1
|
Hussain A, Hussain S, Yu A, Varga C, De Leo GA, Smith RL. Geographical epidemiology of Hyalomma anatolicum and Rhipicephalus microplus in Pakistan: A systematic review. PLoS One 2024; 19:e0309442. [PMID: 39178282 PMCID: PMC11343457 DOI: 10.1371/journal.pone.0309442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
The livestock sector contributes almost 11% of Pakistan's GDP and is crucial to 35 million people's livelihoods. Ticks are a major economic threat, as over 80% of livestock, such as bovines, are tick-infested with Hyalomma and Rhipicephalus tick species. Hyalomma anatolicum and Rhipicephalus microplus are the most common tick species collected from livestock, transmitting primarily anaplasmosis, babesiosis, and theileriosis. We aimed to identify the geographical distribution of these two tick species and hot spot areas where the risk of these diseases being transmitted by these ticks is high. Following the PRISMA guideline, two authors conducted an independent review of literature sourced from various databases. We screened 326 research articles published between January 1, 1990, and December 31, 2023, focused on identifying the tick species at the district level. Thirty studies from 75 districts, representing 49.3% of the country's total area, detected at least one tick species through collection from animals. R. microplus was present in 81% (n = 61) and H. anatolicum in 82% (n = 62) of these sampled districts. We employed spatial and conventional statistical methods with Geographic Information Systems (GIS) after mapping the weighted distribution of both ticks (the number of ticks per standard unit of sampling effort). We identified northwestern and northcentral regions of the country as hotspots with the highest tick distribution, which aligned with the documented high prevalence of anaplasmosis, babesiosis, Crimean-Congo hemorrhagic fever (CCHF), and theileriosis in these regions. This underscores the urgent need for robust tick control measures in these districts to safeguard animal health and boost the livestock economy.
Collapse
Affiliation(s)
- Abrar Hussain
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States of America
| | - Sabir Hussain
- School of Biological, Environmental and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ao Yu
- Department of Earth System Science, Stanford University, Stanford, CA, United States of America
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, United States of America
| | - Giulio A. De Leo
- Department of Earth System Science, Stanford University, Stanford, CA, United States of America
| | - Rebecca L. Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, United States of America
| |
Collapse
|
2
|
Jiang S, Kang M, Li Z, Han X, Chen C, He S, Hu X, He Y, Wang Y, Li Z, Chen J, Geng P, Chen Q, Ma J, Zhang X, Tai X, Li Y. The impact of bloodmeal and geographic region on the richness, diversity, and function of internal microbial community in Haemaphysalis qinghaiensis from the Qinghai province, China. Heliyon 2024; 10:e35429. [PMID: 39165970 PMCID: PMC11334854 DOI: 10.1016/j.heliyon.2024.e35429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Background Ticks are ectoparasites that feed on blood and pose a threat to both the livestock industry and public health due to their ability to transmit pathogens through biting. However, the impact of factors such as bloodmeal and geographic regions on the bacterial microbiota of Haemaphysalis qinghaiensis remains poorly understood. Methods In this study, we used the v3-v4 region of the 16S rRNA gene to sequence the microbiota of Haemaphysalis qinghaiensis from eight groups (HY_M, YS_M, XH_M, LD_M, BM_M, LD_F_F, LD_F, and BM_F_F) in Qinghai Province. Results Significant differences in bacterial richness were observed between LD_F_F, BM_F_F, and LD_F (P < 0.01), and among the five groups (HY_M, YS_M, XH_M, BM_M, and LD_M) (P < 0.05). The bacterial diversity also differed significantly between LD_F_F, LD_F, and BM_F_F (P < 0.01), as well as among the five groups (HY_M, YS_M, XH_M, LD_M, and BM_M) (P < 0.01). The group with the highest number of operational taxonomic units (OTUs) was LD_F, accounting for 23.93 % (419/1751), while BM_F_F accounted for at least 0.80 % (14/1751). At the phylum level, Firmicutes was the most abundant, with relative abundance ranging from 7.44 % to 96.62 %. At the genus level, Staphylococcus had the highest abundance, ranging from 1.67 % to 97.53 %. The endosymbiotic bacteria Coxiella and Rickettsia were predominantly enriched in LD_F_F. Additionally, the 16S gene of Coxiella showed the highest identity of 99.07 % with Coxiella sp. isolated from Xinxiang hl9 (MG9066 71.1), while the 16S gene of Rickettsia had 100 % identity with Candidatus Rickettsia hongyuanensis strains (OK 662395.1). Functional predictions for the prokaryotic microbial community indicated that the main functional categories were Metabolic, Genetic information processing, and Environmental information processing across the eight groups. Conclusion This study provides a theoretical basis for the prevention and treatment of tick-borne diseases, which is of great significance for public health.
Collapse
Affiliation(s)
- Shuo Jiang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ming Kang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Zengkui Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Xiaoling Han
- Qinghai National Park Research, Monitoring and Evaluation Center, Xining, 810008, Qinghai, China
| | - Changjiang Chen
- Huangyuan Animal Husbandry and Veterinary Station, Xining, 810016, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park, Xining, 810016, Qinghai, China
| | - Xiaoyu Hu
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Yongcai He
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Yuezhong Wang
- Huangnan Prefecture Animal Disease Prevention and Control Center, Tongren, 811300, Qinghai, China
| | - Zhongyu Li
- Qinghai Xunhua Salar Autonomous County Animal Husbandry and Veterinary Station, Haidong, 811100, Qinghai, China
| | - Jiyong Chen
- Yushu Animal Disease Prevention and Control Center, Yushu, 815099, Qinghai, China
| | - Pengcheng Geng
- Golog Tibetan Autonomous Prefecture Animal Epidemic Disease Prevention Control Center, Golog, 814000, Qinghai, China
| | - Qiang Chen
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Jinghua Ma
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Xiao Zhang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ximei Tai
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ying Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, 810016, Qinghai, China
| |
Collapse
|
3
|
Joly-Kukla C, Bernard C, Bru D, Galon C, Giupponi C, Huber K, Jourdan-Pineau H, Malandrin L, Rakotoarivony I, Riggi C, Vial L, Moutailler S, Pollet T. Spatial patterns of Hyalomma marginatum-borne pathogens in the Occitanie region (France), a focus on the intriguing dynamics of Rickettsia aeschlimannii. Microbiol Spectr 2024; 12:e0125624. [PMID: 39012114 DOI: 10.1128/spectrum.01256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Hyalomma marginatum is an invasive tick species recently established in mainland southern France. This tick is known to host a diverse range of human and animal pathogens. While information about the dynamics of these pathogens is crucial to assess disease risk and develop effective monitoring strategies, few data on the spatial dynamics of these pathogens are currently available. We collected ticks in 27 sites in the Occitanie region to characterize spatial patterns of H. marginatum-borne pathogens. Several pathogens have been detected: Theileria equi (9.2%), Theileria orientalis (0.2%), Anaplasma phagocytophilum (1.6%), Anaplasma marginale (0.8%), and Rickettsia aeschlimannii (87.3%). Interestingly, we found a spatial clustered distribution for the pathogen R. aeschlimannii between two geographically isolated areas with infection rates and bacterial loads significantly lower in Hérault/Gard departments (infection rate 78.6% in average) compared to Aude/Pyrénées-Orientales departments (infection rate 92.3% in average). At a smaller scale, R. aeschlimannii infection rates varied from one site to another, ranging from 29% to 100%. Overall, such high infection rates (87.3% on average) and the effective maternal transmission of R. aeschlimannii might suggest a role as a tick symbiont in H. marginatum. Further studies are thus needed to understand both the status and the role of R. aeschlimannii in H. marginatum ticks.IMPORTANCETicks are obligatory hematophagous arthropods that transmit pathogens of medical and veterinary importance. Pathogen infections cause serious health issues in humans and considerable economic loss in domestic animals. Information about the presence of pathogens in ticks and their dynamics is crucial to assess disease risk for public and animal health. Analyzing tick-borne pathogens in ticks collected in 27 sites in the Occitanie region, our results highlight clear spatial patterns in the Hyalomma marginatum-borne pathogen distribution and strengthen the postulate that it is essential to develop effective monitoring strategies and consider the spatial scale to better characterize the circulation of tick-borne pathogens.
Collapse
Affiliation(s)
- Charlotte Joly-Kukla
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Célia Bernard
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
- French Establishment for Fighting Zoonoses (ELIZ), Malzéville, France
| | - David Bru
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Carla Giupponi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Karine Huber
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hélène Jourdan-Pineau
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | | | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Camille Riggi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Laurence Vial
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Thomas Pollet
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
4
|
Xu B, Gu M, Wu Q, Shu C, Tan W, Wang S, Zhong Z, Wang X, Li J, Wang J, Wang Y, Hu W. The bacterial patterns suggesting the dynamic features of tick-associated microorganisms in hard ticks. BMC Microbiol 2024; 24:179. [PMID: 38789934 PMCID: PMC11118998 DOI: 10.1186/s12866-024-03323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Ticks are blood-feeding significant arthropods that can harbour various microorganisms, including pathogens that pose health risks to humans and animals. Tick-symbiont microorganisms are believed to influence tick development, but the intricate interactions between these microbes and the relationships between different tick-borne microorganisms remain largely unexplored. RESULTS Based on 111 tick pool samples presenting questing and engorged statuses including 752 questing tick and 1083 engorged tick from cattle and goats, which were collected in two types of geographic landscape (semi-desert and alpine meadow). We observed significant variations in the composition of tick-borne microorganisms across different environments and blood-engorgement statuses, with a pronounced divergence in symbionts compared to environmental bacteria. Metabolic predictions revealed over 90 differential pathways for tick-borne microorganisms in distinct environments and more than 80 metabolic variations in response to varying blood engorgement statuses. Interestingly, nine pathways were identified, particularly related to chorismate synthesis and carbohydrate metabolism. Moreover, microbial network relationships within tick-borne microorganism groups were highly distinct across different environments and blood-engorgement statuses. The microbial network relationships of symbionts involve some pathogenic and environmental microorganisms. Regression modelling highlighted positive correlations between the Coxiella symbiont and related pathogens, while some environmental bacteria showed strong negative correlations with Coxiella abundance. We also identified commensal bacteria/pathogens in bacterial cooccurrence patterns. Furthermore, we tested pathogenic microorganisms of each tick sample analysis revealed that 86.36% (1601/1855) of the tick samples carried one or more pathogenic microorganisms, The total carrier rate of bacterial pathogens was 43.77% ((812/1855). Most blood samples carried at least one pathogenic microorganism. The pathogens carried by the ticks have both genus and species diversity, and Rickettsia species are the most abundant pathogens among all pathogens. CONCLUSION Our findings underscore that the bacterial pattern of ticks is dynamic and unstable, which is influenced by the environment factors and tick developmental characteristics.
Collapse
Affiliation(s)
- Bin Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Mengjie Gu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chang Shu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security of the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, China
- Hainan Medical University, Haikou, China
| | - Wenbo Tan
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security of the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, China
| | - Suwen Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security of the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, China
| | - Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- Basic Medical College, Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security of the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, China.
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- The institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Inner Mongolia, Hohhot, China.
| |
Collapse
|
5
|
Moerbeck L, Parreira R, Szczotko M, Seixas G, Velez R, Dmitryjuk M, Santos AS, Domingos A, Antunes S. Ticks and Tick-Borne Pathogens Circulating in Peri-Domestic Areas in Mainland Portugal. Microorganisms 2024; 12:1006. [PMID: 38792834 PMCID: PMC11123758 DOI: 10.3390/microorganisms12051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Over the years, tick-borne pathogens (TBPs) have garnered significant interest due to their medical, veterinary and economic importance. Additionally, TBPs have drawn attention to how these microorganisms interact with their own vectors, increasing the risk to human and animal infection of emerging and reemerging zoonoses. In this sense, ticks, which are obligate hematophagous ectoparasites, have a key role in maintaining and transmitting TBPs among humans and animals. The aim of this study was to assess the prevalence of neglected TBPs in mainland Portugal, namely Anaplasma spp., Babesia spp., Ehrlichia spp. and Neoehrlichia mikurensis. DNA fragments were detected in questing ticks collected from five different ecological areas under investigation. To the best of the authors' knowledge, this study reports new worldwide findings, including B. bigemina infecting Ixodes frontalis, Ixodes ricinus and Rhipicephalus sanguineus sensu lato. Additionally, it presents new findings in Portugal of N. mikurensis infecting I. ricinus and of presumably Wolbachia endosymbionts being detected in I. ricinus. Overall, there were 208 tick samples that were negative for all screened TBPs. The results herein obtained raise concerns about the circulation of neglected TBPs in mainland Portugal, especially in anthropophilic ticks, highlighting the importance of adopting a One Health perspective.
