1
|
Bu A, Afghah F, Castro N, Bawa M, Kohli S, Shah K, Rios B, Butty V, Raman R. Actuating Extracellular Matrices Decouple the Mechanical and Biochemical Effects of Muscle Contraction on Motor Neurons. Adv Healthc Mater 2024:e2403712. [PMID: 39523700 DOI: 10.1002/adhm.202403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues. Motor neurons stimulated with exercised muscle-secreted factors significantly upregulate neurite outgrowth and migration, with an effect size dependent on muscle contraction intensity. Actuating magnetic microparticles embedded within fibrin hydrogels enable dynamically stretching motor neurons and non-invasively mimicking the mechanical effects of muscle contraction. Interestingly, axonogenesis is similarly upregulated in both mechanically and biochemically stimulated motor neurons, but RNA sequencing reveals different transcriptomic signatures between groups, with biochemical stimulation having a greater impact on cell signaling related to axonogenesis and synapse maturation. This study leverages actuating extracellular matrices to robustly validate a previously hypothesized role for muscle contraction in regulating motor neuron growth and maturation from the bottom-up through both mechanical and biochemical signaling.
Collapse
Affiliation(s)
- Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ferdows Afghah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nicolas Castro
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sonika Kohli
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Karina Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brandon Rios
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Butty
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Alonso-Puyo J, Izagirre-Fernandez O, Crende O, Valdivia A, García-Gallastegui P, Sanz B. Experimental models as a tool for research on sarcopenia: A narrative review. Ageing Res Rev 2024; 101:102534. [PMID: 39369798 DOI: 10.1016/j.arr.2024.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Sarcopenia is a musculoskeletal disorder related to muscle mass and function; as the worldwide population ages, its growing prevalence means a decline in quality of life and an increased burden for public health systems. As sarcopenia is a reversible condition, its early diagnosis is of utmost importance. Consensus definitions and diagnosis protocols for sarcopenia have been evolving for a long time, and the identification of molecular pathways subjacent to sarcopenia is a growing research area. The use of liquid biopsies to identify circulating molecules does not provide information about specific regulatory pathways or biomarkers in relevant tissue, and the use of skeletal muscle biopsies from older people has many limitations. Complementary tools are therefore necessary to advance the knowledge of relevant molecular aspects. The development of experimental models, such as animal, cellular, or bioengineered tissue, together with knock-in or knock-out strategies, could therefore be of great interest. This narrative review will explore experimental models of healthy muscle and aged muscle cells as a tool for research on sarcopenia. We will summarize the literature and present relevant experimental models in terms of their advantages and disadvantages. All of the presented approaches could potentially contribute to the accurate and early diagnosis, follow-up, and possible treatment of sarcopenia.
Collapse
Affiliation(s)
- Janire Alonso-Puyo
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Oihane Izagirre-Fernandez
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Asier Valdivia
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Patricia García-Gallastegui
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain.
| | - Begoña Sanz
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| |
Collapse
|
3
|
Calero-Castro FJ, Perez-Puyana VM, Laga I, Padillo Ruiz J, Romero A, de la Portilla de Juan F. Mechanical Stimulation and Aligned Poly(ε-caprolactone)-Gelatin Electrospun Scaffolds Promote Skeletal Muscle Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:6430-6440. [PMID: 39365939 PMCID: PMC11497210 DOI: 10.1021/acsabm.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The current treatments to restore skeletal muscle defects present several injuries. The creation of scaffolds and implant that allow the regeneration of this tissue is a solution that is reaching the researchers' interest. To achieve this, electrospinning is a useful technique to manufacture scaffolds with nanofibers with different orientation. In this work, polycaprolactone and gelatin solutions were tested to fabricate electrospun scaffolds with two degrees of alignment between their fibers: random and aligned. These scaffolds can be seeded with myoblast C2C12 and then stimulated with a mechanical bioreactor that mimics the physiological conditions of the tissue. Cell viability as well as cytoskeletal morphology and functionality was measured. Myotubes in aligned scaffolds (9.84 ± 1.15 μm) were thinner than in random scaffolds (11.55 ± 3.39 μm; P = 0.001). Mechanical stimulation increased the width of myotubes (12.92 ± 3.29 μm; P < 0.001), nuclear fusion (95.73 ± 1.05%; P = 0.004), and actin density (80.13 ± 13.52%; P = 0.017) in aligned scaffolds regarding the control. Moreover, both scaffolds showed high myotube contractility, which was increased in mechanically stimulated aligned scaffolds. These scaffolds were also electrostimulated at different frequencies and they showed promising results. In general, mechanically stimulated aligned scaffolds allow the regeneration of skeletal muscle, increasing viability, fiber thickness, alignment, nuclear fusion, nuclear differentiation, and functionality.
Collapse
Affiliation(s)
- Francisco José Calero-Castro
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | | | - Imán Laga
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Javier Padillo Ruiz
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Alberto Romero
- Departamento
de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fernando de la Portilla de Juan
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Mehmood H, Kasher PR, Barrett-Jolley R, Walmsley GL. Aligning with the 3Rs: alternative models for research into muscle development and inherited myopathies. BMC Vet Res 2024; 20:477. [PMID: 39425123 PMCID: PMC11488271 DOI: 10.1186/s12917-024-04309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Inherited and acquired muscle diseases are an important cause of morbidity and mortality in human medical and veterinary patients. Researchers use models to study skeletal muscle development and pathology, improve our understanding of disease pathogenesis and explore new treatment options. Experiments on laboratory animals, including murine and canine models, have led to huge advances in congenital myopathy and muscular dystrophy research that have translated into clinical treatment trials in human patients with these debilitating and often fatal conditions. Whilst animal experimentation has enabled many significant and impactful discoveries that otherwise may not have been possible, we have an ethical and moral, and in many countries also a legal, obligation to consider alternatives. This review discusses the models available as alternatives to mammals for muscle development, biology and disease research with a focus on inherited myopathies. Cell culture models can be used to replace animals for some applications: traditional monolayer cultures (for example, using the immortalised C2C12 cell line) are accessible, tractable and inexpensive but developmentally limited to immature myotube stages; more recently, developments in tissue engineering have led to three-dimensional cultures with improved differentiation capabilities. Advances in computer modelling and an improved understanding of pathogenetic mechanisms are likely to herald new models and opportunities for replacement. Where this is not possible, a 3Rs approach advocates partial replacement with the use of less sentient animals (including invertebrates (such as worms Caenorhabditis elegans and fruit flies Drosophila melanogaster) and embryonic stages of small vertebrates such as the zebrafish Danio rerio) alongside refinement of experimental design and improved research practices to reduce the numbers of animals used and the severity of their experience. An understanding of the advantages and disadvantages of potential models is essential for researchers to determine which can best facilitate answering a specific scientific question. Applying 3Rs principles to research not only improves animal welfare but generates high-quality, reproducible and reliable data with translational relevance to human and animal patients.
Collapse
Affiliation(s)
- Hashir Mehmood
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Allianceand the, University of Manchester , Manchester, M6 8HD, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Gemma L Walmsley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
- Department of Small Animal Clinical Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, South Wirral, Neston, CH64 7TE, UK.
| |
Collapse
|
5
|
Casella A, Lowen J, Griffin KH, Shimamoto N, Ramos-Rodriguez DH, Panitch A, Leach JK. Conductive Microgel Annealed Scaffolds Enhance Myogenic Potential of Myoblastic Cells. Adv Healthc Mater 2024; 13:e2302500. [PMID: 38069833 PMCID: PMC11759339 DOI: 10.1002/adhm.202302500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. Conductive microgels are generated from poly(ethylene) glycol (PEG and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT: PSS increases microgel conductivity two-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibit increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, is influenced only by porosity. Human skeletal muscle-derived cells exhibit increased Myod1, insulin like growth factor-1, and insulin-like growth factor binding protein 2 at earlier time points on conductive microgel scaffolds compared to non-conductive scaffolds. They also secrete more vascular endothelial growth factor at early time points and express factors that led to macrophage polarization patterns observe during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.
