1
|
Zeng FF, Chen ZH, Luo FH, Liu CJ, Yang X, Zhang FX, Shi W. Sophorae tonkinensis radix et rhizoma: A comprehensive review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology and detoxification strategy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118784. [PMID: 39244176 DOI: 10.1016/j.jep.2024.118784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR), the dried root and rhizome of Sophora tonkinensis Gagnep., is commonly used in the treatment of tonsillitis and pharyngitis, throat soreness and throat obstruction, swelling and aching of gum, etc. in China or other Asian countries. STR is usually used as the core herb in traditional Chinese medicine preparations, such as "Biyanling Tablets", "Fufang Muji Granules" and "Ganyanling Injections", etc. AIM OF THE REVIEW: This review aimed to provide a comprehensive analysis of STR in terms of botany, traditional use, phytochemistry, ethnopharmacology, pharmacology, pharmacokinetics, toxicology and detoxification strategy, to provide a rational application in future research. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations. RESULTS Till now, a total of 333 chemical components have been identified in STR, including 85 alkaloids, 124 flavonoids, 24 triterpenes, 27 triterpene saponins, 34 organic acids, 8 polysaccharides, etc. STR and its main active constituents have cardiovascular protection, anti-tumor activity, anti-inflammatory activity, antipyretic activity, analgesic activity, antibacterial activity, antifungal activity, antiviral activity, and hepatoprotective activity, etc. However, toxic effects of STR on the liver, nerves, heart, and gastrointestinal tract have also been observed. To mitigate these risks, STR needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. The pharmacokinetics of STR in vivo and traditional and clinical prescriptions containing STR have been sorted out. Despite the potential therapeutic benefits of STR, further research is warranted to elucidate its hepatotoxicity, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and mechanisms. CONCLUSION This review serves to emphasize the therapeutic potential of STR and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the toxicological properties of STR, with particular emphasis on its hepatotoxicity and neurotoxicity. Such research endeavors have the potential to standardize the rational application of STR for optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Fen-Fen Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Hui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Wang C, Zhang H, Zhang J, Hong Z, Miao C, Wang T, Lin H, Li Y, Liu G. Mycoplasma pneumoniae-induced Kawasaki disease via PINK1/Parkin-mediated mitophagy. Exp Cell Res 2024; 441:114182. [PMID: 39094903 DOI: 10.1016/j.yexcr.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.
Collapse
Affiliation(s)
- Chengyi Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China
| | - Huijie Zhang
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China
| | - Jinyan Zhang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Zesheng Hong
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Chong Miao
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China
| | - Tengyang Wang
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Han Lin
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Yinglin Li
- Pediatric Intensive Care Unit, The Affiliated Hospital(Group) of Putian University, Putian 351100, PR China.
| | - Guanghua Liu
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
4
|
Pan B, Ma X, Zhou S, Cheng X, Fang J, Yi Q, Li Y, Li S, Yang J. Predicting mitophagy-related genes and unveiling liver endothelial cell heterogeneity in hepatic ischemia-reperfusion injury. Front Immunol 2024; 15:1370647. [PMID: 38694511 PMCID: PMC11061384 DOI: 10.3389/fimmu.2024.1370647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Background Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.
Collapse
Affiliation(s)
- Bochen Pan
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuan Ma
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoling Cheng
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianwei Fang
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiuyun Yi
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuke Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Chen Y, Tan X, Zhang W, Li Y, Deng X, Zeng J, Huang L, Ma X. Natural products targeting macroautophagy signaling in hepatocellular carcinoma therapy: Recent evidence and perspectives. Phytother Res 2024; 38:1623-1650. [PMID: 38302697 DOI: 10.1002/ptr.8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Hepatocellular carcinoma (HCC), presently the second leading cause of global cancer-related mortality, continues to pose significant challenges in the realm of medical oncology, impacting both clinical drug selection and mechanistic research. Recent investigations have unveiled autophagy-related signaling as a promising avenue for HCC treatment. A growing body of research has highlighted the pivotal role of autophagy-modulating natural products in inhibiting HCC progression. In this context, we provide a concise overview of the fundamental autophagy mechanism and delineate the involvement of autophagic signaling pathways in HCC development. Additionally, we review pertinent studies demonstrating how natural products regulate autophagy to mitigate HCC. Our findings indicate that natural products exhibit cytotoxic effects through the induction of excessive autophagy, simultaneously impeding HCC cell proliferation by autophagy inhibition, thereby depriving HCC cells of essential energy. These effects have been associated with various signaling pathways, including PI3K/AKT, MAPK, AMPK, Wnt/β-catenin, Beclin-1, and ferroautophagy. These results underscore the considerable therapeutic potential of natural products in HCC treatment. However, it is important to note that the present study did not establish definitive thresholds for autophagy induction or inhibition by natural products. Further research in this domain is imperative to gain comprehensive insights into the dual role of autophagy, equipping us with a better understanding of this double-edged sword in HCC management.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Chen X, Song Y. Integrating network pharmacology and Mendelian randomization to explore potential targets of matrine against ovarian cancer. Technol Health Care 2024; 32:3889-3902. [PMID: 38968061 DOI: 10.3233/thc-231051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
BACKGROUND Matrine has been reported inhibitory effects on ovarian cancer (OC) cell progression, development, and apoptosis. However, the molecular targets of matrine against OC and the underlying mechanisms of action remain elusive. OBJECTIVE This study endeavors to unveil the potential targets of matrine against OC and to explore the intricate relationships between these targets and the pathogenesis of OC. METHODS The effects of matrine on the OC cells (A2780 and AKOV3) viability, apoptosis, migration, and invasion was investigated through CCK-8, flow cytometry, wound healing, and Transwell analyses, respectively. Next, Matrine-related targets, OC-related genes, and ribonucleic acid (RNA) sequence data were harnessed from publicly available databases. Differentially expressed analyses, protein-protein interaction (PPI) network, and Venn diagram were involved to unravel the core targets of matrine against OC. Leveraging the GEPIA database, we further validated the expression levels of these core targets between OC cases and controls. Mendelian randomization (MR) study was implemented to delve into potential causal associations between core targets and OC. The AutoDock software was used for molecular docking, and its results were further validated using RT-qPCR in OC cell lines. RESULTS Matrine reduced the cell viability, migration, invasion and increased the cell apoptosis of A2780 and AKOV3 cells (P< 0.01). A PPI network with 578 interactions among 105 candidate targets was developed. Finally, six core targets (TP53, CCND1, STAT3, LI1B, VEGFA, and CCL2) were derived, among which five core targets (TP53, CCND1, LI1B, VEGFA, and CCL2) differential expressed in OC and control samples were further picked for MR analysis. The results revealed that CCND1 and TP53 were risk factors for OC. Molecular docking analysis demonstrated that matrine had good potential to bind to TP53, CCND1, and IL1B. Moreover, matrine reduced the expression of CCND1 and IL1B while elevating P53 expression in OC cell lines. CONCLUSIONS We identified six matrine-related targets against OC, offering novel insights into the molecular mechanisms underlying the therapeutic effects of matrine against OC. These findings provide valuable guidance for developing more efficient and targeted therapeutic approaches for treating OC.
Collapse
Affiliation(s)
- Xiaoqun Chen
- Department of Ultrasound, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, Zhejiang, China
| | - Yingliang Song
- Department of Gynaecology and Obstetrics, Xinchang County People's Hospital, Xinchang, Zhejiang, China
| |
Collapse
|
7
|
Kou L, Xie X, Chen X, Li B, Li J, Li Y. The progress of research on immune checkpoint inhibitor resistance and reversal strategies for hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:3953-3969. [PMID: 37917364 PMCID: PMC10992589 DOI: 10.1007/s00262-023-03568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in humans, which is prone to recurrence and metastasis and has a poor prognosis. The occurrence and progression of HCC are closely related to immune elimination, immune homeostasis, and immune escape of the immune system. In recent years, immunotherapy, represented by immune checkpoint inhibitors (ICIs), has shown powerful anti-tumor capabilities in HCC patients. However, there are still some HCC patients who cannot benefit from ICIs treatment due to their innate or acquired drug resistance. Therefore, it is of great practical significance to explore the possible mechanisms of resistance to ICIs in HCC and to use them as a target to design strategies to reverse resistance, to overcome drug resistance in HCC and to improve the prognosis of patients. This article summarizes the possible primary (tumor microenvironment alteration, and signaling pathways, etc.) and acquired (immune checkpoint upregulation) resistance mechanisms in patients with HCC treated with ICIs, and based on this, discusses the status and effectiveness of combination drug strategy to reverse drug resistance, to provide a reference for subsequent related studies and decisions.