Collapse
Affiliation(s)
- Leonardo Moerbeck
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Ricardo Parreira
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Magdalena Szczotko
- Students’ Parasitology “Vermis” Science Club, Department of Medical Biology, Collegium Medicum, School of Public Health, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Gonçalo Seixas
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Rita Velez
- Centro de Estudos de Vetores e Doenças Infeciosas Dr. Francisco Cambournac, Instituto Nacional de Saúde Doutor Ricardo Jorge (CEVDI-INSA), 2965-575 Águas de Moura, Portugal; (R.V.); (A.S.S.)
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Ana Sofia Santos
- Centro de Estudos de Vetores e Doenças Infeciosas Dr. Francisco Cambournac, Instituto Nacional de Saúde Doutor Ricardo Jorge (CEVDI-INSA), 2965-575 Águas de Moura, Portugal; (R.V.); (A.S.S.)
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Sandra Antunes
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
6
|
Van Wyk CL, Mtshali S, Ramatla T, Lekota KE, Xuan X, Thekisoe O. Distribution of Rhipicephalus sanguineus and Heamaphysalis elliptica dog ticks and pathogens they are carrying: A systematic review. Vet Parasitol Reg Stud Reports 2024; 47:100969. [PMID: 38199685 DOI: 10.1016/j.vprsr.2023.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
The role of ixodid ticks especially Rhipicephalus sanguineus and Heamaphysalis elliptica in the epidemiology of several diseases of veterinary and public health importance have been documented. This study conducted a systematic review focusing on the distribution of R. sanguineus and H. elliptica, as well as the common tick-borne pathogens they harbour. The Scopus, ScienceDirect, PubMed, and Web of Science databases were used to search for English journal articles published between January 1990 and June 2021. The articles were assessed by following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This systematic review was registered on PROSPERO [(ID no: CRD42022327372). Of the studies included in the systematic review, 247 and 19 articles had identified R. sanguineus and H. elliptica respectively, whereas 15 articles had identified both tick species. There is a reported worldwide distribution of R. sanguineus from 64 countries, whereas H. elliptica was only reported in the African continent from 6 countries. In total, 120 articles that were included in this systematic review reported detection of tick-borne pathogens from R. sanguineus (n = 118 articles) and/or H. elliptica (n = 2 articles) ticks. According to the studies tick-borne pathogens harboured by R. sanguineus included protozoa such as Babesia spp., Hepatozoon spp., Leishmania spp., and Theileria spp., as well as bacteria such as Acinetobacter spp. Anaplasma spp., Bacillus spp., Borrelia spp., Brucella spp., Coxiella spp., and Staphylococcus spp. The H. elliptica was reported to be harbouring Babesia spp., Ehrlichia spp. and Rickettsia spp. Most of the studies (50%) used the conventional polymerase chain reaction (PCR) technique for the detection of tick-borne pathogens, followed by real-time PCR (qPCR) (n = 26), and nested PCR (n = 22). This systematic review has shed light on the distribution of two common dog ticks as well as the tick-borne pathogens of veterinary and zoonotic importance they are harbouring. This data will enable surveillance studies that can report whether the distribution of these ticks and their associated tick-borne pathogens is expanding or shrinking or is stable.
Collapse
Affiliation(s)
- Clara-Lee Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Senzo Mtshali
- National Institute of Communicable Diseases, Sandringham 2131, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa.
| | - Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
7
|
Kolo AO, Raghavan R. Impact of endosymbionts on tick physiology and fitness. Parasitology 2023; 150:859-865. [PMID: 37722758 PMCID: PMC10577665 DOI: 10.1017/s0031182023000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Ticks transmit pathogens and harbour non-pathogenic, vertically transmitted intracellular bacteria termed endosymbionts. Almost all ticks studied to date contain 1 or more of Coxiella, Francisella, Rickettsia or Candidatus Midichloria mitochondrii endosymbionts, indicative of their importance to tick physiology. Genomic and experimental data suggest that endosymbionts promote tick development and reproductive success. Here, we review the limited information currently available on the potential roles endosymbionts play in enhancing tick metabolism and fitness. Future studies that expand on these findings are needed to better understand endosymbionts’ contributions to tick biology. This knowledge could potentially be applied to design novel strategies that target endosymbiont function to control the spread of ticks and pathogens they vector.
Collapse
Affiliation(s)
- Agatha O. Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Rahul Raghavan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Holguin-Rocha AF, Calle-Tobon A, Vásquez GM, Astete H, Fisher ML, Tobon-Castano A, Velez-Tobon G, Maldonado-Ruiz LP, Silver K, Park Y, Londono-Renteria B. Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia. Pathogens 2023; 12:942. [PMID: 37513789 PMCID: PMC10384233 DOI: 10.3390/pathogens12070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Ticks are obligatory hematophagous ectoparasites that transmit pathogens among various vertebrates, including humans. The microbial and viral communities of ticks, including pathogenic microorganisms, are known to be highly diverse. However, the factors driving this diversity are not well understood. The tropical horse tick, Dermacentor nitens, is distributed throughout the Americas and it is recognized as a natural vector of Babesia caballi and Theileria equi, the causal agents of equine piroplasmosis. In this study, we characterized the bacterial and viral communities associated with partially fed Dermacentor nitens females collected using a passive survey on horses from field sites representing three distinct geographical areas in the country of Colombia (Bolivar, Antioquia, and Cordoba). RNA-seq and sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene were performed using the Illumina-Miseq platform (Illumina, San Diego, CA, USA). A total of 356 operational taxonomic units (OTUs) were identified, in which the presumed endosymbiont, Francisellaceae/Francisella spp., was predominantly found. Nine contigs corresponding to six different viruses were identified in three viral families: Chuviridae, Rhabdoviridae, and Flaviviridae. Differences in the relative abundance of the microbial composition among the geographical regions were found to be independent of the presence of Francisella-like endosymbiont (FLE). The most prevalent bacteria found in each region were Corynebacterium in Bolivar, Staphylococcus in Antioquia, and Pseudomonas in Cordoba. Rickettsia-like endosymbionts, mainly recognized as the etiological agent of rickettsioses in Colombia, were detected in the Cordoba samples. Metatranscriptomics revealed 13 contigs containing FLE genes, suggesting a trend of regional differences. These findings suggest regional distinctions among the ticks and their bacterial compositions.
Collapse
Affiliation(s)
- Andres F Holguin-Rocha
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Arley Calle-Tobon
- Grupo Entomologia Medica, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia
| | - Gissella M Vásquez
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Bellavista, Lima 15001, Peru
| | - Helvio Astete
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Bellavista, Lima 15001, Peru
| | - Michael L Fisher
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Bellavista, Lima 15001, Peru
| | - Alberto Tobon-Castano
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia
| | - Gabriel Velez-Tobon
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia
| | - L Paulina Maldonado-Ruiz
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Kristopher Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Yoonseong Park
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Berlin Londono-Renteria
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Uzum Z, Ershov D, Pavia MJ, Mallet A, Gorgette O, Plantard O, Sassera D, Stavru F. Three-dimensional images reveal the impact of the endosymbiont Midichloria mitochondrii on the host mitochondria. Nat Commun 2023; 14:4133. [PMID: 37438329 DOI: 10.1038/s41467-023-39758-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The hard tick, Ixodes ricinus, a main Lyme disease vector, harbors an intracellular bacterial endosymbiont. Midichloria mitochondrii is maternally inherited and resides in the mitochondria of I. ricinus oocytes, but the consequences of this endosymbiosis are not well understood. Here, we provide 3D images of wild-type and aposymbiotic I. ricinus oocytes generated with focused ion beam-scanning electron microscopy. Quantitative image analyses of endosymbionts and oocyte mitochondria at different maturation stages show that the populations of both mitochondrion-associated bacteria and bacterium-hosting mitochondria increase upon vitellogenisation, and that mitochondria can host multiple bacteria in later stages. Three-dimensional reconstructions show symbiosis-dependent morphologies of mitochondria and demonstrate complete M. mitochondrii inclusion inside a mitochondrion. Cytoplasmic endosymbiont located close to mitochondria are not oriented towards the mitochondria, suggesting that bacterial recolonization is unlikely. We further demonstrate individual globular-shaped mitochondria in the wild type oocytes, while aposymbiotic oocytes only contain a mitochondrial network. In summary, our study suggests that M. mitochondrii modulates mitochondrial fragmentation in oogenesis possibly affecting organelle function and ensuring its presence over generations.
Collapse
Affiliation(s)
- Zerrin Uzum
- Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur; CNRS UMR2001, Paris, France.
| | - Dmitry Ershov
- Image Analysis Hub, Cell Biology and Infection Department, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Michael J Pavia
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Adeline Mallet
- Ultrastructural BioImaging Core Facility, Institut Pasteur, Paris, France
| | - Olivier Gorgette
- Ultrastructural BioImaging Core Facility, Institut Pasteur, Paris, France
| | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Fabrizia Stavru
- Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur; CNRS UMR2001, Paris, France
| |
Collapse
|
10
|
Holguin-Rocha AF, Calle-Tobon A, Vásquez GM, Astete H, Fisher ML, Tobon-Castano A, Velez-Tobon G, Maldonado-Ruiz LP, Silver K, Park Y, Londono-Renteria B. Diversity of the bacterial and viral communities in the tropical horse tick, Dermacentor nitens in Colombia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539352. [PMID: 37205465 PMCID: PMC10187316 DOI: 10.1101/2023.05.04.539352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ticks are obligatory hematophagous ectoparasites that transmit pathogens among various vertebrates, including humans. The composition of the microbial and viral communities in addition to the pathogenic microorganisms is highly diverse in ticks, but the factors driving the diversity are not well understood. The tropical horse tick, Dermacentor nitens , is distributed throughout the Americas and it is recognized as a natural vector of Babesia caballi and Theileria equi , the causal agents of equine piroplasmosis. We characterized the bacterial and viral communities associated with partially-fed D. nitens females collected by a passive survey on horses from field sites representing three distinct geographical areas in Colombia (Bolivar, Antioquia, and Cordoba). RNA-seq and sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene were performed using the Illumina-Miseq platform. A total of 356 operational taxonomic units (OTUs) were identified, in which the presumed endosymbiotic Francisellaceae/ Francisella spp. was predominantly found. Nine contigs corresponding to six different viruses were identified in three viral families: Chuviridae, Rhabdoviridae, and Flaviviridae. Differences in the relative abundance of the microbial composition among the geographical regions were found to be independent of the presence of Francisella -Like Endosymbiont (FLE). The most prevalent bacteria found on each region were Corynebacterium in Bolivar, Staphylococcus in Antioquia, and Pseudomonas in Cordoba. Rickettsia -like endosymbionts, mainly recognized as the etiological agent of rickettsioses in Colombia were detected in the Cordoba samples. Metatranscriptomics revealed 13 contigs containing FLE genes, suggesting a trend of regional differences. These findings suggest regional distinctions among the ticks and their bacterial compositions.
Collapse
|
11
|
Che Lah EF, Ahamad M, Dmitry A, Md Zain BM, Yaakop S. Metagenomic profile of the bacterial communities associated with Ixodes granulatus (Acari: Ixodidae): a potential vector of tick-borne diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2023:7131392. [PMID: 37075471 DOI: 10.1093/jme/tjad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Ixodes granulatus Supino, 1897 (Acari: Ixodida) is one of Malaysia's most common hard ticks and is a potential vector for tick-borne diseases (TBDs). Despite its great public health importance, research on I. granulatus microbial communities remains largely unexplored. Therefore, this study aimed to investigate the bacterial communities of on-host I. granulatus collected from three different recreational areas on the East Coast of Peninsular Malaysia using high throughput Next Generation Sequencing (NGS). A total of 9 females on-host I. granulatus were subjected to metabarcoding analysis targeting V3-V4 regions of 16S ribosomal RNA (rRNA) using the Illumina MiSeq platform. This study identified 15 bacterial phyla corresponding to 19 classes, 54 orders, and 90 families from 435 amplicon sequence variants (ASVs), revealing a diverse bacterial community profile. Together with 130 genera assigned, local I. granulatus harbored 4 genera of pathogens, i.e., Rickettsia da Rocha Lima, 1916 (Rickettsiales: Rickettsiaceae) (58.6%), Borrelia Swellengrebel 1907 (Spirochaetales: Borreliaceae) (31.6%), Borreliella Adeolu and Gupta 2015 (Spirochaetales: Borreliaceae) (0.6%), and Ehrlichia Cowdria Moshkovski 1947 (Rickettsiales: Ehrlichiaceae) (39.9%). Some endosymbiont bacteria, such as Coxiella (Philip, 1943) (Legionellales: Coxiellaceae), Wolbachia Hertig 1936 (Rickettsiales: Ehrlichiaceae), and Rickettsiella Philip, 1956 (Legionellales: Coxiellaceae), were also detected at very low abundance. Interestingly, this study reported the co-infection of Borrelia and Ehrlichia for the first time, instilling potential health concerns in the context of co-transmission to humans, especially in areas with a high population of I. granulatus. This study successfully characterized the tick microbiome and provided the first baseline data of I. granulatus bacterial communities in Malaysia. These results support the need for way-forward research on tick-associated bacteria using NGS, focusing on medically important species toward TBD prevention.
Collapse
Affiliation(s)
- Ernieenor Faraliana Che Lah
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam, Selangor 40170, Malaysia
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Mariana Ahamad
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam, Selangor 40170, Malaysia
| | - Apanaskevich Dmitry
- United States National Tick Collection, The James H. Oliver, Jr. Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 30460-8042, USA
| | - Badrul Munir Md Zain
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| |
Collapse
|
12
|
Hoffman T, Olsen B, Lundkvist Å. The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African-Western Palearctic. Microorganisms 2023; 11:microorganisms11010158. [PMID: 36677450 PMCID: PMC9866947 DOI: 10.3390/microorganisms11010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.
Collapse
Affiliation(s)
- Tove Hoffman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
13
|
Wiesinger A, Wenderlein J, Ulrich S, Hiereth S, Chitimia-Dobler L, Straubinger RK. Revealing the Tick Microbiome: Insights into Midgut and Salivary Gland Microbiota of Female Ixodes ricinus Ticks. Int J Mol Sci 2023; 24:ijms24021100. [PMID: 36674613 PMCID: PMC9864629 DOI: 10.3390/ijms24021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The ectoparasite Ixodes ricinus is an important vector for many tick-borne diseases (TBD) in the northern hemisphere, such as Lyme borreliosis, rickettsiosis, human granulocytic anaplasmosis, or tick-borne encephalitis virus. As climate change will lead to rising temperatures in the next years, we expect an increase in tick activity, tick population, and thus in the spread of TBD. Consequently, it has never been more critical to understand relationships within the microbial communities in ticks that might contribute to the tick's fitness and the occurrence of TBD. Therefore, we analyzed the microbiota in different tick tissues such as midgut, salivary glands, and residual tick material, as well as the microbiota in complete Ixodes ricinus ticks using 16S rRNA gene amplicon sequencing. By using a newly developed DNA extraction protocol for tick tissue samples and a self-designed mock community, we were able to detect endosymbionts and pathogens that have been described in the literature previously. Further, this study displayed the usefulness of including a mock community during bioinformatic analysis to identify essential bacteria within the tick.
Collapse
Affiliation(s)
- Anna Wiesinger
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Jasmin Wenderlein
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Sebastian Ulrich
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Stephanie Hiereth
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology (InstMikroBioBw), Neuherbergstraße 11, 80937 Munich, Germany
| | - Reinhard K. Straubinger
- Chair of Bacteriology and Mycology, Institute for Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
- Correspondence:
| |
Collapse
|
14
|
Liu L, Sonenshine DE, Sultana H, Neelakanta G. Identification of a rickettsial endosymbiont in a soft tick Ornithodoros turicata americanus. PLoS One 2022; 17:e0278582. [PMID: 36473013 PMCID: PMC9725135 DOI: 10.1371/journal.pone.0278582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial endosymbionts are abundantly found in both hard and soft ticks. Occidentia massiliensis, a rickettsial endosymbiont, was first identified in the soft tick Ornithodoros sonrai collected from Senegal and later was identified in a hard tick Africaniella transversale. In this study, we noted the presence of Occidentia species, designated as Occidentia-like species, in a soft tick O. turicata americanus. Sequencing and phylogenetic analyses of the two genetic markers, 16S rRNA and groEL confirmed the presence of Occidentia-like species in O. turicata americanus ticks. The Occidentia-like species was noted to be present in all developmental stages of O. turicata americanus and in different tick tissues including ovaries, synganglion, guts and salivary gland. The levels of Occidentia-like species 16S rRNA transcripts were noted to be significantly higher in ovaries than in a gut tissue. In addition, Occidentia-like species groEL expression was noted to be significantly higher in tick synganglion than in ovaries and gut tissues. Furthermore, levels of Occidentia-like species 16S rRNA transcripts increased significantly upon O. turicata americanus blood feeding. Taken together, our study not only shows that Occidentia-like species is present in O. turicata americanus but also suggests that this bacterium may play a role in tick-bacteria interactions.
Collapse
Affiliation(s)
- Lichao Liu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
15
|
Barbosa AD, Long M, Lee W, Austen JM, Cunneen M, Ratchford A, Burns B, Kumarasinghe P, Ben-Othman R, Kollmann TR, Stewart CR, Beaman M, Parry R, Hall R, Tabor A, O’Donovan J, Faddy HM, Collins M, Cheng AC, Stenos J, Graves S, Oskam CL, Ryan UM, Irwin PJ. The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia. Pathogens 2022; 11:1290. [PMID: 36365042 PMCID: PMC9694322 DOI: 10.3390/pathogens11111290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
| | - Michelle Long
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Wenna Lee
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mike Cunneen
- The App Workshop Pty Ltd., Perth, WA 6000, Australia
| | - Andrew Ratchford
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- School of Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Brian Burns
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- Sydney Medical School, Sydney University, Camperdown, NSW 2006, Australia
| | - Prasad Kumarasinghe
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
- College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA 6150, Australia
- Western Dermatology, Hollywood Medical Centre, Nedlands, WA 6009, Australia
| | | | | | - Cameron R. Stewart
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Miles Beaman
- PathWest Laboratory Medicine, Murdoch, WA 6150, Australia
- Pathology and Laboratory Medicine, Medical School, University of Western Australia, Crawley, WA 6009, Australia
- School of Medicine, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Roy Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Ala Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre of Animal Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Justine O’Donovan
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
| | - Helen M. Faddy
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Petrie, QLD 4502, Australia
| | - Marjorie Collins
- School of Psychology, Murdoch University, Murdoch, WA 6150, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC 3004, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Charlotte L. Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Una M. Ryan
- Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Peter J. Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
16
|
Rialch A, Sankar M, Silamparasan M, Madhusoodan AP, Kharayat NS, Gautam S, Gurav AR, Thankappan S. Molecular detection of Coxiella-like endosymbionts in Rhipicephalus microplus from north India. Vet Parasitol Reg Stud Reports 2022; 36:100803. [PMID: 36436891 DOI: 10.1016/j.vprsr.2022.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Apart from the tick-borne pathogens affecting human and animal health, ticks also harbor various non-pathogenic endosymbionts with dynamic ecological interactions. These endosymbionts are unexplored from the Indian ticks; hence this pilot study was conducted. Seventy-nine ticks were collected from Nainital district of Uttarakhand state of north India and were identified as Rhipicephalus microplus morphologically and by molecular analysis. PCR and sequence analysis were carried out to detect the presence of Rickettsia-like, Coxiella-like and Francisella-like endosymbionts in these ticks. Based on the partial 16S rRNA gene sequence, Coxiella-like endosymbiont (CLE) was detected in the adult and other life-cycle stages of ticks with 96.6-97.7% nucleotide sequence identity with the published CLE sequences from GenBank. The phylogenetic analysis revealed that the CLE from R. microplus were clustered with the CLE from other Rhipicephalus species. All these CLE formed distinct clades from the pathogenic Coxiella burnetii. None of the tick samples was found positive for Rickettsia-like and Francisella-like endosymbionts in the present study. We also demonstrated the vertical transmission of CLE from surface sterilized and laboratory reared fully engorged adult females to the eggs and the larvae. However, large scale studies are to be conducted to detect various endosymbionts and endosymbiont-tick associations in the Indian tick species and to explore these associations for tick and tick-borne disease control.
Collapse
Affiliation(s)
- Ajayta Rialch
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India.
| | - M Sankar
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - M Silamparasan
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - A P Madhusoodan
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Nitish Singh Kharayat
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Siddharth Gautam
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Amol Ramdas Gurav
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Sabrinath Thankappan
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| |
Collapse
|
17
|
Zhao L, Ma YM, Yang B, Han WX, Zhao WH, Chai HL, Zhang ZS, Zhan YJ, Wang LF, Xing Y, Yu LF, Wang JL, Ding YL, Liu YH. Comparative analysis of microbial communities in different growth stages of Dermacentor nuttalli. Front Vet Sci 2022; 9:1021426. [PMID: 36311671 PMCID: PMC9614212 DOI: 10.3389/fvets.2022.1021426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
Ticks were identified as arthropods that are pathogenic vectors. Dermacentor nuttalli is one of the dominant tick species in Inner Mongolia, and it carries and transmits a wide range of pathogenic microorganisms. However, at present, only the detection of D. nuttalli adult ticks and D. nuttalli different developmental stages carrying one specific pathogen, or the next-generation sequencing of D. nuttalli adult ticks were available. In this study, we investigated the microbial community structures of D. nuttalli in different growth stages under laboratory artificial feeding conditions. Total DNA was extracted from seven growth stages (female adult ticks, eggs, larval ticks, engorged larval ticks, nymphal ticks, engorged nymphal ticks, and second-generation adult ticks) obtained from laboratory artificial feeding of engorged D. nuttalli female ticks in Inner Mongolia. Then, the 16S rDNA V3-V4 hypervariable region was amplified to construct an Illumina PE250 library. Finally, 16S rRNA sequencing was performed on Illumina Novaseq 6000 platform. The sequencing data were analyzed using molecular biology software and platforms. The Illumina PE250 sequencing results showed that the egg stage had the highest diversity and number of species (28.74%, 98/341), while the engorged nymph stage had the lowest diversity and number of species (9.72%, 21/216). A total of 387 genera of 22 phyla were annotated in D. nuttalli, with 9 phyla and 57 genera found throughout all 7 growth stages. The dominant phylum was Proteobacteria; the dominant genera were Arsenophonus and Rickettsia; and the genera with the highest relative abundance in the 7 growth stages were Pseudomonas, Paenalcaligenes, Arsenophonus, Arsenophonus, Pseudomonas, Arsenophonus, and Rickettsia, respectively. Among the 23 exact species annotated, Brucella melitensis exhibits pathogeny that poses a serious threat to humans and animals. In this study, the microbial community composition at different growth stages of D. nuttalli was comprehensively analyzed for the first time.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos City, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co., Ltd., Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Xing
- Shanghai Origingene Bio-pharm Technology Co. Ltd., Shanghai, China
| | - Lu-Fei Yu
- Shanghai Origingene Bio-pharm Technology Co. Ltd., Shanghai, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China,*Correspondence: Yong-Hong Liu
| |
Collapse
|
18
|
A Systematic Review of the Distribution of Tick-Borne Pathogens in Wild Animals and Their Ticks in the Mediterranean Rim between 2000 and 2021. Microorganisms 2022; 10:microorganisms10091858. [PMID: 36144460 PMCID: PMC9504443 DOI: 10.3390/microorganisms10091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tick-borne pathogens (TBPs) can be divided into three groups: bacteria, parasites, and viruses. They are transmitted by a wide range of tick species and cause a variety of human, animal, and zoonotic diseases. A total of 148 publications were found on tick-borne pathogens in wild animals, reporting on 85 species of pathogens from 35 tick species and 17 wild animal hosts between 2000 and February 2021. The main TBPs reported were of bacterial origin, including Anaplasma spp. and Rickettsia spp. A total of 72.2% of the TBPs came from infected ticks collected from wild animals. The main tick genus positive for TBPs was Ixodes. This genus was mainly reported in Western Europe, which was the focus of most of the publications (66.9%). It was followed by the Hyalomma genus, which was mainly reported in other areas of the Mediterranean Rim. These TBPs and TBP-positive tick genera were reported to have come from a total of 17 wild animal hosts. The main hosts reported were game mammals such as red deer and wild boars, but small vertebrates such as birds and rodents were also found to be infected. Of the 148 publications, 12.8% investigated publications on Mediterranean islands, and 36.8% of all the TBPs were reported in seven tick genera and 11 wild animal hosts there. The main TBP-positive wild animals and tick genera reported on these islands were birds and Hyalomma spp. Despite the small percentage of publications focusing on ticks, they reveal the importance of islands when monitoring TBPs in wild animals. This is especially true for wild birds, which may disseminate their ticks and TBPs along their migration path.
Collapse
|
19
|
Duncan KT, Elshahed MS, Sundstrom KD, Little SE, Youssef NH. Influence of tick sex and geographic region on the microbiome of Dermacentor variabilis collected from dogs and cats across the United States. Ticks Tick Borne Dis 2022; 13:102002. [PMID: 35810549 DOI: 10.1016/j.ttbdis.2022.102002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
Abstract
As tick-borne diseases continue to increase across North America, current research strives to understand how the tick microbiome may affect pathogen acquisition, maintenance, and transmission. Prior high throughput amplicon-based microbial diversity surveys of the widespread tick Dermacentor variabilis have suggested that life stage, sex, and geographic region may influence the composition of the tick microbiome. Here, adult D. variabilis ticks (n = 145) were collected from dogs and cats from 32 states with specimens originating from all four regions of the United States (West, Midwest, South, and Northeast), and the tick microbiome was examined via V4-16S rRNA gene amplification and Illumina sequencing. A total of 481,246 bacterial sequences were obtained (median 2924 per sample, range 399-11,990). Fifty genera represented the majority (>80%) of the sequences detected, with the genera Allofrancisella and Francisella being the most abundant. Further, 97%, 23%, and 5.5% of the ticks contained sequences belonging to Francisella spp., Rickettsia spp., and Coxiella spp., respectively. No Ehrlichia spp. or Anaplasma spp. were identified. Co-occurrence analysis, by way of correlation coefficients, between the top 50 most abundant genera demonstrated five strong positive and no strong negative correlation relationships. Geographic region had a consistent effect on species richness with ticks from the Northeast having a significantly greater level of richness. Alpha diversity patterns were dependent on tick sex, with males exhibiting higher levels of diversity, and geographical region, with higher level of diversity observed in ticks obtained from the Northeast, but not on tick host. Community structure, or beta diversity, of tick microbiome was impacted by tick sex and geographic location, with microbiomes of ticks from the western US exhibiting a distinct community structure when compared to those from the other three regions (Northeast, South, and Midwest). In total, LEfSe (Linear discriminant analysis Effect Size) identified 18 specific genera driving these observed patterns of diversity and community structure. Collectively, these findings highlight the differences in bacterial diversity of D. variabilis across the US and supports the interpretation that tick sex and geographic region affects microbiome composition across a broad sampling distribution.
Collapse
Affiliation(s)
- Kathryn T Duncan
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Kellee D Sundstrom
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Susan E Little
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
20
|
Distribution of Tick-Borne Pathogens in Domestic Animals and Their Ticks in the Countries of the Mediterranean Basin between 2000 and 2021: A Systematic Review. Microorganisms 2022; 10:microorganisms10061236. [PMID: 35744755 PMCID: PMC9228937 DOI: 10.3390/microorganisms10061236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Tick-borne pathogens (TBPs) include a wide range of bacteria, parasites and viruses that cause a large spectrum of animal, human and zoonotic tick-borne diseases (TBDs). The object of this review was to establish an inventory and an analysis of TBPs found in domestic animals in the countries of the Mediterranean Basin. This geographic area occupies a central position between several continents and is an area of movement for animals, humans and pathogens of interest and their vectors, which is important in terms of animal and human health. In this systematic review, we included a total of 271 publications produced between 2000–2021 concerning TBPs in domestic animals. Among this literature, we found a total of 90 pathogen species (known as TBPs) reported in the 20 countries of the area; these were detected in tick species from domestic animals and were also directly detected in domestic animals. In all, 31 tick species were recorded and 12 domestic animal species, the latter comprising nine livestock and three pet species. More than 50% of the publications were from Western Europe. Island data were extracted and assessed, as islands of the Mediterranean Basin were represented in 16% of the publications and 77.8% of the TBPs reported. Our results show the importance of islands in the monitoring of TBPs, despite the low percentage of publications.
Collapse
|
21
|
Perveen N, Muzaffar SB, Vijayan R, Al-Deeb MA. Assessing Temporal Changes in Microbial Communities in Hyalomma dromedarii Collected From Camels in the UAE Using High-Throughput Sequencing. Front Vet Sci 2022; 9:861233. [PMID: 35433895 PMCID: PMC9008585 DOI: 10.3389/fvets.2022.861233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ticks (Acari) are ectoparasites of animals that harbor communities of microbes of importance to animal and human health. Microbial communities associated with ticks exhibit temporal patterns of variation in their composition, with different genera dominating at different times of the year. In this study, molecular tools were used to assess the composition of the microbial communities associated with Hyalomma dromdarii. Adult ticks were collected every month for 1 year from 25 camels in the UAE. A total of 12 DNA pools were prepared (one pool for each month). We monitored the microbiota of ticks using high-throughput sequencing of the V3–V4 region of the bacterial 16S rRNA gene. A total of 614 operational taxonomic units were produced through de novo clustering and belonged to 17 phyla, 30 classes, 46 orders, 118 families, and 222 genera. Fifteen bacterial families were found to be the most abundant. The dominant bacterial communities associated with H. dromedarii belonged to the genera Staphylococcus, Bacillus, Francisella, and Corynebacterium, which were reported with high relative abundance from all months. No significant correlation occurred between the abundance of microbial families or genera in H. dromedarii ticks and the ambient temperature. Our findings revealed, for the first time in the UAE, temporal fluctuations of microbial communities in H. dromedarii ticks and provided key insights on the interaction between different microbial groups. Moreover, our results contribute to the current understanding of disease development and allow more investigations for potentially pathogenic microbiota.
Collapse
|
22
|
Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-Cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022; 13:854803. [PMID: 35369485 PMCID: PMC8969565 DOI: 10.3389/fmicb.2022.854803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
23
|
Greay TL, Evasco KL, Evans ML, Oskam CL, Magni PA, Ryan UM, Irwin PJ. Illuminating the bacterial microbiome of Australian ticks with 16S and Rickettsia-specific next-generation sequencing. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100037. [PMID: 35284883 PMCID: PMC8906098 DOI: 10.1016/j.crpvbd.2021.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing (NGS) studies show that mosquito and tick microbiomes influence the transmission of pathogens, opening new avenues for vector-borne pathogen control. Recent microbiological studies of Australian ticks highlight fundamental knowledge gaps of tick-borne agents. This investigation explored the composition, diversity and prevalence of bacteria in Australian ticks (n = 655) from companion animals (dogs, cats and horses). Bacterial 16S NGS was used to identify most bacterial taxa and a Rickettsia-specific NGS assay was developed to identify Rickettsia species that were indistinguishable at the V1-2 regions of 16S. Sanger sequencing of near full-length 16S was used to confirm whether species detected by 16S NGS were novel. The haemotropic bacterial pathogens Anaplasma platys, Bartonella clarridgeiae, “Candidatus Mycoplasma haematoparvum” and Coxiella burnetii were identified in Rhipicephalus sanguineus (s.l.) from Queensland (QLD), Western Australia, the Northern Territory (NT), and South Australia, Ixodes holocyclus from QLD, Rh. sanguineus (s.l.) from the NT, and I. holocyclus from QLD, respectively. Analysis of the control data showed that cross-talk compromises the detection of rare species as filtering thresholds for less abundant sequences had to be applied to mitigate false positives. A comparison of the taxonomic assignments made with 16S sequence databases revealed inconsistencies. The Rickettsia-specific citrate synthase gene NGS assay enabled the identification of Rickettsia co-infections with potentially novel species and genotypes most similar (97.9–99.1%) to Rickettsia raoultii and Rickettsia gravesii. “Candidatus Rickettsia jingxinensis” was identified for the first time in Australia. Phylogenetic analysis of near full-length 16S sequences confirmed a novel Coxiellaceae genus and species, two novel Francisella species, and two novel Francisella genotypes. Cross-talk raises concerns for the MiSeq platform as a diagnostic tool for clinical samples. This study provides recommendations for adjustments to Illuminaʼs 16S metagenomic sequencing protocol that help track and reduce cross-talk from cross-contamination during library preparation. The inconsistencies in taxonomic assignment emphasise the need for curated and quality-checked sequence databases. Bacterial pathogens identified in ticks from companion animals with 16S NGS. Sanger sequencing confirmed novel Coxiellaceae gen. sp. and Francisella. “Candidatus Rickettsia jingxinensis” was identified with Rickettsia-specific NGS. Comparison of taxonomic assignments in 16S sequence databases revealed errors. Modifications to the 16S metagenomic library protocol (Illumina) are provided.
Collapse
Affiliation(s)
- Telleasha L Greay
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,Executive Consultant, EpiSeq, PO Box 357, Kwinana, Western Australia, 6966, Australia
| | - Kimberly L Evasco
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,A/Senior Scientific Officer, Medical Entomology Unit, Department of Health, 1A Brockway Road, Mount Claremont, Western Australia, 6010, Australia
| | - Megan L Evans
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,Cardio Respiratory Sleep, Level 1, 52-54 Monash Avenue, Nedlands, Western Australia, 6009, Australia
| | - Charlotte L Oskam
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Paola A Magni
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Murdoch University Singapore, King's Centre, 390 Havelock Road, Singapore, 169662, Republic of Singapore
| | - Una M Ryan
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - Peter J Irwin
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
24
|
Kumar D, Downs LP, Adegoke A, Machtinger E, Oggenfuss K, Ostfeld RS, Embers M, Karim S. An Exploratory Study on the Microbiome of Northern and Southern Populations of Ixodes scapularis Ticks Predicts Changes and Unique Bacterial Interactions. Pathogens 2022; 11:130. [PMID: 35215074 PMCID: PMC8880235 DOI: 10.3390/pathogens11020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
The black-legged tick (Ixodes scapularis) is the primary vector of Borrelia burgdorferi, the causative agent of Lyme disease in North America. However, the prevalence of Lyme borreliosis is clustered around the Northern States of the United States of America. This study utilized a metagenomic sequencing approach to compare the microbial communities residing within Ix. scapularis populations from northern and southern geographic locations in the USA. Using a SparCC network construction model, we performed potential interactions between members of the microbial communities from Borrelia burgdorferi-infected tissues of unfed and blood-fed ticks. A significant difference in bacterial composition and diversity was found between northern and southern tick populations. The network analysis predicted a potential antagonistic interaction between endosymbiont Rickettsia buchneri and Borrelia burgdorferi sensu lato. The network analysis, as expected, predicted significant positive and negative microbial interactions in ticks from these geographic regions, with the genus Rickettsia, Francisella, and Borreliella playing an essential role in the identified clusters. Interactions between Rickettsia buchneri and Borrelia burgdorferi sensu lato need more validation and understanding. Understanding the interplay between the microbiome and tick-borne pathogens within tick vectors may pave the way for new strategies to prevent tick-borne infections.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Latoyia P. Downs
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Abdulsalam Adegoke
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
| | - Erika Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Kelly Oggenfuss
- Cary Institute of Ecosystem Studies, Millbrook, NY 12542, USA; (K.O.); (R.S.O.)
| | - Richard S. Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, NY 12542, USA; (K.O.); (R.S.O.)
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA;
| | - Shahid Karim
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (L.P.D.); (A.A.)
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
25
|
Perveen N, Muzaffar SB, Vijayan R, Al-Deeb MA. Microbial composition in Hyalomma anatolicum collected from livestock in the United Arab Emirates using next-generation sequencing. Parasit Vectors 2022; 15:30. [PMID: 35057842 PMCID: PMC8772180 DOI: 10.1186/s13071-021-05144-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hyalomma anatolicum is a widely distributed tick species that acts as a vector transmitting tick-borne pathogens (TBPs) in livestock. Such pathogens affect the health of livestock and consequently reduce their productivity. Knowledge about the microbial communities (pathogens and endosymbionts) of ticks in the United Arab Emirates (UAE) is scarce. Therefore, the aim of the present study was to quantify microbial diversity in H. anatolicum using next-generation sequencing (NGS) technology. METHODS Hyalomma anatolicum ticks were collected from livestock in the emirates of Abu Dhabi, Dubai and Sharjah in the UAE during 2019. DNA was extracted from 175 male ticks sampled from livestock (n = 78) and subjected to NGS. The 16S rRNA gene was analyzed using the Illumina MiSeq platform to determine the bacterial communities. Principal coordinates analysis (PCA) was performed to identify patterns of diversity in the bacterial communities. RESULTS Twenty-six bacterial families with high relative abundance were identified, of which the most common were Staphylococcaceae, Francisellaceae, Corynebacteriaceae, Enterobacteriaceae, Moraxellaceae, Bacillaceae, Halomonadaceae, Xanthomonadaceae, Pseudomonadaceae, Enterococcaceae, Actinomycetaceae and Streptococcaceae. The diversity of the microbial communities in terms of richness and evenness was different at the three study locations, with the PCA showing clear clusters separating the microbial communities in ticks collected at Abu Dhabi, Dubai, and Sharjah. The presence of bacterial families harboring pathogenic genera showed that H. anatolicum could pose a potential threat to livestock and food security in the UAE. CONCLUSIONS The study is the first to document important data on the microbial communities associated with H. anatolicum in the UAE. This knowledge will facilitate a better understanding of the distribution pattern of microbes in livestock ticks in the UAE and, ultimately, will aid in deciphering the relationships between microbes and in the exploration of potential factors towards developing effective management strategies.
Collapse
Affiliation(s)
- Nighat Perveen
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Sabir Bin Muzaffar
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Ranjit Vijayan
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Mohammad Ali Al-Deeb
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| |
Collapse
|
26
|
Skinner KM, Underwood J, Ghosh A, Oliva Chavez AS, Brelsfoard CL. Wolbachia Impacts Anaplasma Infection in Ixodes scapularis Tick Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031051. [PMID: 35162074 PMCID: PMC8834366 DOI: 10.3390/ijerph19031051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023]
Abstract
The specific interactions of members of tick bacterial microbiota and their effects on pathogen transmission remains relatively unexplored. Here, we introduced a novel Wolbachia infection type into Ixodes scapularis tick cells and examined the antipathogenic effects on the intracellular pathogen Anaplasma phagocytophilum. An increase in A. phagocytophilum replication was observed in Wolbachia-infected tick cells. However, Wolbachia infection densities decreased when cells were serially passaged and ultimately the infection was lost. Host-cell immune response was also examined as an additional factor that could have affected A. phagocytophilum replication in Wolbachia-infected cells. In early passages post-Wolbachia infection, a decreased immune response was observed, but in later passages of cells with low Wolbachia densities, there was no change in the immune response. The results are discussed in relation to the importance of studying the interactions of the tick microbiota, the host cell, and the pathogen and the development of novel tick and tick-borne disease-control approaches.
Collapse
Affiliation(s)
- Kalin M. Skinner
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA; (K.M.S.); (A.G.)
| | - Jacob Underwood
- Department of Entomology, Texas A & M University, 370 Olsen Blvd, College Station, TX 77843, USA; (J.U.); (A.S.O.C.)
| | - Arnab Ghosh
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA; (K.M.S.); (A.G.)
| | - Adela S. Oliva Chavez
- Department of Entomology, Texas A & M University, 370 Olsen Blvd, College Station, TX 77843, USA; (J.U.); (A.S.O.C.)
| | - Corey L. Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA; (K.M.S.); (A.G.)
- Correspondence:
| |
Collapse
|
27
|
Takhampunya R, Sakolvaree J, Chanarat N, Youngdech N, Phonjatturas K, Promsathaporn S, Tippayachai B, Tachavarong W, Srinoppawan K, Poole-Smith BK, McCardle PW, Chaorattanakawee S. The Bacterial Community in Questing Ticks From Khao Yai National Park in Thailand. Front Vet Sci 2021; 8:764763. [PMID: 34881320 PMCID: PMC8645651 DOI: 10.3389/fvets.2021.764763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
Ticks are known vectors for a variety of pathogens including bacteria, viruses, fungi, and parasites. In this study, bacterial communities were investigated in active life stages of three tick genera (Haemaphysalis, Dermacentor, and Amblyomma) collected from Khao Yai National Park in Thailand. Four hundred and thirty-three questing ticks were selected for pathogen detection individually using real-time PCR assays, and 58 of these were subjected to further metagenomics analysis. A total of 62 ticks were found to be infected with pathogenic bacteria, for a 14.3% prevalence rate, with Amblyomma spp. exhibiting the highest infection rate (20.5%), followed by Haemaphysalis spp. (14.5%) and Dermacentor spp. (8.6%). Rickettsia spp. were the most prevalent bacteria (7.9%) found, followed by Ehrlichia spp. (3.2%), and Anaplasma spp. and Borrelia spp. each with a similar prevalence of 1.6%. Co-infection between pathogenic bacteria was only detected in three Haemaphysalis females, and all co-infections were between Rickettsia spp. and Anaplasmataceae (Ehrlichia spp. or Anaplasma spp.), accounting for 4.6% of infected ticks or 0.7% of all examined questing ticks. The prevalence of the Coxiella-like endosymbiont was also investigated. Of ticks tested, 65.8% were positive for the Coxiella-like endosymbiont, with the highest infection rate in nymphs (86.7%), followed by females (83.4%). Among tick genera, Haemaphysalis exhibited the highest prevalence of infection with the Coxiella-like endosymbiont. Ticks harboring the Coxiella-like endosymbiont were more likely to be infected with Ehrlichia spp. or Rickettsia spp. than those without, with statistical significance for Ehrlichia spp. infection in particular (p-values = 0.003 and 0.917 for Ehrlichia spp. and Rickettsia spp., respectively). Profiling the bacterial community in ticks using metagenomics revealed distinct, predominant bacterial taxa in tick genera. Alpha and beta diversities analyses showed that the bacterial community diversity and composition in Haemaphysalis spp. was significantly different from Amblyomma spp. However, when examining bacterial diversity among tick life stages (larva, nymph, and adult) in Haemaphysalis spp., no significant difference among life stages was detected. These results provide valuable information on the bacterial community composition and co-infection rates in questing ticks in Thailand, with implications for animal and human health.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Jira Sakolvaree
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nitima Chanarat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nittayaphon Youngdech
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Kritsawan Phonjatturas
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Sommai Promsathaporn
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Bousaraporn Tippayachai
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Wirunya Tachavarong
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Kanchit Srinoppawan
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Betty K Poole-Smith
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - P Wesley McCardle
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Socarras KM, Earl JP, Krol JE, Bhat A, Pabilonia M, Harrison MH, Lang SP, Sen B, Ahmed A, Hester M, Mell JC, Vandegrift K, Ehrlich GD. Species-Level Profiling of Ixodes pacificus Bacterial Microbiomes Reveals High Variability Across Short Spatial Scales at Different Taxonomic Resolutions. Genet Test Mol Biomarkers 2021; 25:551-562. [PMID: 34406842 DOI: 10.1089/gtmb.2021.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background and Aims: Outbreaks of severe and chronic tick-borne diseases (TBDs) are on the rise. This is through the transmission of infectious disease agents to humans during tick feeding. The transmission rate and extent of microbial exchange, however, vary based on the tick microbiome composition. While select microbes are determined to be members of the normal tick microbiome and others are clearly recognized mammalian and/or avian pathogens, the status of many other members of the tick microbiota with respect to human and alternate host pathogenesis remains unclear. Moreover, the species-level 16S microbiome of prominent TBD vectors, including Ixodes pacificus, have not been extensively studied. To elucidate the I. pacificus microbiome composition, we performed a pan-domain species-specific characterization of the bacterial microbiome on adult I. pacificus ticks collected from two regional parks within Western California. Our methods provide for characterizing nuances within cohort microbiomes and their relationships to geo-locale of origin, surrounding fauna, and prevalences of known and suspected pathogens in relation to current TBD epidemiological zones. Methods: Ninety-two adult I. pacificus bacterial microbiomes were characterized using a high-fidelity, pan-domain, species-specific, full-length 16S rRNA amplification method using circular consensus sequencing performed on the Pacific Biosciences Sequel platform. Data analyses were performed with the MCSMRT data analysis package and database. Results: The species-specific I. pacificus microbiome composition illustrates a complex assortment of microflora, including over 900 eubacterial species with high taxonomic diversity, which was revealed to vary by sex and geo-locale, though the use of full-length 16S gene sequencing. The TBD-associated pathogens, such as Borrelia burgdorferi, Anaplasma phagocytophilum, and Rickettsia monacensis, were identified along with a host of bacteria previously unassociated with ticks. Conclusion: Species-level taxonomic classification of the I. pacificus microbiome revealed that full-length bacterial 16S gene sequencing is required for the granularity to elucidate the microbial diversity within and among ticks based on geo-locale.
Collapse
Affiliation(s)
- Kayla M Socarras
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua P Earl
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jaroslaw E Krol
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Archana Bhat
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Max Pabilonia
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Haverford College, Haverford, Pennsylvania, USA
| | - Meghan H Harrison
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,College of Engineering and Natural Sciences, University of Tulsa, Tulsa, Oklahoma, USA
| | - Steven P Lang
- Exosome Diagnostics, a Bio-Techne Company, Waltham, Massachusetts, USA
| | - Bhaswati Sen
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Azad Ahmed
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael Hester
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Chang Mell
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kurt Vandegrift
- Department of Biology, Center for Infectious Disease Dynamics, Penn State University; University Park, Pennsylvania, USA
| | - Garth D Ehrlich
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Osuna-Mascaró C, Doña J, Johnson KP, de Rojas M. Genome-Resolved Metagenomic Analyses Reveal the Presence of a Putative Bacterial Endosymbiont in an Avian Nasal Mite (Rhinonyssidae; Mesostigmata). Microorganisms 2021; 9:microorganisms9081734. [PMID: 34442816 PMCID: PMC8398770 DOI: 10.3390/microorganisms9081734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Rhinonyssidae (Mesostigmata) is a family of nasal mites only found in birds. All species are hematophagous endoparasites, which may damage the nasal cavities of birds, and also could be potential reservoirs or vectors of other infections. However, the role of members of Rhinonyssidae as disease vectors in wild bird populations remains uninvestigated, with studies of the microbiomes of Rhinonyssidae being almost non-existent. In the nasal mite (Tinaminyssus melloi) from rock doves (Columba livia), a previous study found evidence of a highly abundant putatively endosymbiotic bacteria from Class Alphaproteobacteria. Here, we expanded the sample size of this species (two different hosts- ten nasal mites from two independent samples per host), incorporated contamination controls, and increased sequencing depth in shotgun sequencing and genome-resolved metagenomic analyses. Our goal was to increase the information regarding this mite species and its putative endosymbiont. We obtained a metagenome assembled genome (MAG) that was estimated to be 98.1% complete and containing only 0.9% possible contamination. Moreover, the MAG has characteristics typical of endosymbionts (namely, small genome size an AT bias). Overall, our results support the presence of a potential endosymbiont, which is the first described for avian nasal mites to date, and improve the overall understanding of the microbiota inhabiting these mites.
Collapse
Affiliation(s)
- Carolina Osuna-Mascaró
- Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA
- Correspondence: (C.O.-M.); (M.d.R.)
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; (J.D.); (K.P.J.)
- Departamento de Biología Animal, Universitario de Cartuja, Calle Prof. Vicente Callao, 3, 18011 Granada, Spain
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; (J.D.); (K.P.J.)
| | - Manuel de Rojas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Universidad de Sevilla, Calle San Fernando, 4, 41004 Sevilla, Spain
- Correspondence: (C.O.-M.); (M.d.R.)
| |
Collapse
|
30
|
Luzzi MDC, Carvalho LALD, Pinheiro DG, Lima-Duarte L, Camargo JV, Kishi LT, Fernandes CC, Machado RZ, Soares JF, André MR, Barros-Battesti DM. Analysis on the prokaryotic microbiome in females and embryonic cell cultures of Rhipicephalus sanguineus tropical and temperate lineages from two specific localities in Brazil. ACTA ACUST UNITED AC 2021; 30:e005721. [PMID: 34378769 DOI: 10.1590/s1984-29612021066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023]
Abstract
Two lineages of Rhipicephalus sanguineus are known in Brazil: the temperate or southern and the tropical or northern populations. The distribution patterns of both lineages of R. sanguineus have epidemiological implications that can affect vectorial competence concerning Ehrlichia canis, the agent of canine monocytic ehrlichiosis. Intending to identify the microbiomes of both lineages and compare microorganisms in R. sanguineus, we used the 16S rRNA (V4-V5 region) gene-based metataxonomic approach, through NGS sequencing on the MiSeq Illumina platform. We selected specimens of females from the environment and samples of primary embryonic cell cultures, from both lineages, and this was the first study to investigate the prokaryotic microbiome in tick cell cultures. The results showed that many bacterial taxa detected in the samples were typical members of the host environment. A significant diversity of microorganisms in R. sanguineus females and in embryonic cell cultures from both lineages was found, with emphasis on the presence of Coxiella in all samples, albeit in different proportions. The Coxiella species present in the two lineages of ticks may be different and may have co-evolved with them, thus driving different patterns of interactions between ticks and the pathogens that they can harbor or transmit to vertebrate hosts.
Collapse
Affiliation(s)
- Mayara de Cassia Luzzi
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - Lucas Amoroso Lopes de Carvalho
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - Leidiane Lima-Duarte
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, SP, Brasil
| | - Jaqueline Valéria Camargo
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - Luciano Takeshi Kishi
- Laboratório Multiusuário Centralizado para Sequenciamento de DNA em Larga Escala e Análise de Expressão Gênica - LMSeq, Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - Camila Cesário Fernandes
- Laboratório Multiusuário Centralizado para Sequenciamento de DNA em Larga Escala e Análise de Expressão Gênica - LMSeq, Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - João Fábio Soares
- Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brasil
| | - Marcos Rogério André
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil
| | - Darci Moraes Barros-Battesti
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Jaboticabal, SP, Brasil.,Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, SP, Brasil
| |
Collapse
|
31
|
Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends Parasitol 2021; 37:722-733. [PMID: 33962878 PMCID: PMC8282638 DOI: 10.1016/j.pt.2021.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
Ixodes scapularis and Ixodes pacificus are the predominant vectors of multiple human pathogens, including Borrelia burgdorferi, one of the causative agents of Lyme disease in North America. Differences in the habitats and host preferences of these closely related tick species present an opportunity to examine key aspects of the tick microbiome. While advances in sequencing technologies have accelerated a descriptive understanding of the tick microbiome, molecular and mechanistic insights into the tick microbiome are only beginning to emerge. Progress is stymied by technical difficulties in manipulating the microbiome and by biological variables related to the life cycle of Ixodid ticks. This review highlights these challenges and examines avenues to understand the significance of the tick microbiome in tick biology.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA.
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland School of Medicine, College Park, MD 20472, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20472, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| |
Collapse
|
32
|
Kisten D, Brinkerhoff J, Tshilwane SI, Mukaratirwa S. A Pilot Study on the Microbiome of Amblyomma hebraeum Tick Stages Infected and Non-Infected with Rickettsia africae. Pathogens 2021; 10:941. [PMID: 34451405 PMCID: PMC8398150 DOI: 10.3390/pathogens10080941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Variation in tick microbiota may affect pathogen acquisition and transmission but for many vector species, including Amblyomma hebraeum, components and determinants of the microbiome are unidentified. This pilot study aimed to determine baseline microbial community within A. hebraeum nymphs infected- and non-infected with Rickettsia africae from the environment, and within adult ticks infected- and non-infected with R. africae collected from cattle sampled from two locations in the Eastern Cape province of South Africa. Adult A. hebraeum ticks (N = 13) and A. hebraeum nymph (N = 15) preliminary screened for R. africae were randomly selected and subjected to Illumina sequencing targeting the v3-v4 hypervariable regions of the 16S rRNA gene. No significant difference in microbial community composition, as well as rarefied OTU richness and diversity were detected between adults and nymphs. Nymphs showed a higher richness of bacterial taxa indicating blood-feeding could have resulted in loss of microbial diversity during the moulting stage from nymph to adult. Core OTUs that were in at least 50% of nymphs and adults negative and positive for Rickettsia at 1% minimum relative abundance were Rickettsia, Coxiella and Ruminococcaceae UCG-005 with a single genus Arsenophonus occurring only in nymphs negative for Rickettsia. Ehrlichia spp. was present in only four nymphal ticks positive for Rickettsia. Interestingly, Rickettsia aeschlimannii was found in one nymph and one adult, indicating the first ever detection of the species in A. hebraeum. Furthermore, A. hebraeum harboured a Coxiella-like endosymbiont, which should be investigated further as Coxiella may affect the viability and transmission of other organisms.
Collapse
Affiliation(s)
- Dalicia Kisten
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
| | - Jory Brinkerhoff
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Selaelo Ivy Tshilwane
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
| | - Samson Mukaratirwa
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
33
|
Tokarz R, Lipkin WI. Discovery and Surveillance of Tick-Borne Pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1525-1535. [PMID: 33313662 PMCID: PMC8285023 DOI: 10.1093/jme/tjaa269] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Within the past 30 yr molecular assays have largely supplanted classical methods for detection of tick-borne agents. Enhancements provided by molecular assays, including speed, throughput, sensitivity, and specificity, have resulted in a rapid increase in the number of newly characterized tick-borne agents. The use of unbiased high throughput sequencing has enabled the prompt identification of new pathogens and the examination of tick microbiomes. These efforts have led to the identification of hundreds of new tick-borne agents in the last decade alone. However, little is currently known about the majority of these agents beyond their phylogenetic classification. Our article outlines the primary methods involved in tick-borne agent discovery and the current status of our understanding of tick-borne agent diversity.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
- Corresponding author, e-mail:
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
34
|
Elias L, Blazier JC, Rogovska YV, Konganti K, Wang J, Liu S, Mankin KMT, Nebogatkin IV, Threadgill DW, Rogovskyy AS. Extensive sex-specific and regional variations observed in the microbiome of Dermacentor reticulatus. Ticks Tick Borne Dis 2021; 12:101767. [PMID: 34130148 DOI: 10.1016/j.ttbdis.2021.101767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Recent progress in DNA sequencing technologies and advanced bioinformatic tools have enabled researchers to rapidly decipher the tick microbiome. To date, however, a number of microbiome studies performed on Dermacentor reticulatus ticks is still quite limited. Despite the importance of this ixodid tick for veterinary and human medicine, only two investigations have examined its microbiome. Moreover, these studies analyzed only a limited number of ticks/tick pools. Given the scarcity of microbiome data for D. reticulatus in general and the lack of microbiome studies on tick species from Eastern Europe in particular, the objective of the current investigation was to analyze the microbiome of D. reticulatus ticks collected from three geographical regions of Ukraine. A total of 88 individual tick microbiomes were analyzed by sequencing the V6 region of 16S rRNA. As a result, numerous significant differences in the bacterial relative abundance were detected between males and females of D. reticulatus for each region. The alpha diversity measures indicate that microbiomes were significantly different between females of D. reticulatus inter-regionally. In contrast, the collective results for male ticks are more suggestive of inter-regional microbiome homogeneity. The overall findings indicate that the composition and diversity of the D. reticulatus microbiome can be impacted by geographical and sex-related factors.
Collapse
Affiliation(s)
- Leta Elias
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical, Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - John C Blazier
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
| | - Yuliya V Rogovska
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical, Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kranti Konganti
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
| | - Jiangli Wang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Shuling Liu
- Statistical Collaboration Center, Department of Statistics, College of Science, Texas A&M University, College Station, TX, 77843, USA
| | - Kelley M Thieman Mankin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Igor V Nebogatkin
- I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, 01601, Ukraine
| | - David W Threadgill
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, 77843, USA; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Texas A&M University, College Station, TX, 77843, USA
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical, Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
35
|
Ixodiphagus hookeri wasps (Hymenoptera: Encyrtidae) in two sympatric tick species Ixodes ricinus and Haemaphysalis concinna (Ixodida: Ixodidae) in the Slovak Karst (Slovakia): ecological and biological considerations. Sci Rep 2021; 11:11310. [PMID: 34050233 PMCID: PMC8163793 DOI: 10.1038/s41598-021-90871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/13/2021] [Indexed: 12/02/2022] Open
Abstract
Ixodiphagus endoparasitoid wasps are natural tick enemies that can reduce their abundance. In this study, we investigated the presence of Ixodiphagus hookeri in Haemaphysalis concinna and Ixodes ricinus ticks in the Slovak Karst (southern Slovakia) and analysed the ecological and physiological relationships in the parasitoid-host system. Unfed H. concinna and I. ricinus nymphs harvested from vegetation were fed on rabbits. The engorged specimens were kept at 25 °C and 75% RH until the emergence of the adult wasps. For the first time in Europe, we found the presence of I. hookeri in two species of ticks collected in the same locality and compared their development in these tick species. The prevalence of wasps in H. concinna and I. ricinus during their spring activity was estimated at 10.64% and 27.78%, respectively. The presence of the wasps did not affect the duration of nymph feeding. Engorged wasp-infected ticks achieved higher body mass than non-infected specimens. In both tick species, there were no differences in the length of the development period and the number and sex ratio of adult I. hookeri. The analysed indicators and characteristics of the I. hookeri wasp-tick system can be used in research on tick control.
Collapse
|
36
|
Jiao J, Lu Z, Yu Y, Ou Y, Fu M, Zhao Y, Wu N, Zhao M, Liu Y, Sun Y, Wen B, Zhou D, Yuan Q, Xiong X. Identification of tick-borne pathogens by metagenomic next-generation sequencing in Dermacentor nuttalli and Ixodes persulcatus in Inner Mongolia, China. Parasit Vectors 2021; 14:287. [PMID: 34044867 PMCID: PMC8161991 DOI: 10.1186/s13071-021-04740-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 01/19/2023] Open
Abstract
Background Hard ticks act as arthropod vectors in the transmission of human and animal pathogens and are widely distributed in northern China. The aim of this study is to screen the important tick-borne pathogens (TBPs) carried by hard ticks in Inner Mongolia using metagenomic next-generation sequencing (mNGS) and to estimate the risk of human infection imposed by tick bites. Methods The adult Dermacentor nuttalli (n = 203) and Ixodes persulcatus (n = 36) ticks feeding on cattle were collected. The pooled DNA samples prepared from these ticks were sequenced as the templates for mNGS to survey the presence of TBPs at the genus level. Individual tick DNA samples were detected by genus--specific or group-specific nested polymerase chain reaction (PCR) of these TBPs and combined with DNA sequencing assay to confirm the results of mNGS. Results R. raoultii (45.32%, 92/203), Candidatus R. tarasevichiae (5.42%, 11/203), Anaplasma sp. Mongolia (26.60%, 54/203), Coxiella-like endosymbiont (CLE) (53.69%, 109/203), and Babesia venatorum (7.88%, 16/203) were detected in D. nuttalli, while R. raoultii (30.56%, 11/36), Anaplasma sp. Mongolia (27.80%, 10/36), and CLE (27.80%, 10/36) were detected in I. persulcatus. The double- and triple-pathogen/endosymbiont co-infections were detected in 40.39% of D. nuttalli and 13.89% of I. persulcatus, respectively. The dual co-infection with R. raoultii and CLE (14.29%, 29/203) and triple co-infection with R. raoultii, Anaplasma sp. Mongolia, and CLE (13.79%, 28/203) were most frequent in D. nuttalli. Conclusions This study provides insight into the microbial diversity of D. nuttalli and I. persulcatus in Inner Mongolia, China, reporting for the first time that Candidatus R. tarasevichiae had been found in D. nuttalli in China, and for the first time in the world that Anaplasma sp. Mongolia has been detected in I. persulcatus. This study proves that various vertically transmitted pathogens co-inhabit D. nuttalli and I. persulcatus, and indicates that cattle in Inner Mongolia are exposed to several TBPs. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04740-3.
Collapse
Affiliation(s)
- Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Zhiyu Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yangxuan Ou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Mengjiao Fu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Nier Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yan Liu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, PR China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Qinghong Yuan
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Provincial Key Laboratory of Natural Focal Disease Control and Prevention, Yunnan, PR China.
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China.
| |
Collapse
|
37
|
O'Neal AJ, Singh N, Mendes MT, Pedra JHF. The genus Anaplasma: drawing back the curtain on tick-pathogen interactions. Pathog Dis 2021; 79:ftab022. [PMID: 33792663 PMCID: PMC8062235 DOI: 10.1093/femspd/ftab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tick-borne illnesses pose a serious concern to human and veterinary health and their prevalence is on the rise. The interactions between ticks and the pathogens they carry are largely undefined. However, the genus Anaplasma, a group of tick-borne bacteria, has been instrumental in uncovering novel paradigms in tick biology. The emergence of sophisticated technologies and the convergence of entomology with microbiology, immunology, metabolism and systems biology has brought tick-Anaplasma interactions to the forefront of vector biology with broader implications for the infectious disease community. Here, we discuss the use of Anaplasma as an instrument for the elucidation of novel principles in arthropod-microbe interactions. We offer an outlook of the primary areas of study, outstanding questions and future research directions.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021; 10:pathogens10030362. [PMID: 33803682 PMCID: PMC8002991 DOI: 10.3390/pathogens10030362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Ixodid ticks are hematophagous arthropods considered to be prominent ectoparasite vectors that have a negative impact on cattle, either through direct injury or via the transmission of several pathogens. In this study, we investigated the molecular infection rates of numerous tick-borne pathogens in ticks sampled on cattle from the Kabylia region, northeastern Algeria, using a high-throughput microfluidic real-time PCR system. A total of 235 ticks belonging to seven species of the genera Rhipicephalus, Hyalomma, and Ixodes were sampled on cattle and then screened for the presence of 36 different species of bacteria and protozoans. The most prevalent tick-borne microorganisms were Rickettsia spp. at 79.1%, followed by Francisella-like endosymbionts (62.9%), Theileria spp. (17.8%), Anaplasma spp. (14.4%), Bartonella spp. (6.8%), Borrelia spp. (6.8%), and Babesia spp. (2.5%). Among the 80.4% of ticks bearing microorganisms, 20%, 36.6%, 21.7%, and 2.1% were positive for one, two, three, and four different microorganisms, respectively. Rickettsia aeschlimannii was detected in Hyalomma marginatum, Hyalomma detritum, and Rhipicephalus bursa ticks. Rickettsia massiliae was found in Rhipicephalus sanguineus, and Rickettsiamonacensis and Rickettsia helvetica were detected in Ixodesricinus. Anaplasma marginale was found in all identified tick genera, but Anaplasma centrale was detected exclusively in Rhipicephalus spp. ticks. The DNA of Borrelia spp. and Bartonella spp. was identified in several tick species. Theileria orientalis was found in R. bursa, R. sanguineus, H. detritum, H. marginatum, and I. ricinus and Babesia bigemina was found in Rhipicephalus annulatus and R. sanguineus. Our study highlights the importance of tick-borne pathogens in cattle in Algeria.
Collapse
|
39
|
Říhová J, Batani G, Rodríguez-Ruano SM, Martinů J, Vácha F, Nováková E, Hypša V. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice. Mol Ecol 2021; 30:2178-2196. [PMID: 33639022 DOI: 10.1111/mec.15866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
The phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have a complex history of symbiont acquisition, loss, and replacement throughout their evolution. These processes have resulted in the establishment of different, phylogenetically distant bacteria as obligate mutualists in different louse groups. By combining metagenomics and amplicon screening across several populations of three louse species (members of the genera Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its independent origin in the two louse genera. While the genomes of these symbionts are highly similar, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseriaceae-related bacterium is a dominant obligate symbiont present across several host populations. In contrast, the Polyplax microbiomes are dominated by the obligate symbiont Legionella polyplacis, with the Neisseriaceae-related bacterium co-occurring only in some samples and with much lower abundance. The results thus support the view that compared to other exclusively blood feeding insects, Anoplura possess a unique capacity to acquire symbionts from diverse groups of bacteria.
Collapse
Affiliation(s)
- Jana Říhová
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Giampiero Batani
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sonia Maria Rodríguez-Ruano
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Martinů
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| | - František Vácha
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| |
Collapse
|
40
|
Tick Microbiomes in Neotropical Forest Fragments Are Best Explained by Tick-Associated and Environmental Factors Rather than Host Blood Source. Appl Environ Microbiol 2021; 87:AEM.02668-20. [PMID: 33514519 DOI: 10.1128/aem.02668-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023] Open
Abstract
The composition of tick microbiomes varies both within and among tick species. Whether this variation is intrinsic (related to tick characteristics) or extrinsic (related to vertebrate host and habitat) is poorly understood but important, as microbiota can influence the reproductive success and vector competence of ticks. We aimed to uncover what intrinsic and extrinsic factors best explain the microbial composition and taxon richness of 11 species of neotropical ticks collected from eight species of small mammals in 18 forest fragments across central Panama. Microbial richness varied among tick species, life stages, and collection sites but was not related to host blood source. Microbiome composition was best explained by tick life stage, with bacterial assemblages of larvae being a subset of those of nymphs. Collection site explained most of the bacterial taxa with differential abundance across intrinsic and extrinsic factors. Francisella and Rickettsia were highly prevalent, but their proportional abundance differed greatly among tick species, and we found both positive and negative cooccurrence between members of these two genera. Other tick endosymbionts (e.g., Coxiella and Rickettsiella) were associated with specific tick species. In addition, we detected Anaplasma and Bartonella in several tick species. Our results indicate that the microbial composition and richness of neotropical ticks are principally related to intrinsic factors (tick species and life stage) and collection site. Taken together, our analysis informs how tick microbiomes are structured and can help anchor our understanding of tick microbiomes from tropical environments more broadly.IMPORTANCE Blood-feeding arthropod microbiomes often play important roles in disease transmission, yet the factors that structure tick microbial communities in the Neotropics are unknown. Utilizing ticks collected from live animals in neotropical forest fragments, this study teases apart the contributions of intrinsic and extrinsic tick-associated factors on tick microbial composition as well as which specific microbes contribute to differences across tick species, tick life stages, the mammals they fed on, and the locations from where they were sampled. Furthermore, this study provides revelations of how notable tick-associated bacterial genera are interacting with other tick-associated microbes as well as the forest animals they encounter.
Collapse
|
41
|
Olivieri E, Kariuki E, Floriano AM, Castelli M, Tafesse YM, Magoga G, Kumsa B, Montagna M, Sassera D. Multi-country investigation of the diversity and associated microorganisms isolated from tick species from domestic animals, wildlife and vegetation in selected african countries. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:427-448. [PMID: 33646482 PMCID: PMC7940270 DOI: 10.1007/s10493-021-00598-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/15/2021] [Indexed: 06/01/2023]
Abstract
In many areas of Africa, recent studies highlighted the great impact of ticks on animal and human health throughout the continent. On the other hand, very limited information on the bacterial endosymbionts of the African ticks and their pattern of co-infections with other bacteria are found in literature, notwithstanding their pivotal role in tick survival and vector efficiency. Thus, we investigated the distribution of selected pathogenic and symbiotic bacteria in hard ticks collected from wild, domestic animals and from vegetation in various ecological zones in Africa and their co-occurrence in the same tick host. Overall, 339 hard ticks were morphologically identified as belonging to the genera Amblyomma, Dermacentor, Hyalomma, Haemaphysalis, Ixodes and Rhipicephalus. Molecular screening provided information on pathogens circulation in Africa, detecting spotted fever group rickettsiae, Anaplasma spp., Ehrlichia ruminantium, Borrelia garinii, Babesia spp., Theileria spp. and Coxiella burnetii. Furthermore, our work provides insights on the African scenario of tick-symbiont associations, revealing the presence of Coxiella, Francisella and Midichloria across multiple tick populations. Coxiella endosymbionts were the most prevalent microorganisms, and that with the broadest spectrum of hosts, being detected in 16 tick species. Francisella was highly prevalent among the Hyalomma species tested and correlated negatively with the presence of Coxiella, showing a potential competitive interaction. Interestingly, we detected a positive association of Francisella with Rickettsia in specimens of Hy. rufipes, suggesting a synergistic interaction between them. Finally, Midichloria was the most prevalent symbiont in Rhipicephalus sanguineus sensu lato from Egypt.
Collapse
Affiliation(s)
- Emanuela Olivieri
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| | - Edward Kariuki
- Department of Veterinary Service, Wildlife Service, Nairobi, Kenya
| | - Anna Maria Floriano
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Yohannes Mulatu Tafesse
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Agroambientali, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy
| | - Bersissa Kumsa
- Department of Parasitology, College of Veterinary Medicine, Addis Ababa University, P.O Box 34, Bishoftu, Ethiopia
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Agroambientali, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy
- BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli 'Federico II', 80138, Portici, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| |
Collapse
|
42
|
Paulino P, Vitari G, Rezende A, Couto J, Antunes S, Domingos A, Peckle M, Massard C, Araújo F, Santos H. Characterization of the Rhipicephalus ( Boophilus) microplus Sialotranscriptome Profile in Response to Theileria equi Infection. Pathogens 2021; 10:pathogens10020167. [PMID: 33557100 PMCID: PMC7913801 DOI: 10.3390/pathogens10020167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
This study intends to characterize the sialotranscriptome profile of Rhipicephalus (Boophilus) microplus in response to Theileria equi and identify genes of interest with differential genomic expression, indicating relevant targets in the tick–protozoan interactions. The experimental design consisted of RNA sequencing from uninfected and T. equi-infected R. microplus salivary glands (SGs) to obtain transcriptomic profiles for characterization and comparison. A total of 288,952 transcripts were obtained from both tick profiles, 3456 transcripts (p < 0.05) differentially expressed in response to T. equi infection. The uninfected SGs’ registered 231,179 transcripts, of which 155,359 were annotated. The most transcribed sequences were female-specific histamine binding protein and lipocalins. Regarding the T. equi-infected SGs, from the 238,964 assembled transcripts, 163,564 were annotated. The most transcribed sequences were histone demethylase JARID1 and Y-box-binding protein. Five transcripts (cystatin, arginase, nuclear factor κB kinase inhibitor subunit β (IκB), IκB delta, lysosomal-trafficking regulator, and reeler protein) presented the gene ontology (GO) category “response to protozoan” and were exclusively displayed in the T. equi-infected profile. The transcriptome of T. equi was also analyzed, registering 4728 hits. The study’s genetic and molecular information would be of great value for future studies and biotechnological applications envisaging disease control.
Collapse
Affiliation(s)
- Patrícia Paulino
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
| | - Gabriela Vitari
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
| | - Antonio Rezende
- Department of Microbiology, Institute Aggeu Magalhães—Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE 50670-420, Brazil;
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Maristela Peckle
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ 23890000, Brazil; (M.P.); (C.M.)
| | - Carlos Massard
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ 23890000, Brazil; (M.P.); (C.M.)
| | - Flávio Araújo
- Rene Rachou Research Center (CPqRR), FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil;
| | - Huarrisson Santos
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
- Correspondence:
| |
Collapse
|
43
|
Díaz-Sánchez S, Fernández AM, Habela MA, Calero-Bernal R, de Mera IGF, de la Fuente J. Microbial community of Hyalomma lusitanicum is dominated by Francisella-like endosymbiont. Ticks Tick Borne Dis 2020; 12:101624. [PMID: 33418339 DOI: 10.1016/j.ttbdis.2020.101624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
Exploring tick associations with complex microbial communities and single-microbial partners, especially intracellular symbionts, has become crucial to understand tick biology. Of particular interest are the underlying interactions with biological consequences i.e. tick fitness, vector competence. In this study, we first sequenced the 16S rRNA bacterial phylogenetic marker in adult male ticks of Hyalomma lusitanicum collected from 5 locations in the province of Cáceres to explore the composition of its microbial community. Overall, 16S rRNA sequencing results demonstrated that the microbial community of H. lusitanicum is mostly dominated by Francisella-like endosymbionts (FLEs) (ranging from 52% to 99% of relative abundance) suggesting it is a key taxon within the microbial community and likely a primary endosymbiont. However, further research is required to explore the mechanisms underlying the interaction between FLEs and H. lusitanicum.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
| | - Alberto Moraga Fernández
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Miguel A Habela
- SALUVET, Animal Health Department, Faculty of Veterinary Science, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Rafael Calero-Bernal
- Animal Health Department, University of Extremadura, Avda. Universidad s/n, 10071, Cáceres, Spain; SALUVET, Animal Health Department, Faculty of Veterinary Science, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Isabel G Fernández de Mera
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
44
|
Lefcort H, Tsybulnik DY, Browning RJ, Eagle HP, Eggleston TE, Magori K, Andrade CC. Behavioral characteristics and endosymbionts of two potential tularemia and Rocky Mountain spotted fever tick vectors. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:321-332. [PMID: 33207056 DOI: 10.1111/jvec.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Due to climate change-induced alterations of temperature and humidity, the distribution of pathogen-carrying organisms such as ticks may shift. Tick survival is often limited by environmental factors such as dryness, but a predicted hotter and wetter world may allow the expansion of tick ranges. Dermacentor andersoni and D. variabilis ticks are morphologically similar, co-occur throughout the Inland Northwest of Washington State, U.S.A., and both can be injected with pathogenic Rickettsia and Francisella bacteria. Differences in behavior and the potential role of endosymbiotic Rickettsia and Francisella in these ticks are poorly studied. We wanted to measure behavioral and ecological differences between the two species and determine which, if any, Rickettsia and Francisella bacteria - pathogenic or endosymbiotic - they carried. Additionally, we wanted to determine if either tick species may be selected for if the climate in eastern Washington becomes wetter or dryer. We found that D. andersoni is more resistant to desiccation, but both species share similar questing behaviors such as climbing and attraction to bright light. Both also avoid the odor of eucalyptus and DEET but not permethrin. Although both tick species are capable of transmitting pathogenic species of Francisella and Rickettsia, which cause tularemia and Rocky Mountain Spotted Fever, respectively, we found primarily non-pathogenic endosymbiotic strains of Francisella and Rickettsia, and only one tick infected with F. tularensis subspecies holarctica.
Collapse
Affiliation(s)
- Hugh Lefcort
- Biology Department, Gonzaga University, Spokane, WA, 99258
| | | | | | | | | | - Krisztian Magori
- Department of Biology, Eastern Washington University, Cheney, WA, 99004
| | | |
Collapse
|
45
|
Sperling J, MacDonald Z, Normandeau J, Merrill E, Sperling F, Magor K. Within-population diversity of bacterial microbiomes in winter ticks (Dermacentor albipictus). Ticks Tick Borne Dis 2020; 11:101535. [DOI: 10.1016/j.ttbdis.2020.101535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
46
|
Perveen N, Muzaffar SB, Vijayan R, Al-Deeb MA. Microbial communities associated with the camel tick, Hyalomma dromedarii: 16S rRNA gene-based analysis. Sci Rep 2020; 10:17035. [PMID: 33046763 PMCID: PMC7550333 DOI: 10.1038/s41598-020-74116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Hyalomma dromedarii is an important blood-feeding ectoparasite that affects the health of camels. We assessed the profile of bacterial communities associated with H. dromedarii collected from camels in the eastern part of the UAE in 2010 and 2019. A total of 100 partially engorged female ticks were taken from tick samples collected from camels (n = 100; 50/year) and subjected to DNA extraction and sequencing. The 16S rRNA gene was amplified from genomic DNA and sequenced using Illumina MiSeq platform to elucidate the bacterial communities. Principle Coordinates Analysis (PCoA) was conducted to determine patterns of diversity in bacterial communities. In 2010 and 2019, we obtained 899,574 and 781,452 read counts and these formed 371 and 191 operational taxonomic units (OTUs, clustered at 97% similarity), respectively. In both years, twenty-five bacterial families with high relative abundance were detected and the following were the most common: Moraxellaceae, Enterobacteriaceae, Staphylococcaceae, Bacillaceae, Corynebacteriaceae, Flavobacteriaceae, Francisellaceae, Muribaculaceae, Neisseriaceae, and Pseudomonadaceae. Francisellaceae and Enterobacteriaceae coexist in H. dromedarii and we suggest that they thrive under similar conditions and microbial interactions inside the host. Comparisons of diversity indicated that microbial communities differed in terms of richness and evenness between 2010 and 2019, with higher richness but lower evenness in communities in 2010. Principle coordinates analyses showed clear clusters separating microbial communities in 2010 and 2019. The differences in communities suggested that the repertoire of microbial communities have shifted. In particular, the significant increase in dominance of Francisella and the presence of bacterial families containing pathogenic genera shows that H. dromedarii poses a serious health risk to camels and people who interact with them. Thus, it may be wise to introduce active surveillance of key genera that constitute a health hazard in the livestock industry to protect livestock and people.
Collapse
Affiliation(s)
- Nighat Perveen
- Biology Department, United Arab Emirates University, P.O. Box 15551, Al-Ain, UAE
| | - Sabir Bin Muzaffar
- Biology Department, United Arab Emirates University, P.O. Box 15551, Al-Ain, UAE
| | - Ranjit Vijayan
- Biology Department, United Arab Emirates University, P.O. Box 15551, Al-Ain, UAE
| | - Mohammad Ali Al-Deeb
- Biology Department, United Arab Emirates University, P.O. Box 15551, Al-Ain, UAE.
| |
Collapse
|
47
|
Ticks (Acari: Ixodidae) on birds migrating to the island of Ponza, Italy, and the tick-borne pathogens they carry. Ticks Tick Borne Dis 2020; 12:101590. [PMID: 33113477 DOI: 10.1016/j.ttbdis.2020.101590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Seasonal migration of birds between breeding and wintering areas can facilitate the spread of tick species and tick-borne diseases. In this study, 151 birds representing 10 different bird species were captured on Ponza Island, an important migratory stopover off the western coast of Italy and screened for tick infestation. Ticks were collected and identified morphologically. Morphological identification was supported through sequencing a fragment of the 16S mitochondrial gene. In total, 16 captured birds carried ticks from four tick species: Hyalomma rufipes (n = 14), Amblyomma variegatum (n = 1), Amblyomma sp. (n = 1), and Ixodes ventalloi (n = 2). All specimens were either larvae (n = 2) or nymphs (n = 16). All ticks were investigated for tick-borne pathogens using published molecular methods. Rickettsia aeschlimannii was detected in six of the 14 collected H. rufipes ticks. Additionally, the singular A. variegatum nymph tested positive for R. africae. In all 14 H. rufipes specimens (2 larvae and 12 nymphs), Francisella-like endosymbionts were detected. Four H. rufipes ticks tested positive for Borrelia burgdorferi sensu lato in a screening PCR but did not produce sufficient amplicon amounts for species identification. All ticks tested negative for tick-borne encephalitis virus, Crimean-Congo hemorrhagic fever virus, Coxiella burnetii, Coxiella-like organisms, Babesia spp., and Theileria spp. This study confirms the role of migratory birds in the spread and establishment of both exotic tick species and tick-borne pathogens outside their endemic range.
Collapse
|
48
|
Mendoza-Roldan JA, Ribeiro SR, Castilho-Onofrio V, Marcili A, Simonato BB, Latrofa MS, Benelli G, Otranto D, Barros-Battesti DM. Molecular detection of vector-borne agents in ectoparasites and reptiles from Brazil. Ticks Tick Borne Dis 2020; 12:101585. [PMID: 33113476 DOI: 10.1016/j.ttbdis.2020.101585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/02/2023]
Abstract
Trombidiformes and Mesostigmata mites, as well as Ixodida ticks, infest ectothermic tetrapods worldwide, potentially acting as vectors of bacteria, viruses and protozoa. The relationship among ectoparasites, transmitted pathogenic agents (e.g., Borrelia spp., Coxiella spp., Hepatozoon spp., and Rickettsia spp.) and ectothermic hosts has been scarcely investigated. This research focuses on a large collection of Brazilian herpetofauna screened for the presence of arthropod ectoparasites and vector-borne microbial agents. Reptiles (n = 121) and amphibians (n = 49) from various locations were infested by ectoparasites. Following genomic extraction, microbial agents were detected in 81 % of the Acari (i.e. n = 113 mites and n = 26 ticks). None of the mites, ticks and tissues from amphibians yielded positive results for any of the screened agents. Blood was collected from reptiles and processed through blood cytology and molecular analyses (n = 48). Of those, six snakes (12.5 %) showed intraerythrocytic alterations compatible with Hepatozoon spp. gamonts and Iridovirus inclusions. Hepatozoon spp. similar to Hepatozoon ayorgbor and Hepatozoon musa were molecularly identified from seven hosts, two mite and two tick species. Rickettsia spp. (e.g., Rickettsia amblyommatis, Rickettsia bellii-like, Rickettsia sp.) were detected molecularly from four mite species and Amblyomma rotundatum ticks. Phylogenetic analyses confirmed the molecular identification of the above-mentioned microbial agents of mites and ticks related to snakes and lizards. Overall, our findings highlighted that the Brazilian herpetofauna and its ectoparasites harbour potentially pathogenic agents, particularly from the northern and south-eastern regions. The detection of several species of spotted fever group Rickettsia pointed out the potential role of ectothermic hosts and related arthropod ectoparasites in the epidemiological cycle of these bacteria in Brazil.
Collapse
Affiliation(s)
- Jairo Alfonso Mendoza-Roldan
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy; Faculty of Veterinary Medicine, University of São Paulo, São Paulo, 05508-270, Brazil; Zoological Collections Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil.
| | - Stephany Rocha Ribeiro
- Zoological Collections Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil; Master's Program in Veterinary Medicine and Animal Welfare, and Doctoral Program in One Health, Santo Amaro University, São Paulo, 04829-300, Brazil
| | - Valeria Castilho-Onofrio
- Zoological Collections Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil; Master's Program in Veterinary Medicine and Animal Welfare, and Doctoral Program in One Health, Santo Amaro University, São Paulo, 04829-300, Brazil
| | - Arlei Marcili
- Faculty of Veterinary Medicine, University of