Collapse
Affiliation(s)
- Alena Casella
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | - Jeremy Lowen
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | - Katherine H. Griffin
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
- School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - Nathan Shimamoto
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | | | - Alyssa Panitch
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
6
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Engineering interfacial tissues: The myotendinous junction. APL Bioeng 2024; 8:021505. [PMID: 38841690 PMCID: PMC11151436 DOI: 10.1063/5.0189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The myotendinous junction (MTJ) is the interface connecting skeletal muscle and tendon tissues. This specialized region represents the bridge that facilitates the transmission of contractile forces from muscle to tendon, and ultimately the skeletal system for the creation of movement. MTJs are, therefore, subject to high stress concentrations, rendering them susceptible to severe, life-altering injuries. Despite the scarcity of knowledge obtained from MTJ formation during embryogenesis, several attempts have been made to engineer this complex interfacial tissue. These attempts, however, fail to achieve the level of maturity and mechanical complexity required for in vivo transplantation. This review summarizes the strategies taken to engineer the MTJ, with an emphasis on how transitioning from static to mechanically inducive dynamic cultures may assist in achieving myotendinous maturity.
Collapse
|
8
|
Spedicati M, Zoso A, Mortati L, Chiono V, Marcello E, Carmagnola I. Three-Dimensional Microfibrous Scaffold with Aligned Topography Produced via a Combination of Melt-Extrusion Additive Manufacturing and Porogen Leaching for In Vitro Skeletal Muscle Modeling. Bioengineering (Basel) 2024; 11:332. [PMID: 38671754 PMCID: PMC11047940 DOI: 10.3390/bioengineering11040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Skeletal muscle tissue (SMT) has a highly hierarchical and anisotropic morphology, featuring aligned and parallel structures at multiple levels. Various factors, including trauma and disease conditions, can compromise the functionality of skeletal muscle. The in vitro modeling of SMT represents a useful tool for testing novel drugs and therapies. The successful replication of SMT native morphology demands scaffolds with an aligned anisotropic 3D architecture. In this work, a 3D PCL fibrous scaffold with aligned morphology was developed through the synergistic combination of Melt-Extrusion Additive Manufacturing (MEAM) and porogen leaching, utilizing PCL as the bulk material and PEG as the porogen. PCL/PEG blends with different polymer ratios (60/40, 50/50, 40/60) were produced and characterized through a DSC analysis. The MEAM process parameters and porogen leaching in bi-distilled water allowed for the development of a micrometric anisotropic fibrous structure with fiber diameters ranging from 10 to 100 µm, depending on PCL/PEG blend ratios. The fibrous scaffolds were coated with Gelatin type A to achieve a biomimetic coating for an in vitro cell culture and mechanically characterized via AFM. The 40/60 PCL/PEG scaffolds yielded the most homogeneous and smallest fibers and the greatest physiological stiffness. In vitro cell culture studies were performed by seeding C2C12 cells onto a selected scaffold, enabling their attachment, alignment, and myotube formation along the PCL fibers during a 14-day culture period. The resultant anisotropic scaffold morphology promoted SMT-like cell conformation, establishing a versatile platform for developing in vitro models of tissues with anisotropic morphology.
Collapse
Affiliation(s)
- Mattia Spedicati
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Alice Zoso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Leonardo Mortati
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino, Italy;
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| |
Collapse
|
9
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Casella A, Lowen J, Shimamoto N, Griffin KH, Filler AC, Panitch A, Leach JK. Conductive microgel annealed scaffolds enhance myogenic potential of myoblastic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551533. [PMID: 37577583 PMCID: PMC10418230 DOI: 10.1101/2023.08.01.551533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bioelectricity is an understudied phenomenon to guide tissue homeostasis and regeneration. Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. We generated conductive microgels from poly(ethylene) glycol and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT:PSS increased microgel conductivity over 2-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibited increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, was influenced only by porosity. Human skeletal muscle derived cells exhibited increased Myod1 , IGF-1, and IGFBP-2 at earlier timepoints on conductive microgel scaffolds compared to non-conductive scaffolds. They also secreted higher levels of VEGF at early timepoints and expressed factors that led to macrophage polarization patterns observed during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.
Collapse
|
11
|
Zahra M, Chota A, Abrahamse H, George BP. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:10931. [PMID: 37446109 DOI: 10.3390/ijms241310931] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is a complex and diverse disease characterized by the uncontrolled growth of abnormal cells in the body. It poses a significant global public health challenge and remains a leading cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT) has emerged as a potential treatment for various types of cancer, including skin, lung, bladder, and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents (PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic purposes has a long history dating back thousands of years and continues to be an integral part of healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species (ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future research. Nanotechnology has also played a pivotal role in medical advancements, particularly in the development of targeted drug delivery systems. Therefore, this review explores the potential of utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the scientific potential of plant-based compounds for PDT, we can pave the way for innovative and sustainable treatment strategies.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| |
Collapse
|
12
|
Miranda Alarcón YS, Jazwinska D, Lymon T, Khalili A, Browe D, Newton B, Pellegrini M, Cohen RI, Shreiber DI, Freeman JW. The Use of Collagen Methacrylate in Actuating Polyethylene Glycol Diacrylate-Acrylic Acid Scaffolds for Muscle Regeneration. Ann Biomed Eng 2023; 51:1165-1180. [PMID: 36853478 DOI: 10.1007/s10439-023-03139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/03/2023] [Indexed: 03/01/2023]
Abstract
After muscle loss or injury, skeletal muscle tissue has the ability to regenerate and return its function. However, large volume defects in skeletal muscle tissue pose a challenge to regenerate due to the absence of regenerative elements such as biophysical and biochemical cues, making the development of new treatments necessary. One potential solution is to utilize electroactive polymers that can change size or shape in response to an external electric field. Poly(ethylene glycol) diacrylate (PEGDA) is one such polymer, which holds great potential as a scaffold for muscle tissue regeneration due to its mechanical properties. In addition, the versatile chemistry of this polymer allows for the conjugation of new functional groups to enhance its electroactive properties and biocompatibility. Herein, we have developed an electroactive copolymer of PEGDA and acrylic acid (AA) in combination with collagen methacrylate (CMA) to promote cell adhesion and proliferation. The electroactive properties of the CMA + PEGDA:AA constructs were investigated through actuation studies. Furthermore, the biological properties of the hydrogel were investigated in a 14-day in vitro study to evaluate myosin light chain (MLC) expression and metabolic activity of C2C12 mouse myoblast cells. The addition of CMA improved some aspects of material bioactivity, such as MLC expression in C2C12 mouse myoblast cells. However, the incorporation of CMA in the PEGDA:AA hydrogels reduced the sample movement when placed under an electric field, possibly due to steric hindrance from the CMA. Further research is needed to optimize the use of CMA in combination with PEGDA:AA as a potential scaffold for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | - Dorota Jazwinska
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Terrence Lymon
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Amin Khalili
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel Browe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Brandon Newton
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Michael Pellegrini
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
14
|