Collapse
Affiliation(s)
- Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Shi Y. Transcriptome Analysis Reveals the Involvement of Mitophagy and Peroxisome in the Resistance to QoIs in Corynespora cassiicola. Microorganisms 2023; 11:2849. [PMID: 38137993 PMCID: PMC10745780 DOI: 10.3390/microorganisms11122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Quinone outside inhibitor fungicides (QoIs) are crucial fungicides for controlling plant diseases, but resistance, mainly caused by G143A, has been widely reported with the high and widespread use of QoIs. However, two phenotypes of Corynespora casiicola (RI and RII) with the same G143A showed significantly different resistance to QoIs in our previous study, which did not match the reported mechanisms. Therefore, transcriptome analysis of RI and RII strains after trifloxystrobin treatment was used to explore the new resistance mechanism in this study. The results show that 332 differentially expressed genes (DEGs) were significantly up-regulated and 448 DEGs were significantly down-regulated. The results of GO and KEGG enrichment showed that DEGs were most enriched in ribosomes, while also having enrichment in peroxide, endocytosis, the lysosome, autophagy, and mitophagy. In particular, mitophagy and peroxisome have been reported in medicine as the main mechanisms of reactive oxygen species (ROS) scavenging, while the lysosome and endocytosis are an important organelle and physiological process, respectively, that assist mitophagy. The oxidative stress experiments showed that the oxidative stress resistance of the RII strains was significantly higher than that of the RI strains: specifically, it was more than 1.8-fold higher at a concentration of 0.12% H2O2. This indicates that there is indeed a significant difference in the scavenging capacity of ROS between the two phenotypic strains. Therefore, we suggest that QoIs' action caused a high production of ROS, and that scavenging mechanisms such as mitophagy and peroxisomes functioned in RII strains to prevent oxidative stress, whereas RI strains were less capable of resisting oxidative stress, resulting in different resistance to QoIs. In this study, it was first revealed that mitophagy and peroxisome mechanisms available for ROS scavenging are involved in the resistance of pathogens to fungicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| |
Collapse
|
9
|
Zhou TY, Ma RX, Li J, Zou B, Yang H, Ma RY, Wu ZQ, Li J, Yao Y. Review of PINK1-Parkin-mediated mitochondrial autophagy in Alzheimer's disease. Eur J Pharmacol 2023; 959:176057. [PMID: 37751832 DOI: 10.1016/j.ejphar.2023.176057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Mitochondrial autophagy plays an important role in maintaining the complexity of mitochondrial functions and removing damaged mitochondria, of which the PINK1-Parkin signal pathway is one of the most classical pathways. Thus, a comprehensive and in-depth interpretation of the PINK1-Parkin signal pathway might deepen our understanding on the impacts of mitochondrial autophagy. Alzheimer's disease (AD) is a classical example of neurodegenerative disease. Research on the pathogenesis and treatments of AD has been a focus of scientific research because of its complexity and the limitations of current drug therapies. It was reported that the pathogenesis of AD might be related to mitochondrial autophagy due to excessive deposition of Aβ protein and aggravation of the phosphorylation of Tau protein. Two key proteins in the PINK1-Parkin signaling pathway, PINK1 and Parkin, have important roles in the folding and accumulation of Aβ protein and the phosphorylation of Tau protein. In addition, the intermediate signal molecules in the PINK1-Parkin signal pathway also have certain effects on AD. In this paper, we first described the role of PINK1-Parkin signal pathway on mitochondrial autophagy, then discussed and analyzed the effect of the PINK1-Parkin signal pathway in AD and other metabolic diseases. Our aim was to provide a theoretical direction to further elucidate the pathogenesis of AD and highlight the key molecules related to AD that could be important targets used for AD drug development.
Collapse
Affiliation(s)
- Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hui Yang
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
10
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
11
|
Ni H, Liu R, Zhou Z, Jiang B, Wang B. Parkin enhances sensitivity of paclitaxel to nasopharyngeal carcinoma by activating BNIP3/NIX-mediated mitochondrial autophagy. CHINESE J PHYSIOL 2023; 66:503-515. [PMID: 38149563 DOI: 10.4103/cjop.cjop-d-23-00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
As a malignant head and neck cancer, nasopharyngeal carcinoma (NPC) has high morbidity. Parkin expression has been reported to be reduced in NPC tissues and its upregulation could enhance paclitaxel-resistant cell cycle arrest. This study was performed to explore the possible mechanism of Parkin related to B-cell lymphoma-2 (Bcl-2)/adenovirus E1B 19 kDa interacting protein 3 (BNIP3)/BNIP3-like (NIX)-mediated mitochondrial autophagy in NPC cells. Initially, after Parkin overexpression or silencing, cell viability and proliferation were evaluated by lactate dehydrogenase and colony formation assays. JC-1 staining was used to assess the mitochondrial membrane potential. In addition, the levels of cellular reactive oxygen species (ROS) and mitochondrial ROS were detected using DCFH-DA staining and mitochondrial ROS (MitoSOX) red staining. The expression of proteins was measured using Western blot. Results showed that Parkin overexpression inhibited, whereas Parkin knockdown promoted the proliferation of paclitaxel-treated NPC cells. Besides, Parkin overexpression induced, whereas Parkin knockdown inhibited mitochondrial apoptosis in paclitaxel-treated NPC cells, as evidenced by the changes of Cytochrome C (mitochondria), Cytochrome C (cytoplasm), BAK, and Bcl-2 expression. Moreover, the levels of ROS, mitochondrial membrane potential, and LC3II/LC3I in paclitaxel-treated C666-1 cells were hugely elevated by Parkin overexpression and were all declined by Parkin knockdown in CNE-3 cells. Furthermore, Parkin upregulation activated, whereas Parkin downregulation inactivated BNIP3/NIX signaling. Further, BNIP3 silencing or overexpression reversed the impacts of Parkin upregulation or downregulation on the proliferation and mitochondrial apoptosis of paclitaxel-treated NPC cells. Particularly, Mdivi-1 (mitophagy inhibitor) or rapamycin (an activator of autophagy) exerted the same effects on NPC cells as BNIP3 silencing or overexpression, respectively. Collectively, Parkin overexpression activated BNIP3/NIX-mediated mitochondrial autophagy to enhance sensitivity to paclitaxel in NPC.
Collapse
Affiliation(s)
- Haifeng Ni
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Renhui Liu
- Department of Otolaryngology Head and Neck Surgery, Jiange People's Hospital, Jiange, Sichuan, China
| | - Zhen Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Jiang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Luo P, Zhang Q, Shen S, An Y, Yuan L, Wong YK, Huang S, Huang S, Huang J, Cheng G, Tian J, Chen Y, Zhang X, Li W, He S, Wang J, Du Q. Mechanistic engineering of celastrol liposomes induces ferroptosis and apoptosis by directly targeting VDAC2 in hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100874. [PMID: 38149060 PMCID: PMC10749887 DOI: 10.1016/j.ajps.2023.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of most common and deadliest malignancies. Celastrol (Cel), a natural product derived from the Tripterygium wilfordii plant, has been extensively researched for its potential effectiveness in fighting cancer. However, its clinical application has been hindered by the unclear mechanism of action. Here, we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and anti-tumor capacity by developing a Cel-based liposomes in HCC. We demonstrated that Cel selectively targets the voltage-dependent anion channel 2 (VDAC2). Cel directly binds to the cysteine residues of VDAC2, and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore (mPTP) function. We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells. Moreover, coencapsulation of Cel into alkyl glucoside-modified liposomes (AGCL) improved its antitumor efficacy and minimized its side effects. AGCL has been shown to effectively suppress the proliferation of tumor cells. In a xenograft nude mice experiment, AGCL significantly inhibited tumor growth and promoted apoptosis. Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death, while the Cel liposomes enhance its targetability and reduces side effects. Overall, Cel shows promise as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuo Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yehai An
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yin-Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sizhe Huang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingnan Huang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiahang Tian
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Chen
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyong Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiguang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 100872, China
| | - Songqi He
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jigang Wang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Zhang L, Li R, Zheng T, Wu H, Yin Y. An integrated analytical strategy to decipher the metabolic profile of alkaloids in Compound Kushen injection based on UHPLC-ESI-QTOF/MS E. Xenobiotica 2023:1-29. [PMID: 37335262 DOI: 10.1080/00498254.2023.2227976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/21/2023]
Abstract
1. Compound Kushen injection (CKI) is a kind of sterilized water-soluble traditional Chinese medicine preparation that has been used for the clinical treatment of a variety of cancers (hepatocellular carcinoma, lung cancer, etc.) for nineteen years. However, to date, the metabolism-related study on CKI in vivo has not been conducted.2. An integrated analytical strategy was established to investigate the metabolic profile of alkaloids of CKI in rat plasma, urine and feces based on ultra-high performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry in MSE mode (UHPLC-ESI-QTOF/MSE).3. Nineteen prototype alkaloids (including 12 matrine-type alkaloids, 2 cytisine-type alkaloids, 3 lupinine-type alkaloids, and 2 aloperine-type alkaloids) of CKI were identified in vivo. Furthermore, seventy-one metabolites of alkaloids (including 11 of lupanine-related metabolites, 14 of sophoridine-related metabolites, 14 of lamprolobine-related metabolites and 32 of baptifoline-related metabolites) were tentatively characterized. Metabolic pathways involved in the metabolism of phase I (include oxidation, reduction, hydrolysis, and desaturation), phase II (mainly include glucuronidation, acetylcysteine or cysteine conjugation, methylation, acetylation and sulfation) and associated combination reactions.4. The integrated analytical strategy was successfully used to characterize the prototype alkaloids and their metabolites in CKI, and the results laying a foundation for further study its pharmacodynamic substances in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine & Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
14
|
Sun K, Zhang Y, Li Y, Yang P, Sun Y. Biochemical Targets and Molecular Mechanism of Matrine against Aging. Int J Mol Sci 2023; 24:10098. [PMID: 37373246 DOI: 10.3390/ijms241210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study is to explore the potential targets and molecular mechanism of matrine (MAT) against aging. Bioinformatic-based network pharmacology was used to investigate the aging-related targets and MAT-treated targets. A total of 193 potential genes of MAT against aging were obtained and then the top 10 key genes (cyclin D1, cyclin-dependent kinase 1, Cyclin A2, androgen receptor, Poly [ADP-ribose] polymerase-1 (PARP1), histone-lysine N-methyltransferase, albumin, mammalian target of rapamycin, histone deacetylase 2, and matrix metalloproteinase 9) were filtered by the molecular complex detection, maximal clique centrality (MMC) algorithm, and degree. The Metascape tool was used for analyzing biological processes and pathways of the top 10 key genes. The main biological processes were response to an inorganic substance and cellular response to chemical stress (including cellular response to oxidative stress). The major pathways were involved in cellular senescence and the cell cycle. After an analysis of major biological processes and pathways, it appears that PARP1/nicotinamide adenine dinucleotide (NAD+)-mediated cellular senescence may play an important role in MAT against aging. Molecular docking, molecular dynamics simulation, and in vivo study were used for further investigation. MAT could interact with the cavity of the PARP1 protein with the binding energy at -8.5 kcal/mol. Results from molecular dynamics simulations showed that the PARP1-MAT complex was more stable than PARP1 alone and that the binding-free energy of the PARP1-MAT complex was -15.962 kcal/mol. The in vivo study showed that MAT could significantly increase the NAD+ level of the liver of d-gal-induced aging mice. Therefore, MAT could interfere with aging through the PARP1/NAD+-mediated cellular senescence signaling pathway.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingzi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingliang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Pengyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingting Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
15
|
Li C, Zhu Y, Liu W, Xiang W, He S, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Impaired mitophagy causes mitochondrial DNA leakage and STING activation in ultraviolet B-irradiated human keratinocytes HaCaT. Arch Biochem Biophys 2023; 737:109553. [PMID: 36842493 DOI: 10.1016/j.abb.2023.109553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Ultraviolet B (UVB) irradiation causes skin damages. In this study, we focus on the involvement of mitochondrial disorders in UVB injury. Surprisingly, UVB irradiation increases the amounts of mitochondria in human immortalized keratinocytes HaCaT. However, further analysis shows that ATP levels decreased by UVB treatment in accordance with the collapse of mitochondrial membrane potential (MMP), suggesting an accumulation of dysfunctional mitochondria in UVB-irradiated HaCaT cells. Mitophagy, mainly mediated by PINK1 and parkin, is critical for the elimination of damaged mitochondria. Western blot results show that the levels of both PINK1 and parkin are decreased in UVB-irradiated cells, indicating the impairment of mitophagy. Silencing the expression of PINK1 or parkin by transfection of siRNA shows essentially the same damage to the cells as UVB irradiation does, including increased mitochondrial amount, decreased MMP and ATP production, and enhanced apoptosis, evidencing that repression of PINK1/parkin-mediated mitophagy plays a primary cause of UVB-caused cells damages. We previously found that HaCaT cells exposed to UVB showed activation of the cGAS-STING pathway and apoptosis. Here, silencing PINK1 or parkin also increases the protein levels of cGAS and STING, facilitates nuclear accumulation of NF-κB, and promotes the transcription of IFNβ, suggesting for the activation of STING pathway. Mitophagy impairment either by UVB-irradiation or by PINK1/parkin silencing initiates caspase-3-mediated apoptosis, as shown by the activation of caspase-3 and cleavage of PARP, as well as the increase of Hoechst-positive stained cells and Annexin V-positive cells. Further studies find that Bax-mediated permeabilization of mitochondrial membrane is critical for cell apoptosis, as well as the cytosolic leakage of mtDNA in UVB-treated cells, which results in cGAS-STING activation, and these processes are negatively-regulated by PINK1/parkin-mediated mitophagy. This study reveals the involvement of dysfunctional mitochondria due to impaired mitophagy in the damaging effect of UVB irradiation on HaCaT cells. Restoring the mitophagy has the potential to be developed as a new strategy to protect skin from UVB damages.
