and subjected them to heat stress in the V9 (9th leaf), V12 (12th leaf), and VT (tasseling) growth stages. We combined analysis of the maize phenotype with omics technology and physiological indicators to compare the differences in young ear morphology, total number of florets, floret fertilization rate, grain abortion rate, number of grains, and main metabolic pathways between plants subjected to heat stress and those left to develop normally. The results showed that after heat stress, the length and diameter of young ears, total number of florets, floret fertilization rate, and number of grains all decreased significantly, whereas the length of the undeveloped part at the top of the ear and grain abortion rate increased significantly. In addition, the differentially expressed genes (DEGs) in young ears were significantly enriched in the hormone signaling pathways. The endogenous hormone content in young ears exhibited different changes: zeatin (ZT) and zeatin riboside (ZR) decreased significantly, but gibberellin acid3 (GA3), gibberellin acid4 (GA4), and abscisic acid (ABA) increased significantly, in ears subjected to heat stress. In the heat-tolerant maize variety, the salicylic acid (SA), and jasmonic acid (JA) content in the vegetative growth stage also increased in ears subjected to heat stress, whereas the opposite effect was observed for the heat-sensitive variety. The changes in endogenous hormone content of young ears that were subjected to heat stress significantly affected ear development, resulting in a reduction in the number of differentiated florets, fertilized florets and grains, which ultimately reduced the maize yield.
Collapse
|
37
|
Yan P, Wang T, Guzman ML, Peter RI, Chiosis G. Chaperome Networks - Redundancy and Implications for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:87-99. [PMID: 32297213 PMCID: PMC7279512 DOI: 10.1007/978-3-030-40204-4_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Radu I Peter
- Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
38
|
Verma AK, Tamadaddi C, Tak Y, Lal SS, Cole SJ, Hines JK, Sahi C. The expanding world of plant J-domain proteins. CRITICAL REVIEWS IN PLANT SCIENCES 2019; 38:382-400. [PMID: 33223602 PMCID: PMC7678915 DOI: 10.1080/07352689.2019.1693716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants maintain cellular proteostasis during different phases of growth and development despite a barrage of biotic and abiotic stressors in an ever-changing environment. This requires a collaborative effort of a cadre of molecular chaperones. Hsp70s and their obligate co-chaperones, J-domain proteins (JDPs), are arguably the most ubiquitous and formidable components of the cellular chaperone network, facilitating numerous and diverse cellular processes and allowing survival under a plethora of stressful conditions. JDPs are also among the most versatile chaperones. Compared to Hsp70s, the number of JDP-encoding genes has proliferated, suggesting the emergence of highly complex Hsp70-JDP networks, particularly in plants. Recent studies indicate that besides the increase in the number of JDP encoding genes; regulatory differences, neo- and sub-functionalization, and inter- and intra-class combinatorial interactions, is rapidly expanding the repertoire of Hsp70-JDP systems. This results in highly robust and functionally diverse chaperone networks in plants. Here, we review the current status of plant JDP research and discuss how the paradigm shift in the field can be exploited toward a better understanding of JDP function and evolution.
Collapse
Affiliation(s)
- Amit K. Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Silviya S. Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sierra J. Cole
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
39
|
Du X, Zhu X, Yang Y, Wang Y, Arens P, Liu H. De novo transcriptome analysis of Viola ×wittrockiana exposed to high temperature stress. PLoS One 2019; 14:e0222344. [PMID: 31550256 PMCID: PMC6759194 DOI: 10.1371/journal.pone.0222344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
Around the world, pansies are one of the most popular garden flowers, but they are generally sensitive to high temperatures, and this limits the practicality of planting them during the warmest days of the year. However, a few pansy germplasms with improved heat tolerance have been discovered or bred, but the mechanisms of their heat resistance are not understood. In this study, we investigated the transcript profiles of a heat-tolerant pansy inbred line, DFM16, in response to high temperatures using RNAseq. Approximately 55.48 Gb of nucleotide data were obtained and assembled into 167,576 unigenes with an average length of 959 bp, of which, 5,708 genes were found to be differentially expressed after heat treatments. Real-time qPCR was performed to validate the expression profiles of the selected genes. Nine metabolic pathways were found to be significantly enriched, in the analysis of the differentially expressed genes. Several potentially interesting genes that encoded putative transcription regulators or key components involving heat shock protein (HSP), heat shock transcription factors (HSF), and antioxidants biosynthesis, were identified. These genes were highlighted to indicate their significance in response to heat stress and will be used as candidate genes to improve pansy heat-tolerance in the future.
