1
|
La Scala S, Naselli F, Quatrini P, Gallo G, Caradonna F. Drought-Adapted Mediterranean Diet Plants: A Source of Bioactive Molecules Able to Give Nutrigenomic Effects per sè or to Obtain Functional Foods. Int J Mol Sci 2024; 25:2235. [PMID: 38396910 PMCID: PMC10888686 DOI: 10.3390/ijms25042235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The Mediterranean diet features plant-based foods renowned for their health benefits derived from bioactive compounds. This review aims to provide an overview of the bioactive molecules present in some representative Mediterranean diet plants, examining their human nutrigenomic effects and health benefits as well as the environmental advantages and sustainability derived from their cultivation. Additionally, it explores the facilitation of producing fortified foods aided by soil and plant microbiota properties. Well-studied examples, such as extra virgin olive oil and citrus fruits, have demonstrated significant health advantages, including anti-cancer, anti-inflammatory, and neuroprotective effects. Other less renowned plants are presented in the scientific literature with their beneficial traits on human health highlighted. Prickly pear's indicaxanthin exhibits antioxidant properties and potential anticancer traits, while capers kaempferol and quercetin support cardiovascular health and prevent cancer. Oregano and thyme, containing terpenoids like carvacrol and γ-terpinene, exhibit antimicrobial effects. Besides their nutrigenomic effects, these plants thrive in arid environments, offering benefits associated with their cultivation. Their microbiota, particularly Plant Growth Promoting (PGP) microorganisms, enhance plant growth and stress tolerance, offering biotechnological opportunities for sustainable agriculture. In conclusion, leveraging plant microbiota could revolutionize agricultural practices and increase sustainability as climate change threatens biodiversity. These edible plant species may have crucial importance, not only as healthy products but also for increasing the sustainability of agricultural systems.
Collapse
Affiliation(s)
- Silvia La Scala
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Flores Naselli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Paola Quatrini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Fabio Caradonna
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
2
|
Lorgen-Ritchie M, Uren Webster T, McMurtrie J, Bass D, Tyler CR, Rowley A, Martin SAM. Microbiomes in the context of developing sustainable intensified aquaculture. Front Microbiol 2023; 14:1200997. [PMID: 37426003 PMCID: PMC10327644 DOI: 10.3389/fmicb.2023.1200997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
With an ever-growing human population, the need for sustainable production of nutritional food sources has never been greater. Aquaculture is a key industry engaged in active development to increase production in line with this need while remaining sustainable in terms of environmental impact and promoting good welfare and health in farmed species. Microbiomes fundamentally underpin animal health, being a key part of their digestive, metabolic and defense systems, in the latter case protecting against opportunistic pathogens in the environment. The potential to manipulate the microbiome to the advantage of enhancing health, welfare and production is an intriguing prospect that has gained considerable traction in recent years. In this review we first set out what is known about the role of the microbiome in aquaculture production systems across the phylogenetic spectrum of cultured animals, from invertebrates to finfish. With a view to reducing environmental footprint and tightening biological and physical control, investment in "closed" aquaculture systems is on the rise, but little is known about how the microbial systems of these closed systems affect the health of cultured organisms. Through comparisons of the microbiomes and their dynamics across phylogenetically distinct animals and different aquaculture systems, we focus on microbial communities in terms of their functionality in order to identify what features within these microbiomes need to be harnessed for optimizing healthy intensified production in support of a sustainable future for aquaculture.