Collapse
Affiliation(s)
- Can Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yuying Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Wendie Xiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Sijun He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China; Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China.
| |
Collapse
|
16
|
Xu FQ, Dong MM, Wang ZF, Cao LD. Metabolic rearrangements and intratumoral heterogeneity for immune response in hepatocellular carcinoma. Front Immunol 2023; 14:1083069. [PMID: 36776894 PMCID: PMC9908004 DOI: 10.3389/fimmu.2023.1083069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Liver cancer is one of the most common malignant tumors globally. Not only is it difficult to diagnose, but treatments are scarce and the prognosis is generally poor. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Aggressive cancer cells, such as those found in HCC, undergo extensive metabolic rewiring as tumorigenesis, the unique feature, ultimately causes adaptation to the neoplastic microenvironment. Intratumoral heterogeneity (ITH) is defined as the presence of distinct genetic features and different phenotypes in the same tumoral region. ITH, a property unique to malignant cancers, results in differences in many different features of tumors, including, but not limited to, tumor growth and resistance to chemotherapy, which in turn is partly responsible for metabolic reprogramming. Moreover, the different metabolic phenotypes might also activate the immune response to varying degrees and help tumor cells escape detection by the immune system. In this review, we summarize the reprogramming of glucose metabolism and tumoral heterogeneity and their associations that occur in HCC, to obtain a better understanding of the mechanisms of HCC oncogenesis.
Collapse
Affiliation(s)
- Fei-Qi Xu
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Meng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Zhi-Fei Wang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li-Dong Cao
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Wang L, Zheng P, Cui Y, Zhang Z, Song K, Liu Y, Liu J. Regulation of Parkin in Cr (VI)-induced mitophagy in chicken hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114315. [PMID: 36423368 DOI: 10.1016/j.ecoenv.2022.114315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The large amount of heavy metal chromium emissions from industrial production, ore smelting and sewage treatment plants have made chromium one of the most widespread heavy metal pollutants, with Cr (VI) being the most toxic. In recent years, people have gradually recognized the great harm of heavy metal chromium pollution, but the research on its pathogenic mechanism is still not deep enough. In this study, we treated the Primary cells of chicken liver with Cr (VI) to establish a model of toxicity. The optimal treatment time and Cr (VI) concentration were screened using the CCK-8 test. The intracellular mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured qualitatively and quantitatively by laser confocal and flow cytometry, respectively. This result was confirmed by the fact that Cr (VI) could cause mitophagy by causing damage to mitochondria. Subsequently, this study used LMH cells to construct a Parkin silencing model to further investigate that Parkin exerts the function on the Cr (VI)-induced mitophagy in chicken hepatocytes. The results showed that the knockdown of Parkin effectively blocked p62 degradation and LC3 lipidation and that PINK1 expression was significantly inhibited in LMH cells, further suggesting that the knockdown of Parkin effectively inhibited mitophagy. Mitochondrial morphology, MMP, and ROS were observed using laser confocal. The results showed that Parkin knockdown resulted in mitochondrial fission and increased levels of reactive oxygen species, together with increased depolarization of the mitochondrial membrane potential. These changes led to increased mitochondrial damage. In conclusion, this study showed that Cr (VI) could cause the occurrence of mitophagy by damaging mitochondria, and Parkin played a crucial role in Cr (VI)-induced mitophagy in chicken hepatocytes.
Collapse
Affiliation(s)
- Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Pimiao Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yukun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Zhuanglong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| |
Collapse
|
18
|
Wang M, Luan S, Fan X, Wang J, Huang J, Gao X, Han D. The emerging multifaceted role of PINK1 in cancer biology. Cancer Sci 2022; 113:4037-4047. [PMID: 36071695 DOI: 10.1111/cas.15568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
For its various important functions in cells, phosphatase and tensin homolog-induced kinase 1 (PINK1) has drawn considerable attention for the role it plays in early-onset Parkinson's disease. In recent years, emerging evidence has supported the hypothesis that PINK1 plays a part in regulating many physiological and pathophysiological processes in cancer cells, including cytoplasmic homeostasis, cell survival, and cell death. According to the findings of these studies, PINK1 can function as a tumor promoter or suppressor, showing a duality that is dependent on the context. In this study we review the mechanistic characters relating to PINK1 based on available published data from peer-reviewed articles, The Cancer Genome Atlas data mining, and cell-based assays. This mini review focuses on some of the interplays between PINK1 and the context and recent developments in the field, including its growing involvement in mitophagy and its nonmitophagy organelles-related function. This review aims to help readers better grasp how PINK1 is functioning in cell physiological and pathophysiological processes, especially in cancer biology.
Collapse
Affiliation(s)
- Meng Wang
- Department of Colorectal Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shijia Luan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xiang Fan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ju Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Liu C, Wu Z, Wang L, Yang Q, Huang J, Huang J. A Mitophagy-Related Gene Signature for Subtype Identification and Prognosis Prediction of Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232012123. [PMID: 36292980 PMCID: PMC9603050 DOI: 10.3390/ijms232012123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is the sixth most common cancer. In this study, the correlation between mitophagy and HCC prognosis was evaluated using data from The Cancer Genome Atlas (TCGA). Clinical and transcriptomic data of HCC patients were downloaded from TCGA dataset, and mitophagy-related gene (MRG) datasets were obtained from the Molecular Signature Database. Then, a consensus clustering analysis was performed to classify the patients into two clusters. Furthermore, tumor prognosis, clinicopathological features, functional analysis, immune infiltration, immune checkpoint (IC)-related gene expression level, tumor stem cells, ferroptosis status, and N6-methyladenosine analysis were compared between the two clusters. Finally, a mitophagy-related signature was developed. Two clusters (C1 and C2) were identified using the consensus clustering analysis based on the MRG signature. Patients with the C1 subtype exhibited upregulated pathways with better liver function, downregulated cancer-related pathways, lower cancer stem cell scores, lower Tumor Immune Dysfunction and Exclusion scores (TIDE), different ferroptosis status, and better prognosis compared with the patients with the C2 subtype. The C2 subtype was characterized by the increased grade of HCC, as well as the increased number of immune-related pathways and m6A-related genes. Higher immune scores were also observed for the C2 subtype. A signature containing four MRGs (PGAM5, SQSTM1, ATG9A, and GABARAPL1) which can accurately predict the prognosis of HCC patients was then identified. This four-gene signature exhibited a predictive effect in five other cancer types, namely glioma, uveal melanoma, acute myeloid leukemia, adrenocortical carcinoma, and mesothelioma. The mitophagy-associated subtypes of HCC were closely related to the immune microenvironment, immune checkpoint-related gene expression, cancer stem cells, ferroptosis status, m6A, prognosis, and HCC progression. The established MRG signature could predict prognosis in patients with HCC.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200437, China
| | - Liping Wang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
| | - Qian Yang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
| | - Ji Huang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Department of Pathophysiology, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
- Correspondence:
| |
Collapse
|
20
|
The Effects of Qinghao-Kushen and Its Active Compounds on the Biological Characteristics of Liver Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8763510. [PMID: 35722140 PMCID: PMC9205744 DOI: 10.1155/2022/8763510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims. Artemisia annua (Qinghao) and Sophora flavescens (Kushen) are traditional Chinese medicines (TCMs). They are widely used in disease therapy, including hepatocellular carcinoma (HCC). However, their key compounds and targets for HCC treatment are unclear. This article mainly analyzed the vital active compounds and the mechanism of Qinghao-Kushen acting on HCC. Methods. First, we chose a traditional Chinese medicine, which has an excellent clinical effect on HCC by network meta-analysis. Then, we composed the Qinghao-Kushen herb pair and prepared the medicated serum. The active compounds of Qinghao-Kushen were verified by the LC-MS method. Next, we detected key targets from PubChem, SymMap, SwissTargetPrediction, DisGeNET, and GeneCards databases. Subsequently, the mechanism of Qinghao-Kushen was predicted by network pharmacology strategy and primarily examined in HuH-7 cells, HepG2 cells, and HepG2215 cells. Results. The effect of the Qinghao-Kushen combination was significantly better than that of single Qinghao or single Kushen in HepG2 and HuH-7 cells. Qinghao-Kushen increased the expression of activated caspase-3 protein than Qinghao or Kushen alone in HepG2 and HepG2215 cells. Network analyses and the LC-MS method revealed that the pivotal compounds of Qinghao-Kushen were matrine and scopoletin. GSK-3β was one of the critical molecules related to Qinghao-Kushen. We confirmed that Qinghao-Kushen and matrine-scopoletin decreased the expression of GSK-3β in HepG2 cells while increased GSK-3β expression in HepG2215 cells. Conclusions. This work not only illustrated that the practical components of Qinghao-Kushen on HCC were matrine and scopoletin but shed light on the inhibitory of Qinghao-Kushen and matrine-scopoletin on liver cancer cells. Moreover, Qinghao-Kushen and matrine-scopoletin had a synergistic effect over the drug alone in HuH-7, HepG2, or HepG2215 cells. GSK-3β may be a potential target for HCC therapy.