Rizzo R, Bonato A, Chansoria P, Zenobi-Wong M. Macroporous Aligned Hydrogel Microstrands for 3D Cell Guidance. ACS Biomater Sci Eng 2022; 8:3871-3882. [PMID: 35977074 DOI: 10.1021/acsbiomaterials.2c00370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue engineering strongly relies on the use of hydrogels as highly hydrated 3D matrices to support the maturation of laden cells. However, because of the lack of microarchitecture and sufficient porosity, common hydrogel systems do not provide physical cell-instructive guidance cues and efficient transport of nutrients and oxygen to the inner part of the construct. A controlled, organized cellular alignment and resulting alignment of secreted ECM are hallmarks of muscle, tendons, and nerves and play an important role in determining their functional properties. Although several strategies to induce cellular alignment have been investigated in 2D systems, the generation of cell-instructive 3D hydrogels remains a challenge. Here, we report on the development of a simple and scalable method to efficiently generate highly macroporous constructs featuring aligned guidance cues. A precross-linked bulk hydrogel is pressed through a grid with variable opening sizes, thus deconstructing it into an array of aligned, high aspect ratio microgels (microstrands) with tunable diameter that are eventually stabilized by a second photoclick cross-linking step. This method has been investigated and optimized both in silico and in vitro, thereby leading to conditions with excellent viability and organized cellular alignment. Finally, as proof of concept, the method has been shown to direct aligned muscle tissue maturation. These findings demonstrate the 3D physical guidance potential of our system, which can be used for a variety of anisotropic tissues and applications.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| | - Angela Bonato
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich 8093, Switzerland
| |
Collapse
|
15
|
Cheesbrough A, Sciscione F, Riccio F, Harley P, R'Bibo L, Ziakas G, Darbyshire A, Lieberam I, Song W. Biobased Elastomer Nanofibers Guide Light-Controlled Human-iPSC-Derived Skeletal Myofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110441. [PMID: 35231133 PMCID: PMC9131876 DOI: 10.1002/adma.202110441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/25/2022] [Indexed: 05/07/2023]
Abstract
Generating skeletal muscle tissue that mimics the cellular alignment, maturation, and function of native skeletal muscle is an ongoing challenge in disease modeling and regenerative therapies. Skeletal muscle cultures require extracellular guidance and mechanical support to stabilize contractile myofibers. Existing microfabrication-based solutions are limited by complex fabrication steps, low throughput, and challenges in measuring dynamic contractile function. Here, the synthesis and characterization of a new biobased nanohybrid elastomer, which is electrospun into aligned nanofiber sheets to mimic the skeletal muscle extracellular matrix, is presented. The polymer exhibits remarkable hyperelasticity well-matched to that of native skeletal muscle (≈11-50 kPa), with ultimate strain ≈1000%, and elastic modulus ≈25 kPa. Uniaxially aligned nanofibers guide myoblast alignment, enhance sarcomere formation, and promote a ≈32% increase in myotube fusion and ≈50% increase in myofiber maturation. The elastomer nanofibers stabilize optogenetically controlled human induced pluripotent stem cell derived skeletal myofibers. When activated by blue light, the myofiber-nanofiber hybrid constructs maintain a significantly higher (>200%) contraction velocity and specific force (>280%) compared to conventional culture methods. The engineered myofibers exhibit a power density of ≈35 W m-3 . This system is a promising new skeletal muscle tissue model for applications in muscular disease modeling, drug discovery, and muscle regeneration.
Collapse
Affiliation(s)
- Aimee Cheesbrough
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Fabiola Sciscione
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Federica Riccio
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Peter Harley
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Lea R'Bibo
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Georgios Ziakas
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Arnold Darbyshire
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
16
|
Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med 2022; 7:23. [PMID: 35393412 PMCID: PMC8991236 DOI: 10.1038/s41536-022-00216-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Although skeletal muscle repairs itself following small injuries, genetic diseases or severe damages may hamper its ability to do so. Induced pluripotent stem cells (iPSCs) can generate myogenic progenitors, but their use in combination with bioengineering strategies to modulate their phenotype has not been sufficiently investigated. This review highlights the potential of this combination aimed at pushing the boundaries of skeletal muscle tissue engineering. First, the overall organization and the key steps in the myogenic process occurring in vivo are described. Second, transgenic and non-transgenic approaches for the myogenic induction of human iPSCs are compared. Third, technologies to provide cells with biophysical stimuli, biomaterial cues, and biofabrication strategies are discussed in terms of recreating a biomimetic environment and thus helping to engineer a myogenic phenotype. The embryonic development process and the pro-myogenic role of the muscle-resident cell populations in co-cultures are also described, highlighting the possible clinical applications of iPSCs in the skeletal muscle tissue engineering field.
Collapse
Affiliation(s)
- Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.
| | - Emanuele Gruppioni
- Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, 40054, Vigorso di Budrio (BO), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy
| |
Collapse
|
17
|
Raffa P, Easler M, Urciuolo A. Three-dimensional in vitro models of neuromuscular tissue. Neural Regen Res 2022; 17:759-766. [PMID: 34472462 PMCID: PMC8530117 DOI: 10.4103/1673-5374.322447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a dynamic tissue in which homeostasis and function are guaranteed by a very defined three-dimensional organization of myofibers in respect to other non-muscular components, including the extracellular matrix and the nervous network. In particular, communication between myofibers and the nervous system is essential for the overall correct development and function of the skeletal muscle. A wide range of chronic, acute and genetic-based human pathologies that lead to the alteration of muscle function are associated with modified preservation of the fine interaction between motor neurons and myofibers at the neuromuscular junction. Recent advancements in the development of in vitro models for human skeletal muscle have shown that three-dimensionality and integration of multiple cell types are both key parameters required to unveil pathophysiological relevant phenotypes. Here, we describe recent achievement reached in skeletal muscle modeling which used biomaterials for the generation of three-dimensional constructs of myotubes integrated with motor neurons.
Collapse
Affiliation(s)
- Paolo Raffa
- Institute of Pediatric Research IRP, Padova, Italy
| | - Maria Easler
- Institute of Pediatric Research IRP, Padova, Italy
| | - Anna Urciuolo
- Institute of Pediatric Research IRP, Padova, Italy
- Molecular Medicine Department, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
19
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
20
|
Ramani S, Ko D, Kim B, Cho C, Kim W, Jo C, Lee CK, Kang J, Hur S, Park S. Technical requirements for cultured meat production: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:681-692. [PMID: 34447948 PMCID: PMC8367405 DOI: 10.5187/jast.2021.e45] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Environment, food, and disease have a selective force on the present and future
as well as our genome. Adaptation of livestock and the environmental nexus,
including forest encroachment for anthropological needs, has been proven to
cause emerging infectious diseases. Further, these demand changes in meat
production and market systems. Meat is a reliable source of protein, with a
majority of the world population consumes meat. To meet the increasing demands
of meat production as well as address issues, such as current environmental
pollution, animal welfare, and outbreaks, cellular agriculture has emerged as
one of the next industrial revolutions. Lab grown meat or cell cultured meat is
a promising way to pursue this; however, it still needs to resemble traditional
meat and be assured safety for human consumption. Further, to mimic the
palatability of traditional meat, the process of cultured meat production starts
from skeletal muscle progenitor cells isolated from animals that proliferate and
differentiate into skeletal muscle using cell culture techniques. Due to several
lacunae in the current approaches, production of muscle replicas is not possible
yet. Our review shows that constant research in this field will resolve the
existing constraints and enable successful cultured meat production in the near
future. Therefore, production of cultured meat is a better solution that looks
after environmental issues, spread of outbreaks, antibiotic resistance through
the zoonotic spread, food and economic crises.