Collapse
Affiliation(s)
| | - Tamsyn Uren Webster
- Centre for Sustainable Aquatic Research, Swansea University, Swansea, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David Bass
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| | - Charles R. Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
3
|
Kumar V, Roy S, Behera BK, Das BK. Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life (Basel) 2022; 12:1777. [PMID: 36362932 PMCID: PMC9699388 DOI: 10.3390/life12111777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of ubiquitously expressed stress proteins and extrinsic chaperones that are required for viability and cell growth in all living organisms. These proteins are highly conserved and produced in all cellular organisms when exposed to stress. Hsps play a significant role in protein synthesis and homeostasis, as well as in the maintenance of overall health in crustaceans against various internal and external environmental stresses. Recent reports have suggested that enhancing in vivo Hsp levels via non-lethal heat shock, exogenous Hsps, or plant-based compounds, could be a promising strategy used to develop protective immunity in crustaceans against both abiotic and biotic stresses. Hence, Hsps as the agent of being an immune booster and increasing disease resistance will present a significant advancement in reducing stressful conditions in the aquaculture system.
Collapse
Affiliation(s)
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| |
Collapse
|
4
|
Yang Z, Zhou J, Zhu L, Chen A, Cheng Y. Label-free quantification proteomics analysis reveals acute hyper-osmotic responsive proteins in the gills of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101009. [PMID: 35777161 DOI: 10.1016/j.cbd.2022.101009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chinese mitten crab (Eriocheir sinensis) is a typical euryhaline crustacean to study osmotic regulation of crustaceans. Osmotic-regulation of Chinese mitten crab is a complex process. In order to study the osmotic-regulation related proteins of Chinese mitten crab, we domesticated Chinese mitten crab for 144 h with 25 salinity sea water (SW) and 0 salinity fresh water (FW) respectively, and then analyzed the proteome of its posterior gills. A total of 1453 proteins were identified by label free proteomics. Under the threshold of 2 fold change (FC), 242 differentially expressed proteins (DEPs) were screened, including 122 up-regulated DEPs and 120 down-regulated DEPs. GO database and KEGG database were used to annotate and enrich DEPs. It was found that DEPs were significantly enriched in energy metabolism, signal transduction, ion transport, actin cytoskeleton, immunity, lipid metabolism, amino acid metabolism and other biological functions. After 144 h of high salinity stress, the energy metabolism of Chinese mitten crab decreased and the expression of actin and cytoskeleton protein increased. In order to cope with oxidative damage caused by high salinity, Chinese mitten crab improved its immunity and antioxidant capacity.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Junyu Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Rawat P, Kaur VI, Tyagi A, Norouzitallab P, Baruah K. Determining the efficacy of ginger Zingiber officinale as a potential nutraceutical agent for boosting growth performance and health status of Labeo rohita reared in a semi-intensive culture system. Front Physiol 2022; 13:960897. [PMID: 36045753 PMCID: PMC9423674 DOI: 10.3389/fphys.2022.960897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
A 120-day feeding trial was conducted in a pilot field setting to study the nutraceutical properties of ginger powder (GP), focusing on the growth performance and health status of Indian major carp L. rohita reared under a semi-intensive culture system. L. rohita fingerlings (average weight: 20.5 g) were divided into five groups and fed a diet with no GP supplementation (control), or a diet supplemented with GP at 5 g (GP5), 10 g (GP10), 15 g (GP15), and 20 g (GP20) per kg of feed. The study was carried out in outdoor tanks (20 m2) following a complete randomized design with three replicates for each experimental group. Dietary supplementation of GP at 15 g·kg−1 (GP15) of feed caused a significant increase in the growth performances of the fish. Results also showed that feeding of GP15 diet led to a significant improvement in the health status of fish as indicated by a marked change in the tested haematological indices (i.e., higher RBC, WBC, Hb, and Ht values), oxidative status (increased SOD and decreased LPO levels), biochemical parameters (increased HDL, decreased cholesterol, and triglycerides levels), and activities of the liver enzymes (decreased AST and ALT). Overall results suggested that dietary supplementation of GP could positively influence the growth and health status of L. rohita fingerlings, and hence could be an important natural nutraceutical for sustainable farming of carp.