Collapse
|
21
|
Chen F, Pan Y, Xu J, Liu B, Song H. Research progress of matrine's anticancer activity and its molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114914. [PMID: 34919987 DOI: 10.1016/j.jep.2021.114914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND and ethnopharmacological relevance: Matrine (MT), a type of alkaloid extracted from the Sophora family of traditional Chinese medicine, has been documented to exert a variety of pharmacological effects, including anti-inflammatory, anti-allergic, anti-viral, anti-fibrosis, and cardiovascular protection. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, expelling insects, and promoting urination. Malignant tumors are the most important medical issue and are also the second leading cause of death worldwide. Numerous natural substances have recently been revealed to have potent anticancer properties, and several have been used in clinical trials. AIMS OF THE STUDY To summarize the antitumor effects and associated mechanisms of MT, we compiled this review by combining a huge body of relevant literature and our previous research. MATERIALS AND METHODS As demonstrated, we grouped the pharmacological effects of MT via a PubMed search. Further, we described the mechanism and current pharmacological research on MT's antitumor activity. RESULTS Additionally, extensive research has demonstrated that MT possesses superior antitumor properties, including accelerating cell apoptosis, inhibiting tumor cell growth and proliferation, inducing cell cycle arrest, inhibiting cancer metastasis and invasion, inhibiting angiogenesis, inducing autophagy, reversing multidrug resistance and inhibiting cell differentiation, thus indicating its significant potential for cancer treatment and prognosis. CONCLUSION This article summarizes current advances in research on the anticancer properties of MT and its molecular mechanism, to provide references for future research.
Collapse
Affiliation(s)
- Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Yunxia Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
22
|
Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharmacol 2022; 199:115011. [PMID: 35314166 DOI: 10.1016/j.bcp.2022.115011] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic membrane coupling regions formed by the coupling of the mitochondrial outer membrane and endoplasmic reticulum (ER). MAMs are involved in the mitochondrial dynamics, mitophagy, Ca2+ exchange, and ER stress. A large number of studies indicate that many proteins are involved in the formation of MAMs, including dynamic-related protein 1 (Drp1), DJ-1, PTEN-induced putative kinase 1 (PINK), α-synuclein (α-syn), sigma-1 receptor (S1R), mitofusin-2 (Mfn2), presenilin-1 (PS1), protein kinase R (PKR)-like ER kinase (PERK), Parkin, Cyclophilin D (CypD), glucose-related protein 75 (Grp75), FUN14 domain containing 1 (Fundc1), vesicle-associated membrane-protein-associated protein B (VAPB), phosphofurin acidic cluster sorting protein 2 (PACS-2), ER oxidoreductin 1 (Ero1), and receptor expression-enhancing protein 1 (REEP1). These proteins play an important role in the structure and functions of the MAMs. Abnormalities in these MAM proteins further contribute to the occurrence and development of related diseases, such as neurodegenerative diseases, non-alcoholicfattyliverdisease (NALFD), type 2 diabetes mellitus (T2DM), and diabetic kidney (DN). In this review, we introduce important proteins involved in the structure and the functions of the MAMs. Furthermore, we effectively summarize major insights about these proteins that are involved in the physiopathology of several diseases through the effect on MAMs.
Collapse
|
23
|
Chen A, Fang D, Ren Y, Wang Z. Matrine protects colon mucosal epithelial cells against inflammation and apoptosis via the Janus kinase 2 /signal transducer and activator of transcription 3 pathway. Bioengineered 2022; 13:6490-6499. [PMID: 35220895 PMCID: PMC8974140 DOI: 10.1080/21655979.2022.2031676] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ulcerative colitis (UC) is a type of chronic disease of inflammation, and matrine has anti-inflammatory activity. However, it is unclear that whether matrine can alleviate UC. This study aimed to evaluate the effect of matrine on DSS-induced intestinal epithelial cell injury. Cell viability was performed by MTT assay. Then cell apoptosis was analyzed using the TUNEL assay and flow cytometry. The levels of interleukin (IL)-2, IL-6, TNF-α, and IL-1β were evaluated using qRT-PCR. Myeloperoxidase (MPO) activity was detected using ELISA assay. Nitric oxide (NO) production was detected by the Griess reagent. Bax, cleaved caspase-3, Bcl-2, JAK2, p-JAK2, STAT3, p-STAT3, STAT5, p-STAT5 levels were measured by Western blot. Bax (6A7) was asses using immunoprecipitation and immunofluorescence assays. The results illustrated that cell viability was inhibited as the concentration of DSS increased. Matrine did not affect cell viability at the concentration of 0–2 mg/ml but inhibited cell viability in a time-independent manner. Matrine suppressed the levels of pro-inflammatory factors, MPO activity, NO production, and apoptosis of DSS-stimulated cells. Furthermore, we found that matrine inhibited the levels of p-JAK2/JAK2 and p-STAT3/STAT3 but did not affect p-STAT5/STAT5. AG490 treatment further enhanced the effect of matrine on the apoptosis and pro-inflammatory factor levels in DSS-induced cells. In summary, matrine protected NCM460 cell against injury by inactivating the JAK2/STAT3 pathway. These data suggested for the first time that matrine may effective in treating UC.
Collapse
Affiliation(s)
- Aimei Chen
- Lianyungang TCM Branch of Jiangsu Union Technical Institute, Lianyungang, China
| | - Defang Fang
- Lianyungang TCM Branch of Jiangsu Union Technical Institute, Lianyungang, China
| | - Yan Ren
- Nancheng Community Health Service Center, Lianyungang, China
| | - Zhiyong Wang
- Xinhua Hospital Chongming Branch Gastroenterology, Shanghai, China
| |
Collapse
|
24
|
Liu L, Liu A, Dong J, Zuo Z, Liu X. Proteasome 26S subunit, non-ATPase 1 (PSMD1) facilitated the progression of lung adenocarcinoma by the de-ubiquitination and stability of PTEN-induced kinase 1 (PINK1). Exp Cell Res 2022; 413:113075. [DOI: 10.1016/j.yexcr.2022.113075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
|
25
|
Sun X, Shu Y, Ye G, Wu C, Xu M, Gao R, Huang D, Zhang J. Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm Sin B 2022; 12:838-852. [PMID: 35256949 PMCID: PMC8897022 DOI: 10.1016/j.apsb.2021.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Parkin, an E3 ubiquitin ligase, plays a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Accumulating evidence suggests that the acetylation modification of the key mitophagy machinery influences mitophagy level, but the underlying mechanism is poorly understood. Here, our study demonstrated that inhibition of histone deacetylase (HDAC) by treatment of HDACis activates mitophagy through mediating Parkin acetylation, leading to inhibition of cervical cancer cell proliferation. Bioinformatics analysis shows that Parkin expression is inversely correlated with HDAC2 expression in human cervical cancer, indicating the low acetylation level of Parkin. Using mass spectrometry, Parkin is identified to interact with two upstream molecules, acetylase acetyl-CoA acetyltransferase 1 (ACAT1) and deacetylase HDAC2. Under treatment of suberoylanilide hydroxamic acid (SAHA), Parkin is acetylated at lysine residues 129, 220 and 349, located in different domains of Parkin protein. In in vitro experiments, combined mutation of Parkin largely attenuate the interaction of Parkin with PTEN induced putative kinase 1 (PINK1) and the function of Parkin in mitophagy induction and tumor suppression. In tumor xenografts, the expression of mutant Parkin impairs the tumor suppressive effect of Parkin and decreases the anticancer activity of SAHA. Our results reveal an acetylation-dependent regulatory mechanism governing Parkin in mitophagy and cervical carcinogenesis, which offers a new mitophagy modulation strategy for cancer therapy.
Collapse
Key Words
- ACAT1
- ACAT1, acetyl-CoA acetyltransferase 1
- Acetylation
- CCK-8, cell counting kit-8
- COXⅣ, cytochrome c oxidase Ⅳ
- Cervical cancer
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HDAC, histone deacetylase
- HDAC2
- HIF-1α, hypoxia inducible factor-1α
- HSP60, heat shock protein 60 kDa
- LC3, microtubule-associated proteins 1A/1B light chain 3
- MFN2, mitofusion 2
- MS, mass spectrometry
- Mitophagy
- PARK2, Parkin
- PINK1, PTEN induced putative kinase 1
- Parkin
- ROS, reactive oxygen species
- SAHA, suberoylanilide hydroxamic acid
- TIM23, translocase of the inner membrane 23
- TOMM20, translocase of outer mitochondrial membrane 20
- TSA, trichostatin A
- Tumor suppression
- ULK1, unc-51 like autophagy activating kinase 1
- Ubiquitination
- VDAC1, voltage-dependent anion-selective channel protein 1
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Cancer Center of Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310028, China
| | - Guiqin Ye
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310014, China
| | - Caixia Wu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Mengting Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310028, China
| | - Ruilan Gao
- Department of Hematology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310014, China
- Corresponding authors.
| | - Jianbin Zhang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Corresponding authors.
| |
Collapse
|
26
|
Shin YY, Seo Y, Oh SJ, Ahn JS, Song MH, Kang MJ, Oh JM, Lee D, Kim YH, Sung ES, Kim HS. Melatonin and verteporfin synergistically suppress the growth and stemness of head and neck squamous cell carcinoma through the regulation of mitochondrial dynamics. J Pineal Res 2022; 72:e12779. [PMID: 34826168 DOI: 10.1111/jpi.12779] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022]
Abstract
The prevalence of head and neck squamous cell carcinoma (HNSCC) has continued to rise for decades. However, drug resistance to chemotherapeutics and relapse, mediated by cancer stem cells (CSCs), remains a significant impediment in clinical oncology to achieve successful treatment. Therefore, we focused on analyzing CSCs in HNSCC and demonstrated the effect of melatonin (Mel) and verteporfin (VP) on SCC-25 cells. HNSCC CSCs were enriched in the reactive oxygen species-low state and in sphere-forming cultures. Combination treatment with Mel and VP decreased HNSCC viability and increased apoptosis without causing significant damage to normal cells. Sphere-forming ability and stem cell population were reduced by co-treatment with Mel and VP, while mitochondrial ROS level was increased by the treatment. Furthermore, the expression of mitophagy markers, parkin and PINK1, was significantly decreased in the co-treated cells. Mel and VP induced mitochondrial depolarization and inhibited mitochondrial function. Parkin/TOM20 was localized near the nucleus and formed clusters of mitochondria in the cells after treatment. Moreover, Mel and VP downregulated the expression of markers involved in epithelial-mesenchymal transition and metastasis. The migration capacity of cells was significantly decreased by co-treatment with Mel and VP, accompanied by the down-regulation of MMP-2 and MMP-9 expression. Taken together, these results indicate that co-treatment with Mel and VP induces mitochondrial dysfunction, resulting in the apoptosis of CSCs. Mel and VP could thus be further investigated as potential therapies for HNSCC through their action on CSCs.
Collapse
Affiliation(s)
- Ye Young Shin
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Min-Hye Song
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
- Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
27
|
Zhang H, Yan J, Xie Y, Chang X, Li J, Ren C, Zhu J, Ren L, Qi K, Bai Z, Li X. Dual role of cadmium in rat liver: Inducing liver injury and inhibiting the progression of early liver cancer. Toxicol Lett 2021; 355:62-81. [PMID: 34785185 DOI: 10.1016/j.toxlet.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
The heavy metal cadmium (Cd) can induce damage in liver and liver cancer cells; however, the mechanism underlying its toxicity needs to be further verified in vivo. We daily administered CdCl2 to adult male rats at different dosages via gavage for 12 weeks and established rat liver injury model and liver cancer model to study the dual role of Cd in rat liver. Increased exposure to Cd resulted in abnormal liver function indicators, pathological degeneration, rat liver cell necrosis, and proliferation of collagen fibres. Using immunohistochemistry, we found that the area of GST-P-positive precancerous liver lesions decreased in a dose-dependent manner. Real-time quantitative polymerase chain reaction, western blot, immunohistochemistry, and transmission electron microscopy revealed that Cd induced mitophagy, as well as mitophagy blockade, as evidenced by the downregulation of TOMM20 and upregulation of LC3II and P62 with increasing Cd dose. Next, the expression of PINK1/Parkin, a classic signalling pathway protein that regulates mitophagy, was examined. Cd was found to promote PINK1/Parkin expression, which was proportional to the Cd dose. In conclusion, Cd activates PINK1/Parkin-mediated mitophagy in a dose-dependent manner. Mitophagy blockade likely aggravates Cd toxicity, leading to the dual role of inducing liver injury and inhibiting the progression of early liver cancer.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ye Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chenghui Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Zhu
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of Pathology, Donggang District, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Longfei Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Kuo Qi
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhongtian Bai
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
28
|
Tian W, Zhu M, Zhou Y, Mao C, Zou R, Cui Y, Li S, Zhu J, Hu C. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury by Regulating Mitophagy via mTOR-ULK1/FUNDC1 Axis in Rats. J Stroke Cerebrovasc Dis 2021; 31:106202. [PMID: 34775182 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Electroacupuncture (EA) pretreatment has been shown to alleviate cerebral ischemia-reperfusion (I/R) injury; however, the underlying mechanism remains unclear. To investigate the involvement of mTOR signaling in the protective role of EA in I/R-induced brain damage and mitochondrial injury. METHODS Sprague-Dawley male rats were pretreated with vehicle, EA (at Baihui and Shuigou acupoints), or rapamycin + EA for 30 min daily for 5 consecutive days, followed by the middle cerebral artery occlusion to induce I/R injury. The neurological functions of the rats were assessed using the Longa neurological deficit scores. The rats were sacrificed immediately after neurological function assessment. The brains were obtained for the measurements of cerebral infarct area. The mitochondrial structural alterations were observed under transmission electron microscopy. The mitochondrial membrane potential changes were detected by JC-1 staining. The alterations in autophagy-related protein expression were examined using Western blot analysis. RESULTS Compared with untreated I/R rats, EA-pretreated rats exhibited significantly decreased neurological deficit scores and cerebral infarct volumes. EA pretreatment also reversed I/R-induced mitochondrial structural abnormalities and loss of mitochondrial membrane potential. Furthermore, EA pretreatment downregulated the protein expression of LC3-II, p-ULK1, and FUNDC1 while upregulating the protein expression of p-mTORC1 and LC3-I. Rapamycin effectively blocked the above-mentioned effects of EA. CONCLUSION EA pretreatment at Baihui and Shuigou alleviates cerebral I/R injury and mitochondrial impairment in rats through activating the mTORC1 signaling. The suppression of autophagy-related p-ULK1/FUNDC1 pathway is involved in the neuroprotective effects of EA.
Collapse
Affiliation(s)
- Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Minmin Zhu
- Department of Anesthesiology, The Second Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yudi Zhou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenlu Mao
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rong Zou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaomei Cui
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sha Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Juan Zhu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Targeting PINK1 Using Natural Products for the Treatment of Human Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4045819. [PMID: 34751247 PMCID: PMC8572127 DOI: 10.1155/2021/4045819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
PINK1, also known as PARK6, is a PTEN-induced putative kinase 1 that is encoded by nuclear genes. PINK1 is ubiquitously expressed and regulates mitochondrial function and mitophagy in a range of cell types. The dysregulation of PINK1 is associated with the pathogenesis and development of mitochondrial-associated disorders. Many natural products could regulate PINK1 to relieve PINK1-associated diseases. Here, we review the structure and function of PINK1, its relationship to human diseases, and the regulation of natural products to PINK1. We further highlight that the discovery of natural PINK1 regulators represents an attractive strategy for the treatment of PINK1-related diseases, including liver and heart diseases, cancer, and Parkinson's disease. Moreover, investigating PINK1 regulation of natural products can enhance the in-depth comprehension of the mechanism of action of natural products.
Collapse
|
30
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Wei R, Cao J, Yao S. Retraction Note: Matrine promotes liver cancer cell apoptosis by inhibiting mitophagy and PINK1/Parkin pathways. Cell Stress Chaperones 2021; 26:1009. [PMID: 34432227 PMCID: PMC8578281 DOI: 10.1007/s12192-021-01225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Runjie Wei
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Jian Cao
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shukun Yao
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
32
|
Xu J, Sun L, Wu C, Zhang S, Ju S, Rui R, Zhang D, Dai J. Involvement of PINK1/Parkin-mediated mitophagy in mitochondrial functional disruption under oxidative stress in vitrified porcine oocytes. Theriogenology 2021; 174:160-168. [PMID: 34455243 DOI: 10.1016/j.theriogenology.2021.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023]
Abstract
Vitrification is an effective technique for fertility preservation, but is known to lead to mitochondrial dysfunction in porcine oocytes. Mitophagy is induced to rebalance mitochondrial function, a process in which reactive oxygen species (ROS) plays a role. In this study, vitrified-warmed porcine oocytes were incubated for 4 h with the oxidant AAPH or antioxidant α-tocopherol to alter ROS levels. A series of tests suggested that vitrification damaged mitochondrial structure and caused dysfunction, including blurred mitochondrial cristae, decreased mitochondrial membrane potential, decreased mtDNA copy number and increased ROS generation. This dysfunction resulted in mitophagy and the loss of embryonic developmental potential. Incubation with AAPH or α-tocopherol altered mitochondrial function and mitophagy flux status in vitrified oocytes. The PINK1/Parkin pathway was involved in oxidative stress regulation in vitrified oocytes. Under AAPH-induced oxidative stress, increased fluorescence intensity of Parkin, increased expression of PINK1, Parkin, and LC3B-II, and decreased expression of MFN2 and p62 were observed, whereas the opposite effects were induced under α-tocopherol treatment. The inhibition of ROS by α-tocopherol benefitted mitochondrial homeostasis and alleviated PINK1/Parkin-mediated mitophagy, resulting in the recovery of embryonic developmental potential in vitrified porcine oocytes. Therefore, this study provides a new mechanism for the application of antioxidants to aid the cryopreservation of porcine oocytes.
Collapse
Affiliation(s)
- Jiehuan Xu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Lingwei Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Caifeng Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Shushan Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Defu Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| | - Jianjun Dai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
33
|
Li J, Wu X, He Y, Wu S, Guo E, Feng Y, Yang J, Li J. PINK1 antagonize intracerebral hemorrhage by promoting mitochondrial autophagy. Ann Clin Transl Neurol 2021; 8:1951-1960. [PMID: 34453779 PMCID: PMC8528457 DOI: 10.1002/acn3.51425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) causes neurotransmitter release, oligemia, membrane depolarization, mitochondrial dysfunction, and results in the high rate of mortality and functional disability. Here, we focus on PTEN-induced kinase 1 (PINK1), a mitochondrial-targeted protein kinase, and explore its role in ICH progression. METHODS The qPCR and Western blot were performed to examine the expression of PINK1 in ICH patients and mouse model. PINK1 gain- and loss-of-function mice were used to evaluate their protective role on brain injury and behavioral disorders. Flow cytometry was carried out, mitochondrial membrane potential and reactive oxygen species production were detected to explore the distribution and neuroprotective function of PINK1. RESULTS PINK1 mRNA was upregulated, however, its protein was downregulated in ICH patients. The reduction of PINK1 was mainly happened in microglial cells in ICH model. Overexpression of PINK1 is able to rescue ICH-induced behavioral disorders. PINK1 protects ICH-induced brain injury by promoting mitochondrial autophagy in microglia. CONCLUSION PINK1 possesses a neuroprotective role and antagonizes ICH by promoting mitochondrial autophagy, which may be of value as a therapeutic target for ICH treatment.
Collapse
Affiliation(s)
- Jingchen Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyun Wu
- Department of Geriatric, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanbo He
- Department of Neurosurgery, Pingxiang People's Hospital, Pingxiang County, Hebei, China
| | - Song Wu
- Department of Neurosurgery, Shenze County Hospital, Shenze County, Hebei, China
| | - Erkun Guo
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Feng
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jipeng Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianliang Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Singh L, Upadhyay AK, Dixit P, Singh A, Yadav D, Chhavi A, Konar S, Srivastava RP, Pandey S, Devkota HP, Verma PC, Saxena G. A review of chemistry and pharmacology of Piperidine alkaloids of Pinus and related genera. Curr Pharm Biotechnol 2021; 23:1132-1141. [PMID: 34387162 DOI: 10.2174/1389201022666210812123815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pinus and other related conifers belonging to family pinaceae are most commonly used medicinal plants in Indian North-western Himalayas. Various parts of these plants including needles are source of several well known alkaloids. Of all the alkaloids, piperidine group is one of important component and hold considerable medicinal importance. METHODS The group of alkaloids was initially identified from genus Piper through which a large variety of piperidine molecules have been extracted. The planar structure of this heterocyclic nucleus enables acetamide groups to be added at various ring configurations. RESULTS In the area of drug research, the piperidine heterocycle has gained considerable interest. To produce a new therapeutic profile, the broad range of its therapeutic application paved the way for researchers to implant the nucleus from time to time in diversified pharmacophores. DISCUSSION However, biological functions of piperidine metabolites have been mostly examined on a limited scale and that most of the findings are thus preliminary. We have tried to present different clinical applications of piperidine alkaloids in this study that researchers have already attempted to demystify from time to time. CONCLUSION Given the importance of the piperidine nucleus, the study will enable the researcher to produce scaffolds of the highest therapeutic efficacy. We have also illustrated different types of piperidine, its sources in different member of family pinaceae with special emphasis on Pinus.
Collapse
Affiliation(s)
- Lav Singh
- Department of Botany, University of Lucknow, Lucknow. India
| | - Atul K Upadhyay
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025. India
| | - Pooja Dixit
- Department of Botany, University of Lucknow, Lucknow. India
| | - Arpit Singh
- Department of Botany, University of Lucknow, Lucknow. India
| | | | - Apurv Chhavi
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow. India
| | - Suraj Konar
- Post graduate Department of Chemistry, RD and DJ College, Munger University. India
| | | | - Shivaraman Pandey
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow. India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, School of Pharmacy, Kumamoto University. Japan
| | - Praveen C Verma
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow. India
| | - Gauri Saxena
- Department of Botany, University of Lucknow Lucknow-226007, Uttar Pradesh. India
| |
Collapse
|
35
|
Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188306. [PMID: 34354793 PMCID: PMC8331273 DOI: 10.1155/2021/5188306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable for energy metabolism and cell signaling. Mitochondrial homeostasis is sustained with stabilization of mitochondrial membrane potential, balance of mitochondrial calcium, integrity of mitochondrial DNA, and timely clearance of damaged mitochondria via mitophagy. Mitochondrial dysfunction is featured by increased generation of mitochondrial reactive oxygen species, reduced mitochondrial membrane potential, mitochondrial calcium imbalance, mitochondrial DNA damage, and abnormal mitophagy. Accumulating evidence indicates that mitochondrial dysregulation causes oxidative stress, inflammasome activation, apoptosis, senescence, and metabolic reprogramming. All these cellular processes participate in the pathogenesis and progression of chronic respiratory diseases, including chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. In this review, we provide a comprehensive and updated overview of the impact of mitochondrial dysfunction on cellular processes involved in the development of these respiratory diseases. This not only implicates mechanisms of mitochondrial dysfunction for the pathogenesis of chronic lung diseases but also provides potential therapeutic approaches for these diseases by targeting dysfunctional mitochondria.
Collapse
|
36
|
Xu J, Zhang D, Ju S, Sun L, Zhang S, Wu C, Rui R, Dai J. Mitophagy is involved in the mitochondrial dysfunction of vitrified porcine oocytes. Mol Reprod Dev 2021; 88:427-436. [PMID: 34032339 DOI: 10.1002/mrd.23472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is considered a crucial factor aggravating oocyte viability after vitrification-warming. To clarify the role of mitophagy in mitochondrial extinction of vitrified porcine oocytes, mitochondrial function, ultrastructural characteristics, mitochondria-lysosomes colocalization, and mitophagic proteins were detected with or without chloroquine (CQ) treatment. The results showed that vitrification caused mitochondrial dysfunction, including increasing reactive oxygen species production, decreasing mitochondrial membrane potential, and mitochondrial DNA copy number. Damaged mitochondrial cristae and mitophagosomes were observed in vitrified oocytes. A highly fused fluorescence distribution of mitochondria and lysosomes was also observed. In the detection of mitophagic flux, mitophagy was demonstrated as increasing fluorescence aggregation of microtubule-associated protein light chain 3B (LC3B), enhanced colocalization between LC3B, and voltage-dependent anion channels 1 (VDAC1), and upregulated LC3B-II/I protein expression ratio. CQ inhibited the degradation of mitophagosomes in vitrified oocytes, manifested as decreased mitochondria-lysosomes colocalization, increased fluorescence fraction of VDAC1 overlapping LC3B, increased LC3B-II/I protein expression ratio, and p62 accumulation. The inhibition of mitophagosomes degradation by CQ aggravated mitochondrial dysfunction, including increased oxidative damage, reduced mitochondrial function, and further led to loss of oocyte viability and developmental potentiality. In conclusion, mitophagy is involved in the regulation of mitochondrial function during porcine oocyte vitrification.
Collapse
Affiliation(s)
- Jiehuan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China.,Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Defu Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China.,Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Lingwei Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China.,Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Shushan Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China.,Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Caifeng Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China.,Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Jianjun Dai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China.,Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| |
Collapse
|
37
|
Wen L, Hu J, Zhang J, Yang J. Phenylethanol glycosides from Herba Cistanche improve the hypoxic tumor microenvironment and enhance the effects of oxaliplatin via the HIF‑1α signaling pathway. Mol Med Rep 2021; 24:517. [PMID: 34013363 PMCID: PMC8160477 DOI: 10.3892/mmr.2021.12156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Liver cancer is one of the most common types of malignant tumor, and is characterized by high malignancy, rapid progression, high morbidity and mortality. Oxaliplatin (OXA) has been reported to have marked efficiency against advanced liver cancer with tolerable toxicity. In solid tumors, the hypoxic microenvironment promotes epithelial‑mesenchymal transition (EMT), which can also induce drug resistance of liver cancer to platinum drugs. Herba Cistanche (Cistanche tubulosa) has been frequently used in traditional Chinese medicine and the phenylethanol glycosides from Herba Cistanche (CPhGs) are the major active components. The present study aimed to investigate the effects of CPhGs on viability, apoptosis, migration and invasion of liver cancer cells. HepG2 liver cancer cells were divided into the control, DMSO, CoCl2, OXA, OXA + CoCl2 and CPhGs + OXA + CoCl2 groups. Subsequently, reverse transcription‑quantitative PCR and western blot analysis were performed to determine the expression levels of hypoxia‑inducible factor 1α (HIF‑1α), lysyl oxidase‑like 2 (LOXL2) and EMT‑related genes and proteins (i.e., E‑cadherin and Twist), in order to investigate the effects of CPhGs on liver cancer. The results demonstrated that CPhGs could enhance the effects of OXA on liver cancer, and inhibit the migration, invasion and apoptotic rate of liver cancer cells. Additionally, CPhGs treatment effectively induced downregulation of HIF‑1α, LOXL2 and Twist, and upregulation of E‑cadherin. The present findings indicated that CPhGs triggered a significant increase in sensitivity to OXA and suppression of hypoxia‑induced EMT in liver cancer by inhibiting the HIF‑1α signaling pathway. Therefore, CPhGs may be considered an effective platinum drug sensitizer, which could improve chemotherapeutic efficacy in patients with liver cancer.
Collapse
Affiliation(s)
- Limei Wen
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jiawei Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jianhua Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
38
|
Liu T, Guo Q, Zheng S, Liu Y, Yang H, Zhao M, Yao L, Zeng K, Tu P. Cephalotaxine Inhibits the Survival of Leukemia Cells by Activating Mitochondrial Apoptosis Pathway and Inhibiting Autophagy Flow. Molecules 2021; 26:molecules26102996. [PMID: 34070111 PMCID: PMC8158396 DOI: 10.3390/molecules26102996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Cephalotaxine (CET) is a natural alkaloid with potent antileukemia effects. However, its underlying molecular mechanism has not been well understood. In this study, we verified that CET significantly inhibited the viability of various leukemia cells, including HL-60, NB4, Jurkat, K562, Raji and MOLT-4. RNA-sequencing and bioinformatics analysis revealed that CET causes mitochondrial function change. Mechanism research indicated that CET activated the mitochondrial apoptosis pathway by reducing the mitochondrial membrane potential, downregulating anti-apoptotic Bcl-2 protein and upregulating pro-apoptotic Bak protein. In addition, the autophagy signaling pathway was highly enriched by RNA-seq analysis. Then, we found that CET blocked the fluorescence colocation of MitoTracker Green and LysoTracker Red and upregulated the level of LC3-II and p62, which indicated that autophagy flow was impaired. Further results demonstrated that CET could impair lysosomal acidification and block autophagy flow. Finally, inhibiting autophagy flow could aggravate apoptosis of HL-60 cells induced by CET. In summary, this study demonstrated that CET exerted antileukemia effects through activation of the mitochondria-dependent pathway and by impairing autophagy flow. Our research provides new insights into the molecular mechanisms of CET in the treatment of leukemia.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China;
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Shuze Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Meimei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
- Correspondence: (K.Z.); (P.T.)
| | - Pengfei Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China;
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
- Correspondence: (K.Z.); (P.T.)
| |
Collapse
|
39
|
Li S, Zhang J, Liu C, Wang Q, Yan J, Hui L, Jia Q, Shan H, Tao L, Zhang M. The Role of Mitophagy in Regulating Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617256. [PMID: 34113420 PMCID: PMC8154277 DOI: 10.1155/2021/6617256] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are multifaceted organelles that serve to power critical cellular functions, including act as power generators of the cell, buffer cytosolic calcium overload, production of reactive oxygen species, and modulating cell survival. The structure and the cellular location of mitochondria are critical for their function and depend on highly regulated activities such as mitochondrial quality control (MQC) mechanisms. The MQC is regulated by several sets of processes: mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy, and other mitochondrial proteostasis mechanisms such as mitochondrial unfolded protein response (mtUPR) or mitochondrial-derived vesicles (MDVs). These processes are important for the maintenance of mitochondrial homeostasis, and alterations in the mitochondrial function and signaling are known to contribute to the dysregulation of cell death pathways. Recent studies have uncovered regulatory mechanisms that control the activity of the key components for mitophagy. In this review, we discuss how mitophagy is controlled and how mitophagy impinges on health and disease through regulating cell death.
Collapse
Affiliation(s)
- Sunao Li
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Jiaxin Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Chao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Hui
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Qiufang Jia
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| |
Collapse
|
40
|
Ji W, Wan T, Zhang F, Zhu X, Guo S, Mei X. Aldehyde Dehydrogenase 2 Protects Against Lipopolysaccharide-Induced Myocardial Injury by Suppressing Mitophagy. Front Pharmacol 2021; 12:641058. [PMID: 34025411 PMCID: PMC8139555 DOI: 10.3389/fphar.2021.641058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis-induced circulatory and cardiac dysfunction is associated with high mortality rates. Mitophagy, a specific form of autophagy, is excessively activated in lipopolysaccharide-induced myocardial injury. The present study investigated whether aldehyde dehydrogenase 2 (ALDH2) regulates mitophagy in sepsis-induced myocardial dysfunction. After lipopolysaccharide administration, cardiac dysfunction, inflammatory cell infiltration, biochemical indicators of myocardial cell injury, and cardiomyocyte apoptosis were ameliorated in mice by ALDH2 activation or overexpression. In contrast, cardiac dysfunction and cardiomyocyte apoptosis were exacerbated in mice followed ALDH2 inhibition. Moreover, ALDH2 activation or overexpression regulated mitophagy by suppressing the expression of phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin, by preventing the accumulation of 4-hydroxy-trans-nonenal. Conversely, ALDH2 inhibition promoted the expression of LC3B by increasing 4-hydroxy-trans-2-nonenal accumulation. Consequently, ALDH2 may protect the heart from lipopolysaccharide-induced injury by suppressing PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Wenqing Ji
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Tiantian Wan
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Fang Zhang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xue Mei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| |
Collapse
|
41
|
Lan S, Liu J, Luo X, Bi C. Retraction Note: Effects of melatonin on acute brain reperfusion stress: role of hippo signaling pathway and MFN2-related mitochondrial protection. Cell Stress Chaperones 2021; 26:595. [PMID: 33871791 PMCID: PMC8065081 DOI: 10.1007/s12192-021-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Song Lan
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China.
| | - Jingfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
| | - Xiangying Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
| | - Changlong Bi
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
| |
Collapse
|
42
|
Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113682. [PMID: 33307055 DOI: 10.1016/j.jep.2020.113682] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Dogel ebs" was known as Sophora flavescens Ait., which has been widely utilized in the clinical practice of traditional Chinese Mongolian herbal medicine for thousands of years. Shen Nong's Materia Medica (Shen Nong Ben Cao Jing in Chinese pinyin) recorded that it is bitter in taste and cold in nature with the effect of clearing heat and eliminating dampness, insecticide, diuresis. Due to its extensive application in the fields of ethnopharmacological utilization, the pharmaceutical researches of Sophora flavescens Ait.s keeps deepening. Modern pharmacological studies have exhibited that matrine, which is rich in this traditional herbal medicine, mediates its main biological properties. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of matrine on the pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches to explore the therapeutic potential of this natural ingredient. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning matrine was gathered from the internet database of Google scholar, Pubmed, ResearchGate, Web of Science and Wiley Online Library with the keywords including "matrine", "pharmacology", "toxicology" and "pharmacokinetics", "clinical application", etc. RESULTS: Based on literatures, matrine has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, anti-microbial, detoxification and so on. Nevertheless, there are still some doubts about it due to the toxicity and questionable bioavailability that does exist. CONCLUSIONS Future researches directions probably include elucidate the mechanism of its toxicity and accurately tracing the in vivo behavior of its drug delivery system. Without doubt, integration of toxicity and efficiency and structure modification based on it are also pivotal methods to enhance pharmacological activity and bioavailability.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Beibei Traditional Chinese Medical Hospital, Chongqing, 400700, China
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cen Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
43
|
Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer. Dev Cell 2021; 56:906-918. [PMID: 33689692 PMCID: PMC8026727 DOI: 10.1016/j.devcel.2021.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Beginning with the earliest studies of autophagy in cancer, there have been indications that autophagy can both promote and inhibit cancer growth and progression; autophagy regulation of organelle homeostasis is similarly complicated. In this review we discuss pro- and antitumor effects of organelle-targeted autophagy and how this contributes to several hallmarks of cancer, such as evading cell death, genomic instability, and altered metabolism. Typically, the removal of damaged or dysfunctional organelles prevents tumor development but can also aid in proliferation or drug resistance in established tumors. By better understanding how organelle-specific autophagy takes place and can be manipulated, it may be possible to go beyond the brute-force approach of trying to manipulate all autophagy in order to improve therapeutic targeting of this process in cancer.
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
44
|
Perwez A, Wahabi K, Rizvi MA. Parkin: A targetable linchpin in human malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188533. [PMID: 33785381 DOI: 10.1016/j.bbcan.2021.188533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Parkin, an E3 ubiquitin ligase has been found to be deregulated in a variety of human cancers. Our current understanding is endowed with strong evidences that Parkin plays crucial role in the pathogenesis of cancer by controlling/interfering with major hallmarks of cancer delineated till today. Consistent with the idea of mitophagy, the existing studies imitates the tumor suppressive potential of Parkin, resolved by its capacity to regulate cell proliferation, cell migration, angiogenesis, apoptosis and overall cellular survival. Dysfunction of Parkin has resulted in the loss of ubiquitination of cell cycle components followed by their accumulation leading to genomic instability, perturbed cell cycle and eventually tumor progression. In this review, we provide an overview of current knowledge about the critical role of Parkin in cancer development and progression and have focussed on its therapeutic implications highlighting the diagnostic and prognostic value of Parkin as a biomarker. We earnestly hope that an in-depth knowledge of Parkin will provide a linchpin to target in various cancers that will open a new door of clinical applications and therapeutics.
Collapse
Affiliation(s)
- Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khushnuma Wahabi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
45
|
Qiu YH, Zhang TS, Wang XW, Wang MY, Zhao WX, Zhou HM, Zhang CH, Cai ML, Chen XF, Zhao WL, Shao RG. Mitochondria autophagy: a potential target for cancer therapy. J Drug Target 2021; 29:576-591. [PMID: 33554661 DOI: 10.1080/1061186x.2020.1867992] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitophagy is a selective form of macroautophagy in which dysfunctional and damaged mitochondria can be efficiently degraded, removed and recycled through autophagy. Selective removal of damaged or fragmented mitochondria is critical to the functional integrity of the entire mitochondrial network and cells. In past decades, numerous studies have shown that mitophagy is involved in various diseases; however, since the dual role of mitophagy in tumour development, mitophagy role in tumour is controversial, and further elucidation is needed. That is, although mitophagy has been demonstrated to contribute to carcinogenesis, cell migration, ferroptosis inhibition, cancer stemness maintenance, tumour immune escape, drug resistance, etc. during cancer progression, many research also shows that to promote cancer cell death, mitophagy can be induced physiologically or pharmacologically to maintain normal cellular metabolism and prevent cell stress responses and genome damage by diminishing mitochondrial damage, thus suppressing tumour development accompanying these changes. Signalling pathway-specific molecular mechanisms are currently of great biological significance in the identification of potential therapeutic targets. Here, we review recent progress of molecular pathways mediating mitophagy including both canonical pathways (Parkin/PINK1- and FUNDC1-mediated mitophagy) and noncanonical pathways (FKBP8-, Nrf2-, and DRP1-mediated mitophagy); and the regulation of these pathways, and abovementioned pro-cancer and pro-death roles of mitophagy. Finally, we summarise the role of mitophagy in cancer therapy. Mitophagy can potentially be acted as the target for cancer therapy by promotion or inhibition.
Collapse
Affiliation(s)
- Yu-Han Qiu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tian-Shu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Wei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Yan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wen-Xia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hui-Min Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hui Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mei-Lian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Fang Chen
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wu-Li Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong-Guang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem 2021; 69:248-264. [PMID: 33442914 DOI: 10.1002/bab.2104] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Autophagy causes the breakdown of damaged proteins and organelles to their constituent components. The phosphatidylinositol 3-kinase (PI3K) pathway played an important role in regulating the autophagic response of cells in response to changing reactive oxygen species (ROS) levels. The PI3K α catalytic subunit inhibits autophagy, while its β catalytic subunit promotes autophagy in response to changes in ROS levels. The downstream Akt protein acts against autophagy initiation in response to increases in ROS levels under nutrient-rich conditions. Akt acts by activating a mechanistic target of the rapamycin complex 1 (mTORC1) and by arresting autophagic gene expression. The AMP-activated protein kinase (AMPK) protein counteracts the Akt actions. mTORC1 and mTORC2 inhibit autophagy under moderate ROS levels, but under high ROS levels, mTORC2 can promote cellular senescence via autophagy. Phosphatase and tensin homolog (PTEN) protein are the negative regulators of the PI3K pathway, and it has proautophagic activities. Studies conducted on cells treated with flavonoids and ionizing radiation showed that the moderate increase in ROS levels in the flavonoid-treated groups corresponded with higher PTEN levels and lowered Akt levels leading to a higher occurrence of autophagy. In contrast, higher ROS levels evoked by ionizing radiation caused a lowering of the incidence of autophagy.
Collapse
Affiliation(s)
- Lakhan Kma
- Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | | |
Collapse
|
47
|
Dong Q, Li Y, Chen J, Wang N. Azilsartan Suppressed LPS-Induced Inflammation in U937 Macrophages through Suppressing Oxidative Stress and Inhibiting the TLR2/MyD88 Signal Pathway. ACS OMEGA 2021; 6:113-118. [PMID: 33458464 PMCID: PMC7807478 DOI: 10.1021/acsomega.0c03655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND PURPOSE Lipopolysaccharide (LPS) is an important factor that induce severe inflammation, resulting in multiple types of diseases. It is reported that LPS-induced inflammation is related to the activation of the NF-κB signal pathway and reactive oxygen species (ROS)-induced oxidative stress. Azilsartan, an angiotensin II type 1 (AT1) receptor blocker, has been licensed as a new generation of Sartan antihypertensive drugs. However, the effects of azilsartan in LPS-induced inflammation have not been reported before. The present study aims to investigate the anti-inflammatory effects of azilsartan on LPS-stimulated macrophages and explore the underlying mechanism. METHODS The release of lactic dehydrogenase (LDH), secretion of HMGB-1, and concentrations of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 were evaluated using the enzyme-linked immunosorbent assay (ELISA). The gene expression levels of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and COX-2 were determined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Western blot analysis was used to detect the protein expression level of COX-2, Nrf2, TLR2, MyD-88, and NF-κB. The level of ROS was determined using the dihydroethidium (DHE) staining assay. The activity of NF-κB was evaluated using the luciferase activity assay. RESULTS The release of LDH, HMGB-1, IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 was significantly promoted by LPS stimulation, whereas it was greatly suppressed by azilsartan. The upregulated COX-2, TLR2, MyD-88, and NF-κB in the LPS-treated macrophages were significantly downregulated by azilsartan. Interestingly, the expression level of Nrf2 was elevated by azilsartan. On the contrary, ROS levels were greatly increased by LPS but suppressed by azilsartan. Mechanistically, it was found that azilsartan suppressed LPS-induced activation of the TLR2/Myd-88/NF-κB signaling pathway. CONCLUSION Azilsartan might suppress LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR/MyD88 signal pathway.
Collapse
Affiliation(s)
- Qinglian Dong
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Yongxia Li
- Department
of Stomatology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Juan Chen
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Nan Wang
- Department
of Nephrology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
- . Tel/Fax:+86-546-8331536
| |
Collapse
|
48
|
Wu H, Wang T, Liu Y, Li X, Xu S, Wu C, Zou H, Cao M, Jin G, Lang J, Wang B, Liu B, Luo X, Xu C. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis. J Exp Clin Cancer Res 2020; 39:274. [PMID: 33280610 PMCID: PMC7720487 DOI: 10.1186/s13046-020-01768-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The identification of novel targets for recovering sorafenib resistance is pivotal for Hepatocellular carcinoma (HCC) patients. Mitophagy is the programmed degradation of mitochondria, and is likely involved in drug resistance of cancer cells. Here, we identified hyperactivated mitophagy is essential for sorafenib resistance, and the mitophagy core regulator gene ATAD3A (ATPase family AAA domain containing 3A) was down regulated in hypoxia induced resistant HCC cells. Blocking mitophagy may restore the sorafenib sensitivity of these cells and provide a new treatment strategy for HCC patients. METHODS Hypoxia induced sorafenib resistant cancer cells were established by culturing under 1% O2 with increasing drug treatment. RNA sequencing was conducted in transfecting LM3 cells with sh-ATAD3A lentivirus. Subsequent mechanistic studies were performed in HCC cell lines by manipulating ATAD3A expression isogenically where we evaluated drug sensitivity, molecular signaling events. In vivo study, we investigated the combined treatment effect of sorafenib and miR-210-5P antagomir. RESULTS We found a hyperactivated mitophagy regulating by ATAD3A-PINK1/PARKIN axis in hypoxia induced sorafenib resistant HCC cells. Gain- and loss- of ATAD3A were related to hypoxia-induced mitophagy and sorafenib resistance. In addition, ATAD3A is a functional target of miR-210-5p and its oncogenic functions are likely mediated by increased miR-210-5P expression. miR-210-5P was upregulated under hypoxia and participated in regulating sorafenib resistance. In vivo xenograft assay showed that miR-210-5P antagomir combined with sorafenib abrogated the tumorigenic effect of ATAD3A down-regulation in mice. CONCLUSIONS Loss of ATAD3A hyperactivates mitophagy which is a core event in hypoxia induced sorafenib resistance in HCC cells. Targeting miR-210-5P-ATAD3A axis is a novel therapeutic target for sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Hong Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, 518055, Shenzhen, China
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Yiqiang Liu
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Xin Li
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Senlin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Changtao Wu
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Hongbo Zou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Jinyi Lang
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, 518055, Shenzhen, China.
| | - Xiaolin Luo
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China.
| | - Chuan Xu
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China.
| |
Collapse
|
49
|
Zhang Y, Huang N, Xu J, Zheng W, Cui X. Homoharringtonine Exerts an Antimyeloma Effect by Promoting Excess Parkin-Dependent Mitophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4749-4763. [PMID: 33177810 PMCID: PMC7652225 DOI: 10.2147/dddt.s279054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Purpose Homoharringtonine (HHT) has been used as an antileukemia agent in the clinic which processes a high-potential therapeutic efficacy against multiple myeloma (MM). In this study, we investigated the antimyeloma mechanism of HHT. Methods Three MM cell lines and a xenograft model were applied. Mitochondrial function was evaluated by detecting MitoTracker Green, the mtDNA copy number, mitochondrial protein and enzyme activity, the mitochondrial membrane potential and mitochondrial morphology. Mitophagy levels were assessed by monitoring autophagosomes, performing a colocalization analysis and determining the levels of related proteins. An shRNA was applied to knockdown Parkin. Results Based on the results of the in vitro experiments, HHT exerted a promising antiproliferative effect on the MM.1S, RPMI 8226 and H929 cell lines by increasing mitophagy. In addition, HHT markedly inhibited myeloma tumor growth and prolonged survival by promoting mitophagy in vivo. Furthermore, HHT treatment contributed to notable mitochondrial dysfunction and Parkin-dependent mitophagy, as evidenced by the destruction of mitochondria, the decrease in the mtDNA copy number, decrease in the Bcl-2/Bax ratio, and decrease in the levels of mitochondrial proteins and the optimal expression of Parkin and NDP52. However, the addition of rapamycin did not produce significant synergistic effect with HHT, indicating that HHT reached the threshold level to induce mitophagy. The colocalization analysis and assessment of mitochondrial function examination further confirmed that HHT triggered mitophagy and mitochondrial dysfunction. Moreover, the antiproliferative effect of HHT was reversed by an shRNA targeting Parkin, highlighting the indispensable role of Parkin-dependent mitophagy in the antimyeloma effect of HHT. Conclusion HHT exerts an antimyeloma effect by inducing excess mitophagy, providing new mechanistic insights into a therapeutic strategy for MM.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ning Huang
- Clinical Laboratory Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jie Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wei Zheng
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
50
|
Lu Q, Lin X, Wu J, Wang B. Matrine attenuates cardiomyocyte ischemia-reperfusion injury through activating AMPK/Sirt3 signaling pathway. J Recept Signal Transduct Res 2020; 41:488-493. [PMID: 33019890 DOI: 10.1080/10799893.2020.1828914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Matrine has been found to affect cell viability and function. In the present study, we explored the cardioprotective role of matrine in cardiomyocyte damage under hypoxia/reoxygenation. In vitro, cardiomyocyte hypoxia/reoxygenation was used to mimic ischemia/reperfusion injury in the presence of matrine. After exposure to hypoxia/reoxygenation, cardiomyocyte viability was reduced and cell apoptosis was increased; this alteration was inhibited by matrine. At the molecular levels, Sirt3 and AMPK were significantly downregulated by hypoxia/reoxygenation injury whereas matrine administration was able to upregulate Sirt3 and AMPK expression and activity in the presence of hypoxia/reoxygenation. Interestingly, inhibition of Sirt3/AMPK pathway abolished the cardioprotective action of matrine on cardiomyocyte in the presence of hypoxia/reoxygenation injury, resulting into cardiomyocyte viability reduction and cell death augmentation. Altogether, our results demonstrated a novel role played by matrine in regulating cardiomyocyte viability and death in the presence of hypoxia/reoxygenation, with a potential application in the clinical practice for the treatment of patients with myocardial infarction.
Collapse
Affiliation(s)
- Qiubei Lu
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Xiangyu Lin
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Jing Wu
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Zhejiang, China
| |
Collapse
|