Collapse
Affiliation(s)
| | - Deunsol Ko
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Bosung Kim
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Changjun Cho
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Woosang Kim
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | | | - Sunjin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
21
|
Ren D, Song J, Liu R, Zeng X, Yan X, Zhang Q, Yuan X. Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes. Front Physiol 2021; 12:689492. [PMID: 34408658 PMCID: PMC8365838 DOI: 10.3389/fphys.2021.689492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Lim D, Renteria ES, Sime DS, Ju YM, Kim JH, Criswell T, Shupe TD, Atala A, Marini FC, Gurcan MN, Soker S, Hunsberger J, Yoo JJ. Bioreactor design and validation for manufacturing strategies in tissue engineering. Biodes Manuf 2021; 5:43-63. [PMID: 35223131 PMCID: PMC8870603 DOI: 10.1007/s42242-021-00154-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fields of regenerative medicine and tissue engineering offer new therapeutic options to restore, maintain or improve tissue function following disease or injury. To maximize the biological function of a tissue-engineered clinical product, specific conditions must be maintained within a bioreactor to allow the maturation of the product in preparation for implantation. Specifically, the bioreactor should be designed to mimic the mechanical, electrochemical and biochemical environment that the product will be exposed to in vivo. Real-time monitoring of the functional capacity of tissue-engineered products during manufacturing is a critical component of the quality management process. The present review provides a brief overview of bioreactor engineering considerations. In addition, strategies for bioreactor automation, in-line product monitoring and quality assurance are discussed.
Collapse
Affiliation(s)
- Diana Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Eric S. Renteria
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Drake S. Sime
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas D. Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Frank C. Marini
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Metin N. Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Joshua Hunsberger
- RegenMed Development Organization (ReMDO), Winston Salem, NC 27106, USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
23
|
Zhang Y, Le Friec A, Chen M. 3D anisotropic conductive fibers electrically stimulated myogenesis. Int J Pharm 2021; 606:120841. [PMID: 34216768 DOI: 10.1016/j.ijpharm.2021.120841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Recapitulation of in vivo environments that drive muscle cells to organize into a physiologically relevant 3D architecture remains a major challenge for muscle tissue engineering. To recreate electrophysiology of muscle tissues, electroactive biomaterials have been used to stimulate muscle cells with exogenous electrical fields. In particular, the use of electroactive biomaterials with an anisotropic micro-/nanostructure that closely mimic the native skeletal-muscle extracellular matrix (ECM) is desirable for skeletal muscle tissue engineering. Herein, we present a hierarchically organized, anisotropic, and conductive Polycaprolactone/gold (PCL/Au) scaffold for guiding myoblasts alignment and promoting the elongation and maturation of myotubes under electrical stimulation. Culturing with H9c2 myoblasts cells indicated that the nanotopographic cues was crucial for nuclei alignment, while the presence of microscale grooves effectively enhanced both the formation and elongation of myotubes. The anisotropic structure also leads to anisotropic conductivity. Under electrical stimulation, the elongation and maturation of myotubes were significantly enhanced along the anisotropic scaffold. Specifically, compared to the unstimulated group (0 V), the myotube area percentage increased by 1.4, 1.9 and 2.4 times in the 1 V, 2 V, 3 V groups, respectively. In addition, the myotube average length in the 1 V group increased by 1.3 times compared to that of the unstimulated group, and significantly increased by 1.8 and 2.0 times in the 2 V, 3 V groups, respectively. Impressively, the longest myotubes reached more than 4 mm in both 2 V and 3 V groups. Overall, our conductive, anisotropic 3D nano/microfibrous scaffolds with the application of electrical stimulation provides a desirable platform for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Yanping Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Menglin Chen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Bilge S, Ergene E, Talak E, Gokyer S, Donar YO, Sınağ A, Yilgor Huri P. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:73. [PMID: 34152502 PMCID: PMC8217022 DOI: 10.1007/s10856-021-06534-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/28/2021] [Indexed: 05/03/2023]
Abstract
Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Selva Bilge
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Emre Ergene
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Ebru Talak
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Yusuf Osman Donar
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Ali Sınağ
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey.
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey.
| |
Collapse
|
25
|
López-Canosa A, Perez-Amodio S, Yanac-Huertas E, Ordoño J, Rodriguez-Trujillo R, Samitier J, Castaño O, Engel E. A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue. Biofabrication 2021; 13. [PMID: 33962409 DOI: 10.1088/1758-5090/abff12] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/07/2021] [Indexed: 12/28/2022]
Abstract
The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.
Collapse
Affiliation(s)
- Adrián López-Canosa
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Soledad Perez-Amodio
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,IMEM-BRT Group, Department Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| | - Eduardo Yanac-Huertas
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jesús Ordoño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Romen Rodriguez-Trujillo
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri i Reixac 15-21, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Josep Samitier
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri i Reixac 15-21, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Oscar Castaño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,IMEM-BRT Group, Department Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| |
Collapse
|
26
|
Carleton MM, Sefton MV. Promoting endogenous repair of skeletal muscle using regenerative biomaterials. J Biomed Mater Res A 2021; 109:2720-2739. [PMID: 34041836 DOI: 10.1002/jbm.a.37239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Akiyama Y, Nakayama A, Nakano S, Amiya R, Hirose J. An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production. CYBORG AND BIONIC SYSTEMS 2021; 2021:9820505. [PMID: 36285137 PMCID: PMC9494718 DOI: 10.34133/2021/9820505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Low-labor production of tissue-engineered muscles (TEMs) is one of the key technologies to realize the practical use of muscle-actuated devices. This study developed and then demonstrated the daily maintenance-free culture system equipped with both electrical stimulation and medium replacement functions. To avoid ethical issues, immortal myoblast cells C2C12 were used. The system consisting of gel culture molds, a medium replacement unit, and an electrical stimulation unit could produce 12 TEMs at one time. The contractile forces of the TEMs were measured with a newly developed microforce measurement system. Even the TEMs cultured without electrical stimulation generated forces of almost 2 mN and were shortened by 10% in tetanic contractions. Regarding the contractile forces, electrical stimulation by a single pulse at 1 Hz was most effective, and the contractile forces in tetanus were over 2.5 mN. On the other hand, continuous pulses decreased the contractile forces of TEMs. HE-stained cross-sections showed that myoblast cells proliferated and fused into myotubes mainly in the peripheral regions, and fewer cells existed in the internal region. This must be due to insufficient supplies of oxygen and nutrients inside the TEMs. By increasing the supplies, one TEM might be able to generate a force up to around 10 mN. The tetanic forces of the TEMs produced by the system were strong enough to actuate microstructures like previously reported crawling robots. This daily maintenance-free culture system which could stably produce TEMs strong enough to be utilized for microrobots should contribute to the advancement of biohybrid devices.