Collapse
Affiliation(s)
- Xiaohua Du
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Xiaopei Zhu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Yaping Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Yanli Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Paul Arens
- Wageningen University & Research, Wageningen, The Netherlands
| | - Huichao Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
- * E-mail:
| |
Collapse
|
40
|
He L, Hiller S. Frustrated Interfaces Facilitate Dynamic Interactions between Native Client Proteins and Holdase Chaperones. Chembiochem 2019; 20:2803-2806. [PMID: 31063619 DOI: 10.1002/cbic.201900215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Lichun He
- Wuhan Institute of Physics and MathematicsChinese Academy of Sciences West No. 30 Xiao Hong Shan Wuhan 430071 P.R. China
| | - Sebastian Hiller
- BiozentrumUniversity of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
41
|
Kampinga HH, Andreasson C, Barducci A, Cheetham ME, Cyr D, Emanuelsson C, Genevaux P, Gestwicki JE, Goloubinoff P, Huerta-Cepas J, Kirstein J, Liberek K, Mayer MP, Nagata K, Nillegoda NB, Pulido P, Ramos C, De Los Rios P, Rospert S, Rosenzweig R, Sahi C, Taipale M, Tomiczek B, Ushioda R, Young JC, Zimmermann R, Zylicz A, Zylicz M, Craig EA, Marszalek J. Function, evolution, and structure of J-domain proteins. Cell Stress Chaperones 2019; 24:7-15. [PMID: 30478692 PMCID: PMC6363617 DOI: 10.1007/s12192-018-0948-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
Hsp70 chaperone systems are very versatile machines present in nearly all living organisms and in nearly all intracellular compartments. They function in many fundamental processes through their facilitation of protein (re)folding, trafficking, remodeling, disaggregation, and degradation. Hsp70 machines are regulated by co-chaperones. J-domain containing proteins (JDPs) are the largest family of Hsp70 co-chaperones and play a determining role functionally specifying and directing Hsp70 functions. Many features of JDPs are not understood; however, a number of JDP experts gathered at a recent CSSI-sponsored workshop in Gdansk (Poland) to discuss various aspects of J-domain protein function, evolution, and structure. In this report, we present the main findings and the consensus reached to help direct future developments in the field of Hsp70 research.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Claes Andreasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Alessandro Barducci
- Inserm, U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Universite de Montpellier, Montpellier, France
| | | | - Douglas Cyr
- University of North Carolina, Chapel Hill, NC, USA
| | - Cecilia Emanuelsson
- Center for Molecular Protein Sciences, CMPS, Dept. Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), CNRS-Université de Toulouse, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Janine Kirstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Australian Regenerative Medicine Institute (ARMI), Monash University, 15 Innovative Walk, Wellington Road, Clayton, VIC, 3800, Australia
| | - Pablo Pulido
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Planegg-Martinsried, 82152, Munich, Germany
| | - Carlos Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Paolo De Los Rios
- EPFL SB IPHYS LBS BSP 723 (Cubotron UNIL), Rte de la Sorge, CH-1015, Lausanne, Switzerland
| | - Sabine Rospert
- Institut fur Biochemie und Molekularbiologie, Universitat Freiburg, Freiburg, Germany
| | | | - Chandan Sahi
- Indian Institute of Science Education and Research Bhopal, Bhauri Bhopal, Madhya Pradesh, 462 066, India
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bratłomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Jason C Young
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| |
Collapse
|
42
|
Steurer C, Eder N, Kerschbaum S, Wegrostek C, Gabriel S, Pardo N, Ortner V, Czerny T, Riegel E. HSF1 mediated stress response of heavy metals. PLoS One 2018; 13:e0209077. [PMID: 30566508 PMCID: PMC6300263 DOI: 10.1371/journal.pone.0209077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023] Open
Abstract
The heat shock response (HSR) pathway is a highly conserved cellular stress response and mediated by its master regulator HSF1. Activation of the pathway results in the expression of chaperone proteins (heat shock proteins; HSP) to maintain protein homeostasis. One of the genes strongest upregulated upon stress is HSPA1A (HSP72). Heavy metals are highly toxic to living organisms and known as environmental contaminants, due to industrialisation. Furthermore, many of them are well-described inducers of the HSR pathway. Here we compare the effect of different heavy metals, concerning their potential to activate HSF1 with a sensitive artificial heat shock reporter cell line, consisting of heat shock elements (HSE). In general the responses of the artificial promoter to heavy metal stress were in good agreement with those of well-established HSF1 target genes, like HSPA1A. Nevertheless, differences were observable when effects of heat and heavy metal stress were compared. Whereas heat stress preferentially activated the HSE promoter, heavy metals more strongly induced the HSPA1A promoter. We therefore analysed the HSPA1A promoter in more detail, by isolating and mutating the HSEs. The results indicate that the importance of the individual binding sites for HSF1 is determined by their sequence similarity to the consensus sequence and their position relative to the transcription start site, but they were not differentially affected by heat or heavy metal stress. In contrast, we found that other parts of the HSPA1A promoter have different impact on the response under different stress conditions. In this work we provide deeper insights into the regulation of HSP72 expression as a well as a method to quantitatively and sensitively evaluate different stressor on their potential to activate HSF1.
Collapse
Affiliation(s)
- Christoph Steurer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Noreen Eder
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Sarah Kerschbaum
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Christina Wegrostek
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Stefan Gabriel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Natalia Pardo
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Viktoria Ortner
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| |
Collapse
|
43
|
Wang T, Rodina A, Dunphy MP, Corben A, Modi S, Guzman ML, Gewirth DT, Chiosis G. Chaperome heterogeneity and its implications for cancer study and treatment. J Biol Chem 2018; 294:2162-2179. [PMID: 30409908 DOI: 10.1074/jbc.rev118.002811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The chaperome is the collection of proteins in the cell that carry out molecular chaperoning functions. Changes in the interaction strength between chaperome proteins lead to an assembly that is functionally and structurally distinct from each constituent member. In this review, we discuss the epichaperome, the cellular network that forms when the chaperome components of distinct chaperome machineries come together as stable, functionally integrated, multimeric complexes. In tumors, maintenance of the epichaperome network is vital for tumor survival, rendering them vulnerable to therapeutic interventions that target critical epichaperome network components. We discuss how the epichaperome empowers an approach for precision medicine cancer trials where a new target, biomarker, and relevant drug candidates can be correlated and integrated. We introduce chemical biology methods to investigate the heterogeneity of the chaperome in a given cellular context. Lastly, we discuss how ligand-protein binding kinetics are more appropriate than equilibrium binding parameters to characterize and unravel chaperome targeting in cancer and to gauge the selectivity of ligands for specific tumor-associated chaperome pools.
Collapse
Affiliation(s)
- Tai Wang
- From the Chemical Biology Program and
| | | | | | - Adriana Corben
- the Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Shanu Modi
- Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, and
| | - Daniel T Gewirth
- the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203
| | - Gabriela Chiosis
- From the Chemical Biology Program and .,Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
44
|
Abstract
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thaís L S Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Keller M, Hu Y, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S. Alternative splicing in tomato pollen in response to heat stress. DNA Res 2018; 24:205-217. [PMID: 28025318 PMCID: PMC5397606 DOI: 10.1093/dnares/dsw051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing (AS) is a key control mechanism influencing signal response cascades in different developmental stages and under stress conditions. In this study, we examined heat stress (HS)-induced AS in the heat sensitive pollen tissue of two tomato cultivars. To obtain the entire spectrum of HS-related AS, samples taken directly after HS and after recovery were combined and analysed by RNA-seq. For nearly 9,200 genes per cultivar, we observed at least one AS event under HS. In comparison to control, for one cultivar we observed 76% more genes with intron retention (IR) or exon skipping (ES) under HS. Furthermore, 2,343 genes had at least one transcript with IR or ES accumulated under HS in both cultivars. These genes are involved in biological processes like protein folding, gene expression and heat response. Transcriptome assembly of these genes revealed that most of the alternative spliced transcripts possess truncated coding sequences resulting in partial or total loss of functional domains. Moreover, 141 HS specific and 22 HS repressed transcripts were identified. Further on, we propose AS as layer of stress response regulating constitutively expressed genes under HS by isoform abundance.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants
| | - Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants.,Cluster of Excellence Frankfurt.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438 Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants.,Cluster of Excellence Frankfurt
| |
Collapse
|
46
|
Zhang B, Qiu HL, Qu DH, Ruan Y, Chen DH. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea. Genome 2018; 61:405-415. [PMID: 29620479 DOI: 10.1139/gen-2017-0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.
Collapse
Affiliation(s)
- Bin Zhang
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Han-Lin Qiu
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Dong-Hai Qu
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
47
|
Katano K, Kataoka R, Fujii M, Suzuki N. Differences between seedlings and flowers in anti-ROS based heat responses of Arabidopsis plants deficient in cyclic nucleotide gated channel 2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:288-296. [PMID: 29275210 DOI: 10.1016/j.plaphy.2017.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide gated channel 2 (CNGC2) in Arabidopsis has been identified as one of the putative heat sensors which might play a key role in the regulation of heat acclimation. However, it is still not understood how CNGC2 controls heat stress responses during different growth stages. This study aimed to characterize the differences in heat stress responses between seedlings and flowers of Arabidopsis plants deficient in CNGC2. Seedlings of Arabidopsis plants deficient in CNGC2 showed enhanced tolerance to heat stress accompanied by higher accumulation of heat response proteins such as multiprotein bridging factor 1c (MBF1c), ascorbate peroxidases (APXs) and heat shock proteins (HSPs). On the other hand, seed production of these knockout lines was more sensitive to heat stress. In contrast to seedlings, accumulation of MBF1c and APX proteins in flowers of these knockout lines was lower than or almost comparable with that in WT plants under heat stress. In addition, plants deficient in CNGC2 showed dramatically higher accumulation of H2O2 in flowers, but, only slightly higher accumulation in seedlings compared with WT plants. These results suggest that the stage-dependent differences in heat stress response of Arabidopsis regulated by CNGC2 might rely on regulatory mechanisms of APX1-and MBF1c-dependent pathways and H2O2 homeostasis.