Collapse
Affiliation(s)
- Priya Rawat
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, PB, India
| | - Vaneet Inder Kaur
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, PB, India
- *Correspondence: Kartik Baruah, ; Vaneet Inder Kaur,
| | - Anuj Tyagi
- Department of Aquatic Environment, College of Fisheries, GADVASU, Ludhiana, PB, India
| | - Parisa Norouzitallab
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Kartik Baruah, ; Vaneet Inder Kaur,
| |
Collapse
|
6
|
Mahfuj S, Ppsk P, Bossier P, Norouzitallab P, Baruah K. Phloroglucinol shows prophylactic and metaphylactic effects against pathogenic stressors in Macrobrachium larvae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104302. [PMID: 34774877 DOI: 10.1016/j.dci.2021.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Vibriosis caused by Vibrio campbellii and related species is amongst the major hindrance to the sustainable expansion of giant freshwater prawn Macrobrachium rosenbergii larviculture. Induction of heat shock protein Hsp70 is a natural response of stressed organisms that protect against many insults including vibriosis in aquaculture animals. Therefore, there is a great interest in searching for natural compounds that could induce Hsp70 in animals in a non-invasive manner. Previously, in a series of in vivo studies, we have shown that the phenolic compound phloroglucinol could induce Hsp70 in aquaculture organisms Macrobrachium and Artemia. This led to a significant increase in the resistance of the animals towards subsequent challenges with V. parahemolyticus. As V. parahaemolyticus belongs to the Harveyi clade similar to V. campbellii, our above findings triggered the hypothesis that phloroglucinol is a potential anti-microbial agent that could protect the freshwater prawn against V. campbellii infection. The results presented here provide evidence that the Hsp70-inducing compound phloroglucinol could induce both metaphylactic and prophylactic effects against infection stress mediated by V. campbellii. The wide-spectrum property of the compound to both prevent the occurrence and reduce the spread of V. campbellii infection in prawn larvae without affecting the larval growth makes it a potential natural agent for health management and V. campbellii-mediated disease control in freshwater prawn larvae. Overall results add new information about the functional properties of phloroglucinol and advance our knowledge of this compound as a potential antimicrobial agent for the sustainable production of giant freshwater prawns.
Collapse
Affiliation(s)
- Sarower Mahfuj
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Patabandi Ppsk
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Parisa Norouzitallab
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
7
|
Zheng X, Han B, Kumar V, Feyaerts AF, Van Dijck P, Bossier P. Essential Oils Improve the Survival of Gnotobiotic Brine Shrimp ( Artemia franciscana) Challenged With Vibrio campbellii. Front Immunol 2021; 12:693932. [PMID: 34745085 PMCID: PMC8564362 DOI: 10.3389/fimmu.2021.693932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
The halophilic aquatic bacterium Vibrio campbellii is an important aquatic pathogen, capable of causing vibriosis in shrimp and fish resulting in significant economic losses. In a previous work, essential oils (EOs) extracts from Melaleuca alternifolia, Litsea citrata, and Eucalyptus citriodora were found to inhibit the growth of V. campbellii in vitro. This study aimed to determine in vivo EOs’ potential protective effect towards gnotobiotic brine shrimp Artemia franciscana, challenged with V. campbellii. The study showed that brine shrimp larvae supplemented with EOs of M. alternifolia (0.0008%) and L. citrata (0.002%) displayed significantly increased survival against V. campbellii. The results indicated that supplementation of these EOs increased the expression of immune-related genes (either in the presence or absence of the pathogen), probably contributing to enhanced protection. Furthermore, in vitro studies indicated that some EOs modulated the expression of virulence factors including swimming motility, biofilm formation, and gelatinase and lipase activity, while flow cytometry data and regrowth assay indicated that these EOs do not exhibit antimicrobial activity as V. campbellii grew at the tested concentrations [M. alternifolia (0.0008%) and L. citrata (0.002%)]. Our findings suggest that EOs extracted from M. alternifolia and L. citrata, can modulate virulence factor production and immunological responses and might hence become part of an intervention strategy to control vibriosis in a fish or shrimp aquaculture setting, a hypothesis that needs to be validated in the future.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Biao Han
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Aquatic Environmental Biotechnology & Nanotechnology (AEBN), ICAR-Central Inland Fisheries Research Institute, Kolkata, India
| | - Adam F Feyaerts
- Vlaam Instituut voor Biotechnologie, Katholieke Univeriteit (VIB-KU) Leuven Center for Microbiology, Leuven, Belgium.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Univeriteit (KU) Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Vlaam Instituut voor Biotechnologie, Katholieke Univeriteit (VIB-KU) Leuven Center for Microbiology, Leuven, Belgium.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Univeriteit (KU) Leuven, Leuven, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Kumar V, Roy S, Behera BK, Bossier P, Das BK. Acute Hepatopancreatic Necrosis Disease (AHPND): Virulence, Pathogenesis and Mitigation Strategies in Shrimp Aquaculture. Toxins (Basel) 2021; 13:524. [PMID: 34437395 PMCID: PMC8402356 DOI: 10.3390/toxins13080524] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Shrimp, as a high-protein animal food commodity, are one of the fastest growing food producing sectors in the world. It has emerged as a highly traded seafood product, currently exceeding 8 MT of high value. However, disease outbreaks, which are considered as the primary cause of production loss in shrimp farming, have moved to the forefront in recent years and brought socio-economic and environmental unsustainability to the shrimp aquaculture industry. Acute hepatopancreatic necrosis disease (AHPND), caused by Vibrio spp., is a relatively new farmed penaeid shrimp bacterial disease. The shrimp production in AHPND affected regions has dropped to ~60%, and the disease has caused a global loss of USD 43 billion to the shrimp farming industry. The conventional approaches, such as antibiotics and disinfectants, often applied for the mitigation or cure of AHPND, have had limited success. Additionally, their usage has been associated with alteration of host gut microbiota and immunity and development of antibiotic resistance in bacterial pathogens. For example, the Mexico AHPND-causing V. parahaemolyticus strain (13-306D/4 and 13-511/A1) were reported to carry tetB gene coding for tetracycline resistance gene, and V. campbellii from China was found to carry multiple antibiotic resistance genes. As a consequence, there is an urgent need to thoroughly understand the virulence mechanism of AHPND-causing Vibrio spp. and develop novel management strategies to control AHPND in shrimp aquaculture, that will be crucially important to ensure food security in the future and offer economic stability to farmers. In this review, the most important findings of AHPND are highlighted, discussed and put in perspective, and some directions for future research are presented.
Collapse
Affiliation(s)
- Vikash Kumar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Suvra Roy
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
| |
Collapse
|
9
|
Tran PTN, Kumar V, Bossier P. Do acute hepatopancreatic necrosis disease-causing PirAB VP toxins aggravate vibriosis? Emerg Microbes Infect 2021; 9:1919-1932. [PMID: 32799621 PMCID: PMC8284973 DOI: 10.1080/22221751.2020.1811778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gram-negative marine bacterium Vibrio parahaemolyticus is an important aquatic pathogen and has been demonstrated to be the causative agent of acute hepatopancreatic necrotic disease (AHPND) in shrimp aquaculture. The AHPND-causing V. parahaemolyticus strains contain a pVA1 plasmid encoding the binary PirAVP and PirBVP toxins, are the primary virulence factor that mediates AHPND and mortality in shrimp. Since PirABVP toxins are secreted extracellularly, one can hypothesize that PirABVP toxins would aggravate vibriosis in the aquatic environment. To address this, in vivo and in vitro experiments were conducted. Germ-free Artemia franciscana were co-challenged with PirABVP toxins and 10 Vibrio spp. The in vivo results showed that PirABVP toxin interact synergistically with MM30 (a quorum sensing AI-2 deficient mutant) and V. alginolyticus AQ13-91, aggravating vibriosis. However, co-challenge by PirABVP toxins and V. campbellii LMG21363, V. parahaemolyticus CAIM170, V. proteolyticus LMG10942, and V. anguillarum NB10 worked antagonistically, increasing the survival of Artemia larvae. The in vitro results showed that the addition of PirABVP toxins significantly modulated the production of the virulence factors of studied Vibrio spp. Yet these in vitro results did not help to explain the in vivo results. Hence it appears that PirABVP toxins can aggravate vibriosis. However, the dynamics of interaction is strain dependent.
Collapse
Affiliation(s)
- Phuong Thi Ngoc Tran
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| | - Vikash Kumar
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.,ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| |
Collapse
|
10
|
Junprung W, Supungul P, Tassanakajon A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103875. [PMID: 32987013 DOI: 10.1016/j.dci.2020.103875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with critical roles in the maintenance of cellular proteostasis. HSPs, which regulate protein folding and refolding, assembly, translocation, and degradation, are induced in response to physiological and environmental stressors. In recent years, HSPs have been recognized for their potential role in immunity; in particular, these proteins elicit a variety of immune responses to infection and modulate inflammation. This review focuses on delineating the structural and functional roles of crustacean HSPs in the innate immune response. Members of crustacean HSPs include high molecular weight HSPs (HSP90, HSP70, and HSP60) and small molecular weight HSPs (HSP21 and HSP10). The sequences and structures of these HSPs are highly conserved across various crustacean species, indicating strong evolutionary links among this group of organisms. The expression of HSP-encoding genes across different crustacean species is significantly upregulated upon exposure to a wide range of pathogens, emphasizing the important role of HSPs in the immune response. Functional studies of crustacean HSPs, particularly HSP70s, have demonstrated their involvement in the activation of several immune pathways, including those mediating anti-bacterial resistance and combating viral infections, upon heat exposure. The immunomodulatory role of HSPs indicates their potential use as an immunostimulant to enhance shrimp health for control of disease in aquaculture.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Full-length transcriptome sequencing combined with RNA-seq analysis revealed the immune response of fat greenling (Hexagrammos otakii) to Vibrio harveyi in early infection. Microb Pathog 2020; 149:104527. [PMID: 32980468 DOI: 10.1016/j.micpath.2020.104527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/20/2023]
Abstract
Fat greenling (Hexagrammos otakii) is an important commercial marine fish species cultured in northeast Asia, but its available gene sequences are limited. Vibrio harveyi is a causative agent of vibriosis in fat greenling and also causes severe losses to the aquaculture industry in China. In order to obtain more high-quality transcript information and investigate the early immune response of fat greenling against V. harveyi, the fish were artificially infected with V. harveyi, and five sampling points were set within 48 h. Iso-Seq combined with RNA-Seq were applied in the comprehensive transcriptome analysis of V. harveyi-infected fat greenling. Total 42,225 consensus isoforms were successfully extracted from the result of Iso-Seq, and more than 19,000 ORFs were predicted. In addition, total three modules were identified by WGCNA which significantly positive correlated to the infection time, and the KEGG analysis showed that the immune-related genes in these modules mainly enriched in TLR signaling pathway, NF-κB signaling pathway and Endocytosis. The activation of inflammation and endocytosis was the most significant characteristics of fat greenling immune response during the early infection. Based on the WGCNA, a series of high-degree nodes in the networks were identified as hub genes. The protein structures of cold-inducible RNA-binding protein (CIRBP), poly [ADP-ribose] polymerase 1 (PARP1) and protein arginine N-methyl transferase 1 (PRMT1) were subsequently found to be highly conserved in vertebrate, and the gene expression pattern of CIRBP, PARP1, PRMT1 and a part of TLR/NF-κB pathway-related genes indicated that these proteins might have similar biological functions in regulation of inflammatory response in teleost fish. The results of this study provided the first systematical full-length transcriptome profile of fat greenling and characterized its immune responses in early infection of V. harvey, which will serve as the foundation for further exploring the molecular mechanism of immune defense against bacterial infection in fat greenling.
Collapse
|
12
|
Yaacob EN, Norouzitallab P, De Geest BG, Bajek A, Dierckens K, Bossier P, Vanrompay D. Recombinant DnaK Orally Administered Protects Axenic European Sea Bass Against Vibriosis. Front Immunol 2020; 10:3162. [PMID: 32117214 PMCID: PMC7033693 DOI: 10.3389/fimmu.2019.03162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture and is a hindering factor for successful sustainable aquaculture of this commercially valuable species. Priming of the innate immune system through administration of immunostimulants has become an important approach to control disease outbreaks in marine fish larviculture. This study was conducted to evaluate immunostimulation by Escherichia coli HSP70 (DnaK) in axenic European sea bass larvae in order to protect the larvae against vibriosis. DnaK stimulates the immune response in crustaceans and juvenile fish against bacterial infections. The use of axenic fish larvae allows to study immunostimulation in the absence of an interfering microbial community. At 7 days post-hatching, larvae received a single dose of alginate encapsulated recombinant DnaK. Two non-treated control groups in which animals either received empty alginate microparticles (C1) or no alginante microparticles (C2 and C3) were included in the study. Eighteen hours later, all larvae, except the ones from group C3 (non-infected control) were challenged with V. anguillarum (105 CFU, bath infection). Mortality was daily recorded until 120 h post infection and at 18, 24, and 36 h post infection, larvae were sampled for expression of immune related genes. Results showed that V. anguillarum induced an immune response in axenic sea bass larvae but that the innate immune response was incapable to protect the larvae against deadly septicaemic disease. In addition, we showed that administration of alginate encapsulated DnaK to axenic European sea bass larvae at DAH7 resulted in a significant, DnaK dose dependent, upreglation of immune sensor, regulatory and effector genes. Significant upregulation of cxcr4, cas1 and especially of hep and dic was correlated with significant higher survival rates in V. anguillarum infected larvae. In the future recombinant DnaK might perhaps be used as a novel immunostimulant in sea bass larviculture.
Collapse
Affiliation(s)
- Eamy Nursaliza Yaacob
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Aline Bajek
- Écloserie Marine de Gravelines, Gravelines, France
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Kumar V, Roy S, Baruah K, Van Haver D, Impens F, Bossier P. Environmental conditions steer phenotypic switching in acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus, affecting PirA VP /PirB VP toxins production. Environ Microbiol 2020; 22:4212-4230. [PMID: 31867836 DOI: 10.1111/1462-2920.14903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Bacteria in nature are widely exposed to differential fluid shears which are often a trigger for phenotypic switches. The latter mediates transcriptional and translation remodelling of cellular metabolism impacting among others virulence, antimicrobial resistance and stress resistance. In this study, we evaluated the role of fluid shear on phenotypic switch in an acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus M0904 strain under both in vitro and in vivo conditions. The results showed that V. parahaemolyticus M0904 grown at lower shaking speed (110 rpm constant agitation, M0904/110), causing low fluid shear, develop cellular aggregates or floccules. These cells increased levan production (as verified by concanavalin binding) and developed differentially stained colonies on Congo red agar plates and resistance to antibiotics. In addition, the phenotypic switch causes a major shift in the protein secretome. At 120 rpm (M0904/120), PirAVP /PirBVP toxins are mainly produced, while at 110 rpm PirAVP /PirBVP toxins production is stopped and an alkaline phosphatase (ALP) PhoX becomes the dominant protein in the protein secretome. These observations are matched with a very strong reduction in virulence of M0904/110 towards two crustacean larvae, namely, Artemia and Macrobrachium. Taken together, our study provides substantial evidence for the existence of two phenotypic forms in AHPND V. parahaemolyticus strain displaying differential phenotypes. Moreover, as aerators and pumping devices are frequently used in shrimp aquaculture facilities, they can inflict fluid shear to the standing microbial agents. Hence, our study could provide a basis to understand the behaviour of AHPND-causing V. parahaemolyticus in aquaculture settings and open the possibility to monitor and control AHPND by steering phenotypes.
Collapse
Affiliation(s)
- Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,ICAR - Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Suvra Roy
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,ICAR - Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Proteomics Core, B-9000, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Proteomics Core, B-9000, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
14
|
Roy S, Kumar V, Bossier P, Norouzitallab P, Vanrompay D. Phloroglucinol Treatment Induces Transgenerational Epigenetic Inherited Resistance Against Vibrio Infections and Thermal Stress in a Brine Shrimp ( Artemia franciscana) Model. Front Immunol 2019; 10:2745. [PMID: 31827471 PMCID: PMC6890837 DOI: 10.3389/fimmu.2019.02745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023] Open
Abstract
Emerging, infectious diseases in shrimp like acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus and mortality caused by other Vibrio species such as Vibrio harveyi are worldwide related to huge economic losses in industrial shrimp production. As a strategy to prevent disease outbreaks, a plant-based phenolic compound could be used as a biocontrol agent. Here, using the brine shrimp (Artemia franciscana) as a model system, we showed that phloroglucinol treatment of the parental animals at early life stages resulted in transgenerational inherited increased resistance in their progeny against biotic stress, i.e., bacteria (V. parahaemolyticus AHPND strain and V. harveyi) and abiotic stress, i.e., lethal heat shock. Increased resistance was recorded in three subsequent generations. Innate immune-related gene expression profiles and potential epigenetic mechanisms were studied to discover the underlying protective mechanisms. Our results showed that phloroglucinol treatment of the brine shrimp parents significantly (P < 0.05) enhanced the expression of a core set of innate immune genes (DSCAM, proPO, PXN, HSP90, HSP70, and LGBP) in subsequent generations. We also demonstrated that epigenetic mechanisms such as DNA methylation, m6A RNA methylation, and histone acetylation and methylation (active chromatin marker i.e., H3K4Me3, H3K4me1, H3K27me1, H3 hyperacetylation, H3K14ac and repression marker, i.e., H3K27me3, H4 hypoacetylation) might play a role in regulation of gene expression leading toward the observed transgenerational inheritance of the resistant brine shrimp progenies. To our knowledge, this is the first report on transgenerational inheritance of a compound-induced robust protected phenotype in brine shrimp, particularly protected against AHPND caused by V. parahaemolyticus and vibriosis caused by V. harveyi. Results showed that epigenetic reprogramming is likely to play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Suvra Roy
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Efficacy assessment of commercially available natural products and antibiotics, commonly used for mitigation of pathogenic Vibrio outbreaks in Ecuadorian Penaeus (Litopenaeus) vannamei hatcheries. PLoS One 2019; 14:e0210478. [PMID: 30699138 PMCID: PMC6353134 DOI: 10.1371/journal.pone.0210478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/25/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial diseases cause high mortality in Penaeus (Litopenaeus) vannamei postlarvae. Therefore, appropriate application of efficient therapeutic products is of vital importance for disease control. This study evaluated through in vitro analyses the antimicrobial effectiveness of commercial therapeutic products used for P. vannamei bacterial diseases and antibiotics against pathogenic Vibrio strains circulating in Ecuadorian hatcheries. Twenty strains were isolated from 31 larvae samples with high bacterial counts from 10 hatcheries collected during mortality events. The strains virulence was verified through challenge tests with Artemia franciscana nauplii and P. vannamei postlarvae. Through 16S rRNA sequence analysis, strains showed a great similarity to the Vibrio sequences reported as pathogens, with 95% belonging to the Harveyi clade. Through antibiograms and minimal inhibitory concentration (MIC) in vitro tests we found that furazolidone, ciprofloxacin, chloramphenicol, norfloxacin, nalidixic acid, florfenicol, fosfomycin and enrofloxacin inhibited the growth of all or most of the strains. Less efficient antibiotics were penicillin, oxytetracycline and tetracycline. A multiple antibiotic resistance (MAR) index of 0.23 showed some level of resistance to antibiotics, with two MAR prevalent patterns (Penicillin-Oxytetracycline and Penicillin-Oxytetracycline-Tetracycline). From a total of 16 natural products (five probiotics, nine organic acids and two essential oils), only three (one probiotic, one organic acid and one essential oil) were effective to control most of the strains. Shrimp producers can apply relatively simple in vitro analyses, such as those employed in this study, to help take adequate management decisions to reduce the impact of bacterial diseases and increase profit.
Collapse
|
16
|
Kumar V, Baruah K, Nguyen DV, Smagghe G, Vossen E, Bossier P. Phloroglucinol-Mediated Hsp70 Production in Crustaceans: Protection against Vibrio parahaemolyticus in Artemia franciscana and Macrobrachium rosenbergii. Front Immunol 2018; 9:1091. [PMID: 29872432 PMCID: PMC5972194 DOI: 10.3389/fimmu.2018.01091] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 02/03/2023] Open
Abstract
The halophilic aquatic bacterium, Vibrio parahaemolyticus, is an important aquatic pathogen, also capable of causing acute hepatopancreatic necrosis disease (AHPND) in shrimp resulting in significant economic losses. Therefore, there is an urgent need to develop anti-infective strategies to control AHPND. The gnotobiotic Artemia model is used to establish whether a phenolic compound phloroglucinol is effective against the AHPND strain V. parahaemolyticus MO904. We found that pretreatment with phloroglucinol, at an optimum concentration (30 µM), protects axenic brine shrimp larvae against V. parahaemolyticus infection and induced heat shock protein 70 (Hsp70) production (twofolds or more) as compared with the control. We further demonstrated that the Vibrio-protective effect of phloroglucinol was caused by its prooxidant effect and is linked to the induction of Hsp70. In addition, RNA interference confirms that phloroglucinol-induced Hsp70 mediates the survival of brine shrimp larvae against V. parahaemolyticus infection. The study was validated in xenic Artemia model and in a Macrobrachium rosenbergii system. Pretreatment of xenic brine shrimp larvae (30 µM) and Macrobrachium larvae (5 µM) with phloroglucinol increases the survival of xenic brine shrimp and Macrobrachium larvae against subsequent V. parahaemolyticus challenge. Taken together, our study provides substantial evidence that the prooxidant activity of phloroglucinol induces Hsp70 production protecting brine shrimp, A. franciscana, and freshwater shrimp, M. rosenbergii, against the AHPND V. parahaemolyticus strain MO904. Probably, phloroglucinol treatment might become part of a holistic strategy to control AHPND in shrimp.
Collapse
Affiliation(s)
- Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Dung Viet Nguyen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els Vossen
- Laboratory of Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Chen C, Li Q, Wang Q, Lu D, Zhang H, Wang J, Fu R. Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress. Sci Rep 2017; 7:15694. [PMID: 29146915 PMCID: PMC5691203 DOI: 10.1038/s41598-017-15340-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma. Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), "probable stress-induced proteins", and unigenes involved in "D-amino-acid oxidase activity" and "oxidoreductase activity" were significantly up-regulated in G. oregonense subjected to HS (P < 0.05). The significantly up-regulated HSPs, "monooxygenases", "alcohol dehydrogenase", and "FAD/NAD(P)-binding domain-containing proteins" (P < 0.05) regulated by exogenous NO may play important roles in the enhanced HS tolerance of G. oregonense. These results provide insights into the transcriptional response of G. oregonense to HS and the mechanism by which NO enhances the HS tolerance of fungi at the gene expression level.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Daihua Lu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Hong Zhang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China. .,Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, China.
| | - Jian Wang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Rongtao Fu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| |
Collapse
|
18
|
The Role of Heat Shock Proteins in Response to Extracellular Stress in Aquatic Organisms. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|