Collapse
Affiliation(s)
- Yoshitake Akiyama
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
- Department of Biomedical Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Akemi Nakayama
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Shota Nakano
- Department of Biomedical Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | | | - Jun Hirose
- Tech Alpha, 649-1 Ohtsuka, Hachioji, Tokyo, Japan
| |
Collapse
|
28
|
Frías-Sánchez AI, Quevedo-Moreno DA, Samandari M, Tavares-Negrete JA, Sánchez-Rodríguez VH, González-Gamboa I, Ponz F, Alvarez MM, Trujillo-de Santiago G. Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows. Biofabrication 2021; 13. [PMID: 33418551 DOI: 10.1088/1758-5090/abd9d7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Multiple human tissues exhibit fibrous nature. Therefore, the fabrication of hydrogel filaments for tissue engineering is a trending topic. Current tissue models are made of materials that often require further enhancement for appropriate cell attachment, proliferation and differentiation. Here we present a simple strategy, based on the use of surface chaotic flows amenable to mathematical modeling, to fabricate continuous, long and thin filaments of gelatin methacryloyl (GelMA). The fabrication of these filaments is achieved by chaotic advection in a finely controlled and miniaturized version of the journal bearing system. A drop of GelMA pregel is injected on a higher-density viscous fluid (glycerin) and a chaotic flow is applied through an iterative process. The millimeter-scale hydrogel drop is exponentially deformed and elongated to generate a meter-scale fiber, which was then polymerized under UV-light exposure. Computational fluid dynamic (CFD) simulations are conducted to determine the characteristics of the flow and design the experimental conditions for fabrication of the fibers. GelMA fibers were effectively used as scaffolds for C2C12 myoblast cells. Experimental results demonstrate an accurate accordance with CFD simulations for the predicted length of the fibers. Plant-based viral nanoparticles (i.e.Turnip mosaic virus; TuMV) were then integrated to the hydrogel fibers as a secondary nano-scaffold for cells for enhanced muscle tissue engineering. The addition of TuMV significantly increased the metabolic activity of the cell-seeded fibers (p* < 0.05), strengthened cell attachment throughout the first 28 d, improved cell alignment, and promoted the generation of structures that resemble natural mammal muscle tissues. Chaotic two-dimensional-printing is proven to be a viable method for the fabrication of hydrogel fibers. The combined use of thin and long GelMA hydrogel fibers enhanced with flexuous virions offers a promising alternative for scaffolding of muscle cells and show potential to be used as cost-effective models for muscle tissue engineering purposes.
Collapse
Affiliation(s)
- Ada I Frías-Sánchez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Diego A Quevedo-Moreno
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, United States of America
| | - Jorge A Tavares-Negrete
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | | | - Ivonne González-Gamboa
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Bioengineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Bioengineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| |
Collapse
|
29
|
Ng S, Kurisawa M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater 2021; 124:108-129. [PMID: 33472103 DOI: 10.1016/j.actbio.2021.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cultured meat has recently achieved mainstream prominence due to the emergence of societal and industrial interest. In contrast to animal-based production of traditional meat, the cultured meat approach entails laboratory cultivation of engineered muscle tissue. However, bioengineers have hitherto engineered tissues to fulfil biomedical endpoints, and have had limited experience in engineering muscle tissue for its post-mortem traits, which broadly govern consumer definitions of meat quality. Furthermore, existing tissue engineering approaches face fundamental challenges in technical feasibility and industrial scalability for cultured meat production. This review discusses how animal-based meat production variables influence meat properties at both the molecular and functional level, and whether current cultured meat approaches recapitulate these properties. In addition, this review considers how conventional meat producers employ exogenous biopolymer-based meat ingredients and processing techniques to mimic desirable meat properties in meat products. Finally, current biomaterial strategies for engineering muscle and adipose tissue are surveyed in the context of emerging constraints that pertain to cultured meat production, such as edibility, sustainability and scalability, and potential areas for integrating biomaterials and food biopolymer approaches to address these constraints are discussed. STATEMENT OF SIGNIFICANCE: Laboratory-grown or cultured meat has gained increasing interest from industry and the public, but currently faces significant impediment to market feasibility. This is due to fundamental knowledge gaps in producing realistic meat tissues via conventional tissue engineering approaches, as well as translational challenges in scaling up these approaches in an efficient, sustainable and high-volume manner. By defining the molecular basis for desirable meat quality attributes, such as taste and texture, and introducing the fundamental roles of food biopolymers in mimicking these properties in conventional meat products, this review aims to bridge the historically disparate fields of meat science and biomaterials engineering in order to inspire potentially synergistic strategies that address some of these challenges.
Collapse
|
30
|
San Emeterio CL, Hymel LA, Turner TC, Ogle ME, Pendleton EG, York WY, Olingy CE, Liu AY, Lim HS, Sulchek TA, Warren GL, Mortensen LJ, Qiu P, Jang YC, Willett NJ, Botchwey EA. Nanofiber-Based Delivery of Bioactive Lipids Promotes Pro-regenerative Inflammation and Enhances Muscle Fiber Growth After Volumetric Muscle Loss. Front Bioeng Biotechnol 2021; 9:650289. [PMID: 33816455 PMCID: PMC8017294 DOI: 10.3389/fbioe.2021.650289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Volumetric muscle loss (VML) injuries after extremity trauma results in an important clinical challenge often associated with impaired healing, significant fibrosis, and long-term pain and functional deficits. While acute muscle injuries typically display a remarkable capacity for regeneration, critically sized VML defects present a dysregulated immune microenvironment which overwhelms innate repair mechanisms leading to chronic inflammation and pro-fibrotic signaling. In this series of studies, we developed an immunomodulatory biomaterial therapy to locally modulate the sphingosine-1-phosphate (S1P) signaling axis and resolve the persistent pro-inflammatory injury niche plaguing a critically sized VML defect. Multiparameter pseudo-temporal 2D projections of single cell cytometry data revealed subtle distinctions in the altered dynamics of specific immune subpopulations infiltrating the defect that were critical to muscle regeneration. We show that S1P receptor modulation via nanofiber delivery of Fingolimod (FTY720) was characterized by increased numbers of pro-regenerative immune subsets and coincided with an enriched pool of muscle stem cells (MuSCs) within the injured tissue. This FTY720-induced priming of the local injury milieu resulted in increased myofiber diameter and alignment across the defect space followed by enhanced revascularization and reinnervation of the injured muscle. These findings indicate that localized modulation of S1P receptor signaling via nanofiber scaffolds, which resemble the native extracellular matrix ablated upon injury, provides great potential as an immunotherapy for bolstering endogenous mechanisms of regeneration following VML injury.
Collapse
Affiliation(s)
- Cheryl L. San Emeterio
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Lauren A. Hymel
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Thomas C. Turner
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Molly E. Ogle
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA, United States
| | - William Y. York
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Claire E. Olingy
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alan Y. Liu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hong Seo Lim
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Todd A. Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Gordon L. Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA, United States
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA, United States
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, United States
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Young C. Jang
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Nick J. Willett
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Edward A. Botchwey
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
31
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
32
|
Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:15. [PMID: 33475855 PMCID: PMC7819922 DOI: 10.1007/s10856-020-06476-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/18/2020] [Indexed: 05/05/2023]
Abstract
Skeletal muscle is capable of regeneration following minor damage, more significant volumetric muscle loss (VML) however results in permanent functional impairment. Current multimodal treatment methodologies yield variable functional recovery, with reconstructive surgical approaches restricted by limited donor tissue and significant donor morbidity. Tissue-engineered skeletal muscle constructs promise the potential to revolutionise the treatment of VML through the regeneration of functional skeletal muscle. Herein, we review the current status of tissue engineering approaches to VML; firstly the design of biocompatible tissue scaffolds, including recent developments with electroconductive materials. Secondly, we review the progenitor cell populations used to seed scaffolds and their relative merits. Thirdly we review in vitro methods of scaffold functional maturation including the use of three-dimensional bioprinting and bioreactors. Finally, we discuss the technical, regulatory and ethical barriers to clinical translation of this technology. Despite significant advances in areas, such as electroactive scaffolds and three-dimensional bioprinting, along with several promising in vivo studies, there remain multiple technical hurdles before translation into clinically impactful therapies can be achieved. Novel strategies for graft vascularisation, and in vitro functional maturation will be of particular importance in order to develop tissue-engineered constructs capable of significant clinical impact.
Collapse
Affiliation(s)
- Benjamin Langridge
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK.