Collapse
Affiliation(s)
- Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan
| | - Ryo Kataoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan
| | - Munetoshi Fujii
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan.
| |
Collapse
|
48
|
Kasza Á, Hunya Á, Frank Z, Fülöp F, Török Z, Balogh G, Sántha M, Bálind Á, Bernáth S, Blundell KLIM, Prodromou C, Horváth I, Zeiler HJ, Hooper PL, Vigh L, Penke B. Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:557-71. [PMID: 27163800 PMCID: PMC4969717 DOI: 10.3233/jad-150860] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer’s disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis. Our research goal is to identify potent Hsp co-inducers that enhance protein homeostasis for the treatment of AD, especially 1,4-dihydropyridine derivatives optimized for their ability to modulate cellular stress responses. Based on favorable toxicological data and Hsp co-inducing activity, LA1011 was selected for the in vivo analysis of its neuroprotective effect in the APPxPS1 mouse model of AD. Here, we report that 6 months of LA1011 administration effectively improved the spatial learning and memory functions in wild type mice and eliminated neurodegeneration in double mutant mice. Furthermore, Hsp co-inducer therapy preserves the number of neurons, increases dendritic spine density, and reduces tau pathology and amyloid plaque formation in transgenic AD mice. In conclusion, the Hsp co-inducer LA1011 is neuroprotective and therefore is a potential pharmaceutical candidate for the therapy of neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ákos Hunya
- LipidArt Research and Development Ltd., Szeged, Hungary
| | - Zsuzsa Frank
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ferenc Fülöp
- Department of Pharmaceutical Chemistry, University of Szeged, Hungary
| | - Zsolt Török
- LipidArt Research and Development Ltd., Szeged, Hungary.,Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Gábor Balogh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Miklós Sántha
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Árpád Bálind
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | | | | | - Ibolya Horváth
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | - Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO, USA
| | - László Vigh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Hungary
| |
Collapse
|
49
|
Pulido P, Leister D. Novel DNAJ-related proteins in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:480-490. [PMID: 29271039 DOI: 10.1111/nph.14827] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classical DNAJ proteins are co-chaperones that together with HSP70s control protein homeostasis. All three classical types of DNAJ proteins (DNAJA, DNAJB and DNAJC types) possess the J-domain for interaction with HSP70. DNAJA proteins contain, in addition, both the zinc-finger motif and the C-terminal domain which are involved in substrate binding, while DNAJB retains only the latter and DNAJC comprises only the J-domain. There is increasing evidence that some of the activities of DNAJ proteins do not require the J-domain, highlighting the functional significance of the other two domains. Indeed, the so-called DNAJ-like proteins with a degenerate J-domain have been previously coined as DNAJD proteins, and also proteins containing only a DNAJ-like zinc-finger motif appear to be involved in protein homeostasis. Therefore, we propose to extend the classification of DNAJ-related proteins into three different groups. The DNAJD type comprises proteins with a J-like domain only, and has 15 members in Arabidopsis thaliana, whereas proteins of the DNAJE (33 Arabidopsis members) and DNAJF (three Arabidopsis members) types contain a DNAJA-like zinc-finger domain and DNAJA/B-like C-terminal domain, respectively. Here, we provide an overview of the entire repertoire of these proteins in A. thaliana with respect to their physiological function and possible evolutionary origin.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
50
|
Tamás MJ, Fauvet B, Christen P, Goloubinoff P. Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Curr Genet 2017; 64:177-181. [PMID: 28936749 PMCID: PMC5778182 DOI: 10.1007/s00294-017-0748-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/29/2023]
Abstract
Cadmium is a highly poisonous metal and a human carcinogen, but the molecular mechanisms underlying its cellular toxicity are not fully understood. Recent findings in yeast cells indicate that cadmium exerts its deleterious effects by inducing widespread misfolding and aggregation of nascent proteins. Here, we discuss this novel mode of toxic heavy metal action and propose a mechanism by which molecular chaperones may reduce the damaging effects of heavy metal ions on protein structures.
Collapse
Affiliation(s)
- Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, 1015, Lausanne, Switzerland
| | - Philipp Christen
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, 1015, Lausanne, Switzerland
| |
Collapse
|