1
|
Fang X, Wang Z, Chen Q, Du Y, Sun H, Liu H, Feng Y, Li Z, Teng T, Shi B. Protective effect of the branched short-chain fatty acid isobutyrate on intestinal damage in weaned piglets through intestinal microbiota remodeling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1556-1568. [PMID: 39412364 DOI: 10.1002/jsfa.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 01/14/2025]
Abstract
BACKGROUND Postweaning intestinal damage in piglets is a challenging issue in the livestock industry. Short-chain fatty acids (SCFAs) are important metabolic products of the gut microbiota and are widely recognized for their role in maintaining normal colonic function and regulating the intestinal immune system. However, the effects of branched short-chain fatty acid (BSCFA) isobutyrate on intestinal health remain largely unknown. This study aims to explore the potential of isobutyrate for alleviating postweaning intestinal damage. RESULTS This study indicates that isobutyrate can alleviate diarrhea in weaned piglets, enhance their growth performance, and optimize the gut microbiota. This is mainly achieved through increasing the relative abundance of probiotic bacteria such as Lactobacillus, Megasphaera, and Prevotellaceae_UCG-003, while concurrently reducing the relative abundance of potentially harmful bacteria such as Clostridium_sensu_stricto-1 and Escherichia-Shigella. It promotes the production of SCFAs, including acetate, isobutyrate, and butyrate. Furthermore, it activates G-protein-coupled receptors (GPR43/109A), inhibits the TLR4/MyD88 signaling pathway, strengthens the intestinal barrier function, and regulates the expression of related cytokines. CONCLUSION In summary, exogenous isobutyrate can be considered a promising feed additive for improving the intestinal microbiota and regulating intestinal health in piglets. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhengyi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qinrui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yongqing Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Haowen Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ye Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
2
|
Coman CG, Anisiei A, Cibotaru S, Ailincai D, Pasca SA, Chabot C, Gardikiotis I, Mititelu-Tartau L. Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model. Int J Mol Sci 2024; 25:12709. [PMID: 39684419 DOI: 10.3390/ijms252312709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the impact of chitosan-based nanofibers on burn wound healing in a rat model. Two formulations of chitosan nanofibers were prepared through electrospinning. The formulations were then incorporated with different amounts of norfloxacin and underwent surface modifications with 2-formylphenylboronic acid. The burn model was applied to Wistar male rats by the contact method, using a heated steel rod attached to a thermocouple. The effectiveness of the nanofibers was tested against a negative control group and a standard commercial dressing (Atrauman Ag) on the described model and evaluated by wound diameter, histological analysis and biochemical profiling of systemic inflammatory markers. The results showed that chitosan-based dressings significantly accelerated burn healing compared to the control treatments. The high-concentration norfloxacin-infused chitosan coated with 2-formylphenylboronic acid' groups exhibited significant improvements in wound closure and reduced inflammation compared to the other groups; antioxidant enzymes SOD and GPx expression was significantly higher, p < 0.05, whereas pro-oxidative markers such as cortisol were lower (p < 0.05). Macroscopically, the wound area itself was significantly diminished in the chitosan-treated groups (p < 0.05). Furthermore, a histological evaluation indicated enhanced epithelialization and granulation tissue formation within the experiment time frame, while the biochemical panel revealed lower levels of inflammatory cytokines and lower leukocyte counts in the treated groups. These findings highlight the potential of the studied chitosan nanofibers as novel nanosystems for next-generation wound therapies, as well as the clinical utility of the novel chitosan fibers obtained by electrospinning technique.
Collapse
Affiliation(s)
- Corneliu-George Coman
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Faculté de Médecine, Pharmacie et Sciences Biomédicales, Université de Mons, 7000 Mons, Belgium
| | - Alexandru Anisiei
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sandu Cibotaru
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Daniela Ailincai
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sorin Aurelian Pasca
- Pathology Department, University of Agricultural Sciences and Veterinary Medicine 'Ion Ionescu de la Brad', 700490 Iasi, Romania
| | - Caroline Chabot
- Department de Radiologie, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Ioannis Gardikiotis
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Surgery Department, Advanced Research and Development Center for Experimental Medicine ''Prof. Ostin C. Mungiu'', University of Medicine and Pharmacy ''Grigore T. Popa'' of Iasi, 700115 Iasi, Romania
| | - Liliana Mititelu-Tartau
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
| |
Collapse
|
3
|
Adil S, Aldhalmi AK, Wani MA, Baba IA, Sheikh IU, Abd El-Hack ME, Aljahdali N, Albaqami NM, Abuljadayel DA. Impacts of dietary supplementation of chitosan nanoparticles on growth, carcass traits nutrient digestibility, blood biochemistry, intestinal microbial load, and meat quality of broilers. Transl Anim Sci 2024; 8:txae134. [PMID: 39376465 PMCID: PMC11457127 DOI: 10.1093/tas/txae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
This study explores the impact of chitosan nanoparticles (CNP) on the performance, nutrient digestibility, blood biochemical, immunity, microbial load, carcass traits, and meat attributes of broilers. A total of 200 7-d-old Cobb chicks were distributed to 4 groups, each replicated 5 times, with 10 birds in each replicate. The experimental diets were as follows: First group was fed a basal diet only (control); 2nd, 3rd, and 4th groups received a basal diet supplemented with 0.2, 0.3, and 0.4 g CNP/kg of feed, respectively. Results showed that the body weight (BW) and body weight gain significantly improved (P < 0.05) in the birds belonging to the 0.4 CNP group compared to the other groups. The best feed efficiency (feed conversion ratio [FCR]) was found in the group supplemented with a 0.4-g CNP/kg diet. The digestibility coefficients for dry matter and crude protein were significantly higher, and ether extract was significantly lower in the 0.4 g CNP/kg group than in other groups (P < 0.05). Broiler birds of the 0.4 CNP group had significantly (P < 0.05) reduced serum cholesterol, AST, and ALT levels. The humoral immunity (increased serum IgG and IgM levels) tended to improve in birds fed 0.3 and 0.4 g CNP/kg of feed. Compared to the control, total bacterial load and coliform count decreased significantly (P < 0.05) by supplementing 0.4 g CNP in the diet. The dressing weight, breast weight, and abdominal fat % were altered in birds receiving dietary 0.4 g CNP/kg. The treatment with CNP at 0.4 g/kg feed enhanced the broiler meat quality by increasing the values for water holding capacity, ABTS [2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)], DPPH (2,2-diphenyl-1-picrylhydrazyl) while reducing the thiobarbituric acid reactive substances (TBARS) value. Based on the results above, it could be concluded that CNP supplementation at 0.4 g/kg is recommended as a beneficial feed additive for broiler chickens.
Collapse
Affiliation(s)
- Sheikh Adil
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Manzoor A Wani
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - Irfan A Baba
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - I U Sheikh
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Nesreen Aljahdali
- Department of Biological Science, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najah M Albaqami
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalia A Abuljadayel
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
He C, Liang L, Zhang Y, Wang T, Wang R. Prognosis prediction of procalcitonin within 24 h for acute diquat poisoning. BMC Emerg Med 2024; 24:61. [PMID: 38616281 PMCID: PMC11017620 DOI: 10.1186/s12873-024-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND To explore the predictive value of procalcitonin (PCT) within 24 h after poisoning for prognosis of acute diquat poisoning. METHODS This retrospective study included acute diquat poisoning patients in the Nanyang City Hospital between May 2017 and July 2021. RESULTS Among the 45 patients included, 27 survived. The maximum PCT value within 24 h after poisoning was significantly higher in the non-survival patients [9.65 (2.63, 22.77) vs. 0.15 (0.10, 0.50) µg/mL, P < 0.001] compared to the survival patients. The area under the ROC curve (AUC) indicated that the maximum PCT value within 24 h had a good predictive value (AUC = 0.905, 95% CI: 0.808-1.000) compared to ingested quantity (AUC = 0.879, 95% CI: 0.776-0.981), serum creatinine (AUC = 0.776, 95% CI: 0.640-0.912), or APACHE II score (AUC = 0.778, 95% CI: 0.631-0.925). The predictive value of maximum PCT value within 24 h was comparable with blood lactate (AUC = 0.904, 95%CI: 0.807-1.000). CONCLUSIONS The maximum PCT value within 24 h after poisoning might be a good predictor for the prognosis of patients with acute diquat poisoning.
Collapse
Affiliation(s)
- Cheng He
- Emergency Department of Nanyang Traditional Chinese Medicine Hospital, 473003, Nanyang, Henan, China.
| | - Liguo Liang
- Emergency Department of Nanyang Traditional Chinese Medicine Hospital, 473003, Nanyang, Henan, China
| | - Yu Zhang
- Emergency Department of Nanyang Traditional Chinese Medicine Hospital, 473003, Nanyang, Henan, China
| | - Tianyi Wang
- Emergency Department of Nanyang Traditional Chinese Medicine Hospital, 473003, Nanyang, Henan, China
| | - Rongyang Wang
- Emergency Department of Nanyang Traditional Chinese Medicine Hospital, 473003, Nanyang, Henan, China
| |
Collapse
|
5
|
Hong C, Huang Y, Cao S, Wang L, Yang X, Hu S, Gao K, Jiang Z, Xiao H. Accurate models and nutritional strategies for specific oxidative stress factors: Does the dose matter in swine production? J Anim Sci Biotechnol 2024; 15:11. [PMID: 38273345 PMCID: PMC10811888 DOI: 10.1186/s40104-023-00964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress has been associated with a number of physiological problems in swine, including reduced production efficiency. Recently, although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production, it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors. Here, we discuss the dose and dose intensity of the causes of oxidative stress involving physiological, environmental and dietary factors, recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hao Xiao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou, 510640, China.
| |
Collapse
|
6
|
Fathi M, Saeedyan S, Kaoosi M. Gamma-amino butyric acid (GABA) supplementation alleviates dexamethasone treatment-induced oxidative stress and inflammation response in broiler chickens. Stress 2023; 26:2185861. [PMID: 36861448 DOI: 10.1080/10253890.2023.2185861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
This experiment was conducted to investigate the effect of Gamma-amino butyric acid (GABA) on growth performance, serum and liver antioxidant status, inflammation response and hematological changes, in male broiler chickens under experimentally induced stress via in-feed dexamethasone (DEX). A total of 300 male chicks (Ross 308) on day 7 after hatching, were randomly selected into four groups which were positive control group (PC, without any treatment), negative control (NC, with 1 mg/kg DEX), a third group received 1 mg/kg DEX and 100 mg/kg GABA (DG +) and the last one was (DG ++) which received 1 mg/kg DEX and 200 mg/kg GABA. Each group has five replicates (15 birds/replicate). Dietary GABA modulated DEX-induced adverse effects on body weight, feed intake, and feed conversion ratio. The DEX-induced effect of serum levels of IL-6 and IL-10 was reduced by dietary GABA supplementation. The activity of serum and liver superoxide dismutase, catalase, glutathione peroxidase were enhanced and malondialdehyde was reduced by GABA supplementation. The serum levels of total cholesterol & triglyceride were higher while low-density lipoprotein & high-density lipoprotein were lower in GABA groups than NC group. GABA supplementation also significantly decreased the heterophil, heterophil/lymphocyte ratio and elevated the activities of aspartate aminotransferase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) than NC group. In conclusion, dietary GABA supplementation can alleviate DEX stress-induced oxidative stress and inflammation response.
Collapse
Affiliation(s)
- Mokhtar Fathi
- Department of Animal Science, Payam Noor University, Tehran, Iran
| | | | - Majid Kaoosi
- Department of Biology, Payam Noor University, Tehran, Iran
| |
Collapse
|
7
|
Changes in the Oxidative Stress Status of Dogs Affected by Acute Enteropathies. Vet Sci 2022; 9:vetsci9060276. [PMID: 35737327 PMCID: PMC9228746 DOI: 10.3390/vetsci9060276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Canine acute enteropathies (AE) are common morbidities primarily managed with supportive therapy. However, in some cases, unnecessary courses of antibiotics are empirically prescribed. Recent studies in humans have hypothesized the use of antioxidants as a possible alternative and/or support to antimicrobial drugs in uncomplicated cases. Considering the global need to reduce the antibiotic use, the aim of the study was to compare the oxidative burden of the diarrhetic population to that of healthy dogs. Forty-five patients suffering from uncomplicated acute diarrhea (AD) and 30 controls were screened for clinical and biochemical parameters, and serum redox indices (reactive oxygen metabolites, dROMs; serum antioxidant capacity, SAC; oxidative stress index, OSi). The average levels of dROMs in AD dogs were significantly higher (p < 0.001) than in healthy dogs, while SAC did not significantly differ between the two groups. However, the OSi values (ratio between dROMs and SAC) significantly increased (p < 0.001) in AD dogs compared to controls. The study demonstrates that canine AD could induce redox imbalance. Although its role in the etiopathogenesis and evolution of the disease should be further investigated, our results suggest that the improvement of the patient oxidative status, possibly through the dietary administration of antioxidants, could support the management of canine AE, reducing the use of antibiotics.
Collapse
|
8
|
Dietary Chitosan Supplementation Improved Egg Production and Antioxidative Function in Laying Breeders. Animals (Basel) 2022; 12:ani12101225. [PMID: 35625071 PMCID: PMC9137984 DOI: 10.3390/ani12101225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Chitosan is a natural, non-toxic and biodegradable compound, which has antibacterial, antioxidant and anti-tumor properties. Several studies have shown that chitosan also improve the antioxidant capacity of poultry. Recent research showed that chitosan decreased oxidative damage by activating the nuclear factor erythroid-2 related factor 2 pathway, then elevated the meat quality of broilers. Egg breeders are susceptible to oxidative stress during peak egg production, which increase their susceptibility to diseases and lead performance decline. In addition, previous reports on the effect of chitosan on poultry production performance were inconsistent. Based on above reports, this study explored whether chitosan could promote the production performance, and antioxidant defense of laying hens by affecting the nuclear factor erythroid-2 related factor 2 pathway. The results showed that addition chitosan to layer hen diet could increase egg production and feed conversion ratio, and the effect was better at the level of 250~500 mg/kg; as well as, chitosan promoted the antioxidant status in serum, liver and duodenum tissues and the effect was better at the level of 500 mg/kg. Chitosan was likely to increase antioxidant enzyme activities by enhancing the expression of nuclear factor erythroid-2 related factor 2, thereby improving the antioxidant capacity of laying breeders. Abstract This study was conducted to explore the dietary effect of chitosan on the production performance, and antioxidative enzyme activities and corresponding gene expression in the liver and duodenum of laying breeders. A total of 450 laying breeders (92.44% ± 0.030% of hen-day egg production) were randomly assigned to five dietary treatments fed 8 weeks: maize-soybean meal as the basal control diet and the basal diet containing 250, 500, 1000 and 2000 mg/kg of chitosan, respectively. Each treatment was randomly divided into 6 equal replicates, with 15 laying breeders in each replicate. The results showed that dietary chitosan could increase hen-day egg production and feed conversion ratio, especially at the level of 250~500 mg/kg; however, chitosan had no prominent effect on feed intake and average egg weight. Dietary chitosan could dose-dependently promote the antioxidant status in serum, liver and duodenum of layer breeders. It has a better promotion effect at the level of 500 mg/kg; however, the effect was weakened at the level of 2000 mg/kg. Chitosan was likely to enhance the gene expression and activities of Nrf2-mediated phase II detoxification enzyme by up-regulating the expression of Nrf2, thereby improving the antioxidant capacity of laying breeder hens.
Collapse
|
9
|
Dihydromyricetin Enhances Intestinal Antioxidant Capacity of Growing-Finishing Pigs by Activating ERK/Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11040704. [PMID: 35453388 PMCID: PMC9028153 DOI: 10.3390/antiox11040704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is one of the main factors affecting animal health and reducing performance. The small intestine is the primary site of free-radical attacks. Dihydromyricetin (DHM) is a flavonoid compound with antioxidant, anti-inflammatory, and other biological activities, which is mainly extracted from Rattan tea. However, the effects of DHM on the intestinal antioxidant function of growing-finishing pigs and related mechanisms remain unclear. The aim of this study was to investigate the effect of dietary DHM supplementation on the intestinal antioxidant capacity of growing-finishing pigs and its mechanism. Our results show that dietary 0.03% DHM increased the activities of the total antioxidant capacity (T-AOC), catalase (CAT), and glutathione peroxidase (GSH-Px), decreased malondialdehyde (MDA) level, and upregulated protein expressions of HO-1, NQO1, nuclear Nrf2, and phospho-ERK (p-ERK) in the jejunum of growing-finishing pigs. Again, we found that 20 μmol/mL and 40 μmol/mL DHM treatment significantly upregulated the protein expression of HO-1 and promoted the nuclear translocation of Nrf2 and ERK phosphorylation in IPCE-J2 cells. ERK inhibitor PD98059 eliminated the DHM-induced upregulation of p-ERK, nuclear Nrf2, and HO-1. Our findings provided the first evidence that DHM enhanced the intestinal antioxidant capacity of growing-finishing pigs by activating the ERK/Nrf2/HO-1 signaling pathway.
Collapse
|
10
|
Sun X, Piao L, Jin H, Nogoy KMC, Zhang J, Sun B, Jin Y, Lee DH, Choi S, Li X. Dietary glucose oxidase and/or catalase supplementation alleviates intestinal oxidative stress induced by diquat in weaned piglets. Anim Sci J 2021; 92:e13634. [PMID: 34605115 DOI: 10.1111/asj.13634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of dietary exogenous glucose oxidase (GOD) and/or catalase (CAT) on the intestinal antioxidant capacity and barrier function in piglets under oxidative stress. Sixty pigs assigned randomly to five treatment groups-CON: basal diet; DIQ: basal diet; GOD: basal diet + 40-U GOD/kg diet; CAT: basal diet + 50-U CAT/kg diet; and GC: basal diet + 40-U GOD/kg diet + 50-U CAT/kg diet-were analyzed. On Day 14, the CON group was injected with saline, and the others were treated with diquat. The results showed that in diquat-treated piglets, supplementation of dietary GOD and CAT elevated the superoxide dismutase and CAT activities and attenuated the malondialdehyde level in plasma and intestinal mucosa, enhanced the duodenal villus height and villus height/crypt depth ratio, upregulated ZO-1 mRNA level, and attenuated the apoptosis of the epithelial cells and caspase-3 mRNA level in the intestine. Additionally, the supplementation upregulated mRNA expression of the intestinal NF-E2-related factor 2-regulated genes in diquat-treated piglets. However, GOD combined with CAT could not alleviate oxidative damage better than supplementation of CAT or GOD alone under oxidative stress. Overall, the study provides a potential alternative that could relieve the weaning stress in piglets and help formulate antibiotic-free diets.
Collapse
Affiliation(s)
- Xiaojiao Sun
- Department of Animal Science, Yanbian University, Yanji, China.,Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | - Longguo Piao
- Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | - Haifeng Jin
- Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | | | - Junfang Zhang
- Department of Animal Science, Yanbian University, Yanji, China
| | - Bin Sun
- Department of Animal Science, Yanbian University, Yanji, China
| | - Yi Jin
- Department of Animal Science, Yanbian University, Yanji, China
| | - Dong Hoon Lee
- Department of Biosystems Engineering, Chungbuk National University, Cheongju City, South Korea
| | - Seongho Choi
- Department of Animal Science, Chungbuk National University, Cheongju City, South Korea
| | - Xiangzi Li
- Department of Animal Science, Yanbian University, Yanji, China
| |
Collapse
|
11
|
Yang C, Lim W, Song G. Mechanisms of deleterious effects of some pesticide exposure on pigs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104850. [PMID: 33993968 DOI: 10.1016/j.pestbp.2021.104850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in the size of the global population increases the food and energy demand, making the use of pesticides in agricultural and livestock industries unavoidable. Exposure to pesticides can be toxic to the non-target species, such as humans, wildlife, and livestock, in addition to the target organisms. Various chemicals are used in the livestock industry to control harmful organisms, such as insects, weeds, and parasites. Pigs are one of the most important food sources for humans. In addition, pigs can be used as promising models for assessing the risk of absorption of environmental pollutants through the skin and oral exposure since they are physiologically similar to humans. Exposure to numerous environmental pollutants, such as mycotoxins, persistent organic pollutants, and heavy metals, has been reported to adversely affect growth, fertility, and endocrine homeostasis in pigs. Various pesticides have been observed in porcine tissues, blood, urine, and processed foods; however, there is a lack of comprehensive understanding of their effects on porcine health. This review provides a comprehensive description of the characteristics of pesticides that pigs can be exposed to and how their exposure affects porcine reproductive function, intestinal health, and endocrine homeostasis in vivo and in vitro.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Hao Y, Xing M, Gu X. Research Progress on Oxidative Stress and Its Nutritional Regulation Strategies in Pigs. Animals (Basel) 2021; 11:1384. [PMID: 34068057 PMCID: PMC8152462 DOI: 10.3390/ani11051384] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress refers to the dramatic increase in the production of free radicals in human and animal bodies or the decrease in the ability to scavenging free radicals, thus breaking the antioxidation-oxidation balance. Various factors can induce oxidative stress in pig production. Oxidative stress has an important effect on pig performance and healthy growth, and has become one of the important factors restricting pig production. Based on the overview of the generation of oxidative stress, its effects on pigs, and signal transduction pathways, this paper discussed the nutritional measures to alleviate oxidative stress in pigs, in order to provide ideas for the nutritional research of anti-oxidative stress in pigs.
Collapse
Affiliation(s)
| | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (M.X.)
| |
Collapse
|
13
|
Han H, Liu Z, Yin J, Gao J, He L, Wang C, Hou R, He X, Wang G, Li T, Yin Y. D-Galactose Induces Chronic Oxidative Stress and Alters Gut Microbiota in Weaned Piglets. Front Physiol 2021; 12:634283. [PMID: 33897450 PMCID: PMC8060641 DOI: 10.3389/fphys.2021.634283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/12/2021] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress commonly occurs in pig production, which can severely damage the intestinal function of weaned piglets. This study was conducted to investigate the effects of D-galactose with different levels used to induce chronic oxidative stress on growth performance, intestinal morphology and gut microbiota in weaned piglets. The results showed that addition of 10 and 20 g/kg BW D-galactose reduced average daily gain and average daily feed intake from the first to the third week. 10 g/kg BW D-galactose increased the concentration of serum MDA at the second and third week. 10 g/kg BW D-galactose significantly influenced the jejunal and ileal expressions of GPx1, CAT1, and MnSOD. The results of 16S rRNA sequencing showed that compared with the control, 10 and 20 g/kg BW D-galactose significantly decreased the relative abundance of Tenericutes, Erysipelotrichia, Erysipelotrichales, and Erysipelotrichaceae, while increased the relative abundance of Negativicutes, Selenomonnadales, and Veillonellaceae. The results indicated that treatment with 10 g/kg BW/day D-galactose for 3 weeks could induce chronic oxidative stress, reduce the growth performance and alter gut microbiota in weaned piglets.
Collapse
Affiliation(s)
- Hui Han
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zemin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China.,National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenyu Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxin Hou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo He
- Changsha Lvye Bio-Technology Co., Ltd., Changsha, China
| | - Guoqiang Wang
- Changsha Lvye Bio-Technology Co., Ltd., Changsha, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
14
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
15
|
Chen YP, Gu YF, Zhao HR, Zhou YM. Dietary squalene supplementation alleviates diquat-induced oxidative stress and liver damage of broiler chickens. Poult Sci 2020; 100:100919. [PMID: 33518324 PMCID: PMC7936218 DOI: 10.1016/j.psj.2020.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to explore the protective effects of squalene supplementation on growth performance, oxidative status, and liver function of diquat-challenged broilers. One hundred forty-four 1-day-old male Ross 308 broiler chicks were allocated to 3 groups, and each group consisted of 6 replicates of 8 birds each. The three groups were as follows: 1) nonchallenged broilers fed with a basal diet (control group), 2) diquat-challenged broilers fed a basal diet, and 3) diquat-challenged broilers fed with a basal diet supplemented with 1.0 g/kg of squalene. Broilers were intraperitoneally injected with 20 mg/mL of diquat solution at a dosage of 1 mL/kg of BW or an equivalent amount of saline at 20 d. Compared with the control group, weight gain and BW change rate during 24 h after injection were decreased by diquat challenge (P < 0.05), and the diquat-induced compromised growth performance was improved by squalene supplementation (P < 0.05). Diquat administration reduced plasma superoxide dismutase activity and increased malondialdehyde accumulation and glutathione peroxidase activity in both plasma and the liver (P < 0.05). In contrast, plasma glutathione peroxidase activity in diquat-challenged broilers was reduced by squalene supplementation (P < 0.05). The hepatic glutathione level was reduced by diquat administration (P < 0.05), whereas its level in plasma and the liver of diquat-challenged broilers was increased by squalene supplementation (P < 0.05). The relative liver weight of broilers was increased by diquat challenge (P < 0.05), with its value being intermediate in the squalene-supplemented group (P > 0.05). The plasma aminotransferase activities and total bilirubin concentration were increased by diquat challenge (P < 0.05), which were reduced by squalene supplementation (P < 0.05). The mRNA abundance of hepatic nuclear factor erythroid 2–related factor 2 (P < 0.05) was upregulated by diquat treatment, regardless of squalene supplementation. The mRNA abundance of hepatic glutathione peroxidase 1 and B-cell lymphoma/leukemia 2–associated X protein was upregulated by diquat challenge (P < 0.05), which was reversed by squalene administration (P < 0.05). Squalene increased NAD(P)H quinone dehydrogenase 1 mRNA abundance and decreased caspase 3 mRNA abundance in the liver of diquat-challenged broilers (P < 0.05). The results suggested that squalene can increase weight gain, improve oxidative status, and alleviate liver injury in diquat-challenged broilers.
Collapse
Affiliation(s)
- Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y F Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - H R Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
16
|
Lan R, Wei L, Chang Q, Wu S, Zhihui Z. Effects of dietary chitosan oligosaccharides on oxidative stress and inflammation response in liver and spleen of yellow-feather broilers exposed to high ambient temperature. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1850215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Linlin Wei
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Qingqing Chang
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Shengnan Wu
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Zhao Zhihui
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| |
Collapse
|
17
|
Xun W, Fu Q, Hou G, Shi L, Cao T. Protective effects of dietary resveratrol supplementation against oxidative stress in diquat-challenged piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1851148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Wenjuan Xun
- College of Animal Science and Technology, Hainan University, Haikou, P.R. China
- Chinese Academy of Tropical Agricultural Sciences, Tropical Crops Genetic Resources Institute, Danzhou, PR China
| | - Qingyao Fu
- College of Animal Science and Technology, Hainan University, Haikou, P.R. China
| | - Guanyu Hou
- Chinese Academy of Tropical Agricultural Sciences, Tropical Crops Genetic Resources Institute, Danzhou, PR China
| | - Liguang Shi
- Chinese Academy of Tropical Agricultural Sciences, Tropical Crops Genetic Resources Institute, Danzhou, PR China
| | - Ting Cao
- Chinese Academy of Tropical Agricultural Sciences, Tropical Crops Genetic Resources Institute, Danzhou, PR China
| |
Collapse
|
18
|
Chang Q, Lu Y, Lan R. Chitosan oligosaccharide as an effective feed additive to maintain growth performance, meat quality, muscle glycolytic metabolism, and oxidative status in yellow-feather broilers under heat stress. Poult Sci 2020; 99:4824-4831. [PMID: 32988519 PMCID: PMC7598338 DOI: 10.1016/j.psj.2020.06.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
This study investigated the effects of dietary chitosan oligosaccharides (COS) supplementation on growth performance; corticosterone, growth hormone, and insulin-like growth factor-1 concentration; relative organ weight; liver function; meat quality; muscle glycolytic metabolism; and oxidative status in yellow-feather broilers under heat stress. A total of 108 35-day-old Chinese yellow-feather broilers (BW, 470.31 ± 13.15 g) was randomly allocated to 3 dietary treatments as follow: control group, basal diet and raised under normal temperature (24°C); HS group, basal diet and raised under cycle heat stress (34°C from 10:00 to 18:00 and 24°C for the rest time); and HSC group, basal diet with 200 mg/kg COS supplementation and raised under cycle heat stress. Each treatment had 6 replication pens and 6 broilers per pen. Results indicated that heat stress decreased ADG, ADFI, gain:feed ratio, the relative weight of thymus, bursa of Fabricius, pancreas, proventriculus, gizzard, and liver, growth hormone concentration, pH24h, muscle glycogen content, muscle superoxide dismutase and glutathione peroxidase activity, as well as increased corticosterone, alanine aminotransferase and aspartate aminotransferase level, cooking loss, muscle lactate and malondialdehyde content. Compared with the HS group, broilers in the HSC group had higher ADG, the relative weight of thymus, bursa of Fabricius, and liver, growth hormone concentration, pH24h, muscle glycogen content, muscle superoxide dismutase and glutathione peroxidase activity, and lower serum corticosterone, alanine aminotransferase and aspartate aminotransferase level, cooking loss, and muscle lactate and malondialdehyde content. In conclusion, the results suggested that COS could be used as an effective feed additive to maintain growth performance, liver function, meat quality, muscle glycolytic metabolism, and oxidative status of yellow-feather broilers under heat stress. The improved meat quality is possibly through reducing muscle glycolysis metabolism and improving muscle oxidative status by dietary COS supplementation in broilers under heat stress.
Collapse
Affiliation(s)
- Qingqing Chang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Yiqi Lu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China.
| |
Collapse
|
19
|
Effects of dietary gallic acid on growth performance, diarrhea incidence, intestinal morphology, plasma antioxidant indices, and immune response in weaned piglets. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114391] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Gao J, Azad MAK, Han H, Wan D, Li T. Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Curr Pharm Des 2020; 26:2630-2641. [PMID: 32066357 DOI: 10.2174/1381612826666200211121916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.
Collapse
Affiliation(s)
- Jing Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Md A K Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - TieJun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Liang D, Zhuo Y, Guo Z, He L, Wang X, He Y, Li L, Dai H. SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 2019; 170:10-20. [PMID: 31830513 DOI: 10.1016/j.biochi.2019.12.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress leads to intestinal epithelial cells damage, which induces tight junction injury and systemic endogenous stress syndrome. The evidence suggests that SIRT1/PGC-1α pathway is closely associated with oxidative damage. However, the mechanism in protecting intestinal epithelial cells against oxidative stress dependant on autopahgy/mitophagy remains to be elucidated. In the current study, we investigated the functional role of SIRT1/PGC-1α pathway on regulation of autopahgy/mitophagy and tight junction protein expression underlying the oxidative dysfunction in porcine intestinal epithelial cells (IPEC-1). Results demonstrated that H2O2 exposure caused high accumulation of ROS, with a decrease of mitochondrial membrane potential and an inhibition of the tight junction molecules in IPEC-1 cells. Also, COX IV mRNA expression and SIRT1/PGC-1α pathway were suppressed. Autophagy and PINK1/Parkin dependant-mitophagy were activated following H2O2 treatment. Further research indicated that activation of SIRT1/PGC-1α pathway caused by specific activator SRT 1720 resulted in elevating autophagy/mitophagy related markers and SIRT1 inhibitor EX 527 reversed these effects. Additionally, SIRT1 activation significantly suppressed the ROS generation, leading to increase mitochondrial membrane potential and COX IV expression. Most importantly, the expression of tight junction molecules contributing to maintain intestinal barrier integrity was significantly up-regulated. Collectively, these findings indicated that autophagy/mitophagy elevation caused by SIRT1/PGC-1α pathway activation might be a protective mechanism to increase tight junction integrity against oxidative stress-mediated ROS production in IPEC-1 cells.
Collapse
Affiliation(s)
- Danyang Liang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lihua He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xueyi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yulong He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lexing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
22
|
Chitosan Oligosaccharides Protect Sprague Dawley Rats from Cyclic Heat Stress by Attenuation of Oxidative and Inflammation Stress. Animals (Basel) 2019; 9:ani9121074. [PMID: 31816916 PMCID: PMC6940990 DOI: 10.3390/ani9121074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Heat stress has negative effects on animal health and performance, and chitosan oligosaccharides (COS) exhibits antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the effects of COS alleviation of oxidative stress and inflammatory response in heat-stressed rats. The results indicated heat stress decreased (p < 0.05) growth performance; the relative weight of spleen and kidney; and the level of antioxidant enzymes and IL-10 in liver, spleen, and kidney, while it increased (p < 0.05) the MDA and inflammatory cytokines concentration. Dietary COS supplementation enhanced (p < 0.05) ADG, the relative weight of spleen and kidney, and the level of antioxidant enzymes and IL-10 in liver, spleen, and kidney. Collectively, COS was beneficial to heat-stressed rats by alleviating oxidative damage and inflammatory response. Abstract Chitosan oligosaccharides (COS) exhibits antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the effects of COS on antioxidant system and inflammatory response in heat-stressed rats. A total of 30 male rats were randomly divided to three groups and reared at either 24 °C or 35 °C for 4 h/d for this 7-day experiment: CON, control group with basal diet; HS, heat stress group with basal diet; HSC, heat stress with 200mg/kg COS supplementation. Compared with the CON group, HS significantly decreased (p < 0.05) average daily gain (ADG); average daily feed intake (ADFI); the relative weight of spleen and kidney; the level of liver CAT, GSH-Px, T-AOC, and IL-10; spleen SOD, GSH-Px, GSH, and IL-10; and kidney SOD, GSH-Px, T-AOC, and IL-10, while significantly increased the MDA concentration in liver, spleen, and kidney; the liver IL-1β concentration; and spleen and kidney IL-6 and TNF-α concentration. In addition, dietary COS supplementation significantly improved (p < 0.05) ADG; the relative weight of spleen and kidney; the level of liver GSH-Px, spleen GSH-Px, GSH, and IL-10; and kidney GSH-Px, while significantly decreased (p < 0.05) liver IL-1β concentration under heat stress condition. Collectively, COS was beneficial to heat-stressed rats by alleviating oxidative damage and inflammatory response.
Collapse
|
23
|
Wang J, Li ZX, Yang DD, Liu PQ, Wang ZQ, Zeng YQ, Chen W. Diquat Determines a Deregulation of lncRNA and mRNA Expression in the Liver of Postweaned Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9148535. [PMID: 31214284 PMCID: PMC6535875 DOI: 10.1155/2019/9148535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/24/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Oxidative stress is detrimental to animals and can depress the growth performance and regulate the gene expression of animals. However, it remains unclear how oxidative stress regulates the expression of long noncoding RNAs (lncRNAs) and mRNAs. Therefore, the purpose of this article was to explore the profiles of lncRNAs and mRNAs in the liver of piglets under oxidative stress. Here, we constructed a piglet oxidative stress model induced by diquat and evaluated the effects of oxidative stress on the growth performance and antioxidant enzyme activity of piglets. We also used RNA-Seq to examine the global expression of lncRNAs and mRNAs in piglets under oxidative stress. The targets of lncRNAs and mRNAs were enriched in gene ontology (GO) terms and signaling pathways. The results show that the growth performance and activities of antioxidant enzymes were decreased in piglets under oxidative stress. Moreover, eight lncRNAs (6 upregulated and 2 downregulated) and 30 mRNAs (8 upregulated and 22 downregulated) were differentially expressed in the oxidative stress group of piglets compared to the negative control group. According to biological processes in enriched GO terms, the oxoacid metabolic process, intramolecular oxidoreductase activity, and oxidation-reduction process play important roles in oxidative stress. Pathway analysis showed that the signaling pathways involved in insulin and glucose metabolism had a close relationship with oxidative stress. Further in vitro experiments showed that the expression of the upregulated gene GNMT was significantly increased in primary porcine hepatocytes after diquat stimulation. In contrast, the level of the downregulated gene GCK was significantly decreased at 12 h in primary porcine hepatocytes after diquat stimulation. Our results expand our knowledge of the lncRNAs and mRNAs transcribed in the livers of piglets under oxidative stress and provide a basis for future research on the molecular mechanisms mediating oxidative stress and tissue damage.
Collapse
Affiliation(s)
- Jin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zhi-xin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Dan-dan Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Pei-qi Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zhi-qiang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Yong-qing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| |
Collapse
|