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Michelle Griffin
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Peter E Butler
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
33
|
Yang GH, Kim W, Kim J, Kim G. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics 2021; 11:48-63. [PMID: 33391460 PMCID: PMC7681100 DOI: 10.7150/thno.50794] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022] Open
Abstract
The most important requirements of biomedical substitutes used in muscle tissue regeneration are appropriate topographical cues and bioactive components for the induction of myogenic differentiation/maturation. Here, we developed an electric field-assisted 3D cell-printing process to fabricate cell-laden fibers with a cell-alignment cue. Methods: We used gelatin methacryloyl (GelMA) laden with C2C12 cells. The cells in the GelMA fiber were exposed to electrical stimulation, which induced cell alignment. Various cellular activities, such as cell viability, cell guidance, and proliferation/myogenic differentiation of the microfibrous cells in GelMA, were investigated in response to parameters (applied electric fields, viscosity of the bioink, and encapsulated cell density). In addition, a cell-laden fibrous bundle mimicking the structure of the perimysium was designed using gelatin hydrogel in conjunction with a 4D bioprinting technique. Results: Cell-laden microfibers were fabricated using optimized process parameters (electric field intensity = 0.8 kV cm-1, applying time = 12 s, and cell number = 15 × 106 cells mL-1). The cell alignment induced by the electric field promoted significantly greater myotube formation, formation of highly ordered myotubes, and enhanced maturation, compared to the normally printed cell-laden structure. The shape change mechanism that involved the swelling properties and folding abilities of gelatin was successfully evaluated, and we bundled the GelMA microfibers using a 4D-conceptualized gelatin film. Conclusion: The C2C12-laden GelMA structure demonstrated effective myotube formation/maturation in response to stimulation with an electric field. Based on these results, we propose that our cell-laden fibrous bundles can be employed as in vitro drug testing models for obtaining insights into the various myogenic responses.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonjin Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyeon Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
34
|
Jain A, Behera M, Ravi V, Mishra S, Sundaresan NR, Chatterjee K. Recapitulating pathophysiology of skeletal muscle diseases in vitro using primary mouse myoblasts on a nanofibrous platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102341. [PMID: 33227539 DOI: 10.1016/j.nano.2020.102341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023]
Abstract
Tissue engineering approaches are used to mimic the microenvironment of the skeletal muscle in vitro. However, the validation of a bioengineered muscle as a model to study diseases is inadequate. Here, we present polycaprolactone nanofibers as a robust platform that mimics cellular organization and recapitulates critical functions of the myotubes observed in vivo. We isolated myoblasts from mice following a simplified protocol and cultured them on aligned nanofibers. Myotubes grown on aligned nanofibers maintained alignment for 14 days and exhibited a time-dependent increase in levels of p-AKT upon insulin stimulation. Treatment with matrix-assisted integrin inhibitor led to reduction in p-AKT levels, underscoring the critical role of environment on the biological processes. We demonstrate the suitability of myotubes grown on nanofibrous platform to study corticosteroid-induced muscle degeneration. This study, thus, demonstrates that aligned nanofibers retain myotubes in culture for longer duration and recapitulate the functions of skeletal muscle under pathophysiological conditions.
Collapse
Affiliation(s)
- Aditi Jain
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Manisha Behera
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sneha Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nagalingam R Sundaresan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India; Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
35
|
Nagashima T, Hadiwidjaja S, Ohsumi S, Murata A, Hisada T, Kato R, Okada Y, Honda H, Shimizu K. In Vitro Model of Human Skeletal Muscle Tissues with Contractility Fabricated by Immortalized Human Myogenic Cells. ACTA ACUST UNITED AC 2020; 4:e2000121. [DOI: 10.1002/adbi.202000121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/04/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Takunori Nagashima
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Stacy Hadiwidjaja
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Saki Ohsumi
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Akari Murata
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Takumi Hisada
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University Nagoya 464‐8601 Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University Nagoya 464‐8601 Japan
| | - Yohei Okada
- Department of Neurology Aichi Medical University School of Medicine Aichi 480‐1195 Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| |
Collapse
|
36
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|
37
|
Zidarič T, Milojević M, Vajda J, Vihar B, Maver U. Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09253-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Gotti C, Sensini A, Fornaia G, Gualandi C, Zucchelli A, Focarete ML. Biomimetic Hierarchically Arranged Nanofibrous Structures Resembling the Architecture and the Passive Mechanical Properties of Skeletal Muscles: A Step Forward Toward Artificial Muscle. Front Bioeng Biotechnol 2020; 8:767. [PMID: 32766220 PMCID: PMC7379046 DOI: 10.3389/fbioe.2020.00767] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles are considered to date the best existing actuator in nature thanks to their hierarchical multiscale fibrous structure capable to enhance their strength and contractile performances. In recent years, driven by the growing of the soft robotics and tissue-engineering research field, many biomimetic soft actuators and scaffolds were designed by taking inspiration from the biological skeletal muscle. In this work we used the electrospinning technique to develop a hierarchically arranged nanofibrous structure resembling the morphology and passive biomechanical properties of skeletal muscles. To mimic the passive properties of muscle, a low-modulus polyurethane was used. Several electrospun structures (mats, bundles, and a muscle-like assembly) were produced with different internal 3D arrangements of the nanofibers. A thermal characterization through thermogravimetric and differential scanning calorimetry analysis investigated the physico-chemical properties of the material. The multiscale morphological similarities with the biological counterpart were verified by means of scanning electron microscopy investigation. The tensile tests on the different electrospun samples revealed that the muscle-like assembly presented slightly higher strength and stiffness compared to the skeletal muscle ones. Moreover, mathematical models of the mechanical behavior of the nanofibrous structures were successfully developed, allowing to better investigate the relationships between structure and mechanics of the samples. The promising results suggest the suitability of this hierarchical electrospun nanofibrous structure for applications in regenerative medicine and, if combined with active materials, in soft actuators for robotic.
Collapse
Affiliation(s)
- Carlo Gotti
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Alberto Sensini
- Advanced Mechanics and Materials–Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gianmaria Fornaia
- Department of Chemistry “G. Ciamician” and National Interuniversity Consortium of Materials Science and Technology, Bologna Research Unit, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Chiara Gualandi
- Advanced Mechanics and Materials–Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Department of Chemistry “G. Ciamician” and National Interuniversity Consortium of Materials Science and Technology, Bologna Research Unit, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials–Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry “G. Ciamician” and National Interuniversity Consortium of Materials Science and Technology, Bologna Research Unit, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Health Sciences and Technologies–Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
39
|
Carnes ME, Pins GD. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment. J Biomed Mater Res B Appl Biomater 2020; 108:2308-2319. [PMID: 31967415 PMCID: PMC7255526 DOI: 10.1002/jbm.b.34566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
To regenerate functional muscle tissue, engineered scaffolds should impart topographical features to induce myoblast alignment by a phenomenon known as contact guidance. Myoblast alignment is an essential step towards myotube formation, which is guided in vivo by extracellular matrix structure and micron-scale grooves between adjacent muscle fibers. Fibrin microthread scaffolds mimic the morphological architecture of native muscle tissue and have demonstrated promise as an implantable scaffold for treating skeletal muscle injuries. While these scaffolds promote modest myoblast alignment, it is not sufficient to generate highly functional muscle tissue. The goal of this study is to develop and characterize a new method of etching the surface of fibrin microthreads to incorporate aligned, sub-micron grooves that promote myoblast alignment. To generate these topographic features, we placed fibrin microthreads into 2-(N-morpholino)ethane-sulfonic acid (MES) acidic buffer and evaluated the effect of buffer pH on the generation of these features. Surface characterization with atomic force microscopy and scanning electron microscopy indicated the generation of aligned, sub-micron sized grooves on microthreads in MES buffer with pH 5.0. Microthreads etched with surface features had tensile mechanical properties comparable to controls, indicating that the surface treatment does not inhibit scaffold bulk properties. Our data demonstrate that etching threads in MES buffer with pH 5.0 enhanced alignment and filamentous actin stress fiber organization of myoblasts on the surface of scaffolds. The ability to tune topographic features on the surfaces of scaffolds independent of mechanical properties provides a valuable tool for designing microthread-based scaffolds to enhance regeneration of functional muscle tissue.
Collapse
Affiliation(s)
- Meagan E Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - George D Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
40
|
Ribeiro S, Ribeiro C, Carvalho EO, Tubio CR, Castro N, Pereira N, Correia V, Gomes AC, Lanceros-Méndez S. Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:4239-4252. [DOI: 10.1021/acsabm.0c00315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sylvie Ribeiro
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Estela O. Carvalho
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Carmen R. Tubio
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nelson Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nelson Pereira
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centro Algoritmi, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Vitor Correia
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centro Algoritmi, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Andreia C. Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
41
|
Kim J, Kasukonis B, Roberts K, Dunlap G, Brown L, Washington T, Wolchok J. Graft alignment impacts the regenerative response of skeletal muscle after volumetric muscle loss in a rat model. Acta Biomater 2020; 105:191-202. [PMID: 31978621 DOI: 10.1016/j.actbio.2020.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
A key event in the etiology of volumetric muscle loss (VML) injury is the bulk loss of structural cues provided by the underlying extracellular matrix (ECM). To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. However, while scaffold based regenerative medicine strategies have shown potential, there remains a significant amount of outcome variability observed across the field. We suggest that an overlooked source of outcome variability is differences in scaffolding architecture. The goal of this study was to test the hypothesis that implant alignment has a significant impact on genotypic and phenotypic outcomes following the repair of VML injuries. Using a rat VML model, outcomes across three autograft implant treatment groups (aligned implants, 45° misaligned, and 90° misaligned) and two recovery time points (2 weeks and 12 weeks) were examined (n = 6-8/group). At 2 weeks post-repair there were no significant differences in muscle mass and torque recovery between the treatment groups, however we did observe a significant upregulation of MyoD (2.5 fold increase) and Pax7 (2 fold increase) gene expression as well as the presence of immature myofibers at the implant site for those animals repaired with aligned autografts. By 12 weeks post-repair, functional and structural differences between the treatment groups could be detected. Aligned autografts had significantly greater mass and torque recovery (77 ± 10% of normal) when compared to 45° and 90° misaligned autografts (64 ± 10% and 61 ± 11%, respectively). Examination of tissue structure revealed extensive fibrosis and a significant increase in non-contractile tissue area fraction for only those animals treated using misaligned autografts. When taken together, the results suggest that implant graft orientation has a significant impact on in-vivo outcomes and indicate that the effect of graft alignment on muscle phenotype may be mediated through genotypic changes to myogenesis and fibrosis at the site of injury and repair. STATEMENT OF SIGNIFICANCE: A key event in the etiology of volumetric muscle loss injury is the bulk loss of architectural cues provided by the underlying extracellular matrix. To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. Yet, although native muscle is a highly organized tissue with network and cellular alignment in the direction of contraction, there is little evidence within the field concerning the importance of re-establishing native architectural alignment. The results of this study suggest that critical interactions exist between implant and native muscle alignment cues during healing, which influence the balance between myogenesis and fibrosis. Specifically, it appears that alignment of implant architectural cues with native muscle cues is necessary to create a pro-myogenic environment and contractile force recovery. The results also suggest that misaligned cues may be pathological, leading to fibrosis and poor contractile force recovery.
Collapse
Affiliation(s)
- John Kim
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Ben Kasukonis
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kevin Roberts
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States; Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Grady Dunlap
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Lemuel Brown
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Jeffrey Wolchok
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
42
|
Christensen RK, von Halling Laier C, Kiziltay A, Wilson S, Larsen NB. 3D Printed Hydrogel Multiassay Platforms for Robust Generation of Engineered Contractile Tissues. Biomacromolecules 2019; 21:356-365. [PMID: 31860278 DOI: 10.1021/acs.biomac.9b01274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present a method for reproducible manufacture of multiassay platforms with tunable mechanical properties for muscle tissue strip analysis. The platforms result from stereolithographic 3D printing of low protein-binding poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Contractile microtissues have previously been engineered by immobilizing suspended cells in a confined hydrogel matrix with embedded anchoring cantilevers to facilitate muscle tissue strip formation. The 3D shape and mechanical properties of the confinement and the embedded cantilevers are critical for the tissue robustness. High-resolution 3D printing of PEGDA hydrogels offers full design freedom to engineer cantilever stiffness, while minimizing unwanted cell attachment. We demonstrate the applicability by generating suspended muscle tissue strips from C2C12 mouse myoblasts in a compliant fibrin-based hydrogel matrix. The full design freedom allows for new platform geometries that reduce local stress in the matrix and tissue, thus, reducing the risk of tissue fracture.
Collapse
Affiliation(s)
- Rie Kjær Christensen
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark.,Sophion Bioscience A/S , Baltorpvej 154 , 2750 Ballerup , Denmark
| | - Christoffer von Halling Laier
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| | - Aysel Kiziltay
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| | - Sandra Wilson
- Sophion Bioscience A/S , Baltorpvej 154 , 2750 Ballerup , Denmark
| | - Niels Bent Larsen
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
43
|
Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Ann Biomed Eng 2019; 48:734-746. [DOI: 10.1007/s10439-019-02397-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
|
44
|
Dong R, Ma PX, Guo B. Conductive biomaterials for muscle tissue engineering. Biomaterials 2019; 229:119584. [PMID: 31704468 DOI: 10.1016/j.biomaterials.2019.119584] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022]
Abstract
Muscle tissues are soft tissues that are of great importance in force generation, body movements, postural support and internal organ function. Muscle tissue injuries would not only result in the physical and psychological pain and disability to the patient, but also become a severe social problem due to the heavy financial burden they laid on the governments. Current treatments for muscle tissue injuries all have their own severe limitations and muscle tissue engineering has been proposed as a promising therapeutic strategy to treat with this problem. Conductive biomaterials are good candidates as scaffolds in muscle tissue engineering due to their proper conductivity and their promotion on muscle tissue formation. However, a review of conductive biomaterials function in muscle tissue engineering, including the skeletal muscle tissue, cardiac muscle tissue and smooth muscle tissue regeneration is still lacking. Here we reviewed the recent progress of conductive biomaterials for muscle regeneration. The recent synthesis and fabrication methods of conductive scaffolds containing conductive polymers (mainly polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene), carbon-based nanomaterials (mainly graphene and carbon nanotube), and metal-based biomaterials were systematically discussed, and their application in a variety of forms (such as hydrogels, films, nanofibers, and porous scaffolds) for different kinds of muscle tissues formation (skeletal muscle, cardiac muscle and smooth muscle) were summarized. Furthermore, the mechanism of how the conductive biomaterials affect the muscle tissue formation was discussed and the future development directions were included.
Collapse
Affiliation(s)
- Ruonan Dong
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peter X Ma
- Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
45
|
Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019; 221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keith Vandusen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
46
|
Patel A, Vendrell-Gonzalez S, Haas G, Marcinczyk M, Ziemkiewicz N, Talovic M, Fisher JS, Garg K. Regulation of Myogenic Activity by Substrate and Electrical Stimulation In Vitro. Biores Open Access 2019; 8:129-138. [PMID: 31367477 PMCID: PMC6664826 DOI: 10.1089/biores.2019.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle has a remarkable regenerative capacity in response to mild injury. However, when muscle is severely injured, muscle regeneration is impaired due to the loss of muscle-resident stem cells, known as satellite cells. Fibrotic tissue, primarily comprising collagen I (COL), is deposited with this critical loss of muscle. In recent studies, supplementation of laminin (LM)-111 has been shown to improve skeletal muscle regeneration in several models of disease and injury. Additionally, electrical stimulation (E-stim) has been investigated as a possible rehabilitation therapy to improve muscle's functional recovery. This study investigated the role of E-stim and substrate in regulating myogenic response. C2C12 myoblasts were allowed to differentiate into myotubes on COL- and LM-coated polydimethylsiloxane molds. The myotubes were subjected to E-stim and compared with nonstimulated controls. While E-stim resulted in increased myogenic activity, irrespective of substrate, LM supported increased proliferation and uniform distribution of C2C12 myoblasts. In addition, C2C12 myoblasts cultured on LM showed higher Sirtuin 1, mammalian target of rapamycin, desmin, nitric oxide, and vascular endothelial growth factor expression. Taken together, these results suggest that an LM substrate is more conducive to myoblast growth and differentiation in response to E-stim in vitro.
Collapse
Affiliation(s)
- Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Sara Vendrell-Gonzalez
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jonathan S Fisher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
47
|
Nakayama KH, Quarta M, Paine P, Alcazar C, Karakikes I, Garcia V, Abilez OJ, Calvo NS, Simmons CS, Rando TA, Huang NF. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration. Commun Biol 2019; 2:170. [PMID: 31098403 PMCID: PMC6505043 DOI: 10.1038/s42003-019-0416-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic skeletal muscle injuries cause irreversible tissue damage and impaired revascularization. Engineered muscle is promising for enhancing tissue revascularization and regeneration in injured muscle. Here we fabricated engineered skeletal muscle composed of myotubes interspersed with vascular endothelial cells using spatially patterned scaffolds that induce aligned cellular organization, and then assessed their therapeutic benefit for treatment of murine volumetric muscle loss. Murine skeletal myoblasts co-cultured with endothelial cells in aligned nanofibrillar scaffolds form endothelialized and aligned muscle with longer myotubes, more synchronized contractility, and more abundant secretion of angiogenic cytokines, compared to endothelialized engineered muscle formed from randomly-oriented scaffolds. Treatment of traumatically injured muscle with endothelialized and aligned skeletal muscle promotes the formation of highly organized myofibers and microvasculature, along with greater vascular perfusion, compared to treatment of muscle derived from randomly-oriented scaffolds. This work demonstrates the potential of endothelialized and aligned engineered skeletal muscle to promote vascular regeneration following transplantation.
Collapse
Affiliation(s)
- Karina H. Nakayama
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Marco Quarta
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304 USA
| | - Patrick Paine
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304 USA
| | - Cynthia Alcazar
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Ioannis Karakikes
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Victor Garcia
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Oscar J. Abilez
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
| | - Nicholas S. Calvo
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainsville, FL 32611 USA
| | - Chelsey S. Simmons
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainsville, FL 32611 USA
| | - Thomas A. Rando
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304 USA
| | - Ngan F. Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
48
|
Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019; 198:259-269. [PMID: 30180985 PMCID: PMC6395553 DOI: 10.1016/j.biomaterials.2018.08.058] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023]
Abstract
In vitro models of contractile human skeletal muscle hold promise for use in disease modeling and drug development, but exhibit immature properties compared to native adult muscle. To address this limitation, 3D tissue-engineered human muscles (myobundles) were electrically stimulated using intermittent stimulation regimes at 1 Hz and 10 Hz. Dystrophin in myotubes exhibited mature membrane localization suggesting a relatively advanced starting developmental maturation. One-week stimulation significantly increased myobundle size, sarcomeric protein abundance, calcium transient amplitude (∼2-fold), and tetanic force (∼3-fold) resulting in the highest specific force generation (19.3mN/mm2) reported for engineered human muscles to date. Compared to 1 Hz electrical stimulation, the 10 Hz stimulation protocol resulted in greater myotube hypertrophy and upregulated mTORC1 and ERK1/2 activity. Electrically stimulated myobundles also showed a decrease in fatigue resistance compared to control myobundles without changes in glycolytic or mitochondrial protein levels. Greater glucose consumption and decreased abundance of acetylcarnitine in stimulated myobundles indicated increased glycolytic and fatty acid metabolic flux. Moreover, electrical stimulation of myobundles resulted in a metabolic shift towards longer-chain fatty acid oxidation as evident from increased abundances of medium- and long-chain acylcarnitines. Taken together, our study provides an advanced in vitro model of human skeletal muscle with improved structure, function, maturation, and metabolic flux.
Collapse
Affiliation(s)
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Neel K Prabhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
49
|
Kim H, Kim MC, Asada HH. Extracellular matrix remodelling induced by alternating electrical and mechanical stimulations increases the contraction of engineered skeletal muscle tissues. Sci Rep 2019; 9:2732. [PMID: 30804393 PMCID: PMC6389954 DOI: 10.1038/s41598-019-39522-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Engineered skeletal muscles are inferior to natural muscles in terms of contractile force, hampering their potential use in practical applications. One major limitation is that the extracellular matrix (ECM) not only impedes the contraction but also ineffectively transmits the forces generated by myotubes to the load. In the present study, ECM remodelling improves contractile force in a short time, and a coordinated, combined electrical and mechanical stimulation induces the desired ECM remodelling. Notably, the application of single and combined stimulations to the engineered muscles remodels the structure of their ECM networks, which determines the mechanical properties of the ECM. Myotubes in the tissues are connected in parallel and in series to the ECM. The stiffness of the parallel ECM must be low not to impede contraction, while the stiffness of the serial ECM must be high to transmit the forces to the load. Both the experimental results and the mechanistic model suggest that the combined stimulation through coordination reorients the ECM fibres in such a way that the parallel ECM stiffness is reduced, while the serial ECM stiffness is increased. In particular, 3 and 20 minutes of alternating electrical and mechanical stimulations increase the force by 18% and 31%, respectively.
Collapse
Affiliation(s)
- Hyeonyu Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Min-Cheol Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - H Harry Asada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- BioSystem and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
50
|
Takahashi H, Shimizu T, Okano T. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology. Sci Rep 2018; 8:13932. [PMID: 30224737 PMCID: PMC6141563 DOI: 10.1038/s41598-018-32163-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle physiology and the mechanisms of muscle diseases can be effectively studied by an in-vitro tissue model produced by muscle tissue engineering. Engineered human cell-based tissues are required more than ever because of the advantages they bring as tissue models in research studies. This study reports on a production method of a human skeletal myofiber sheet that demonstrates biomimetic properties including the aligned structure of myofibers, basement membrane-like structure of the extracellular matrix, and unidirectional contractile ability. The contractile ability and drug responsibility shown in this study indicate that this engineered muscle tissue has potential as a human cell-based tissue model for clinically relevant in-vitro studies in muscle physiology and drug discovery. Moreover, this engineered tissue can be used to better understand the relationships between mechanical stress and myogenesis, including muscle growth and regeneration. In this study, periodic exercise induced by continuous electrical pulse stimulation enhanced the contractile ability of the engineered myofibers and the secretion of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) from the exercising myofibers. Since the physiology of skeletal muscle is directly related to mechanical stress, these features point to application as a tissue model and platform for future biological studies of skeletal muscle including muscle metabolism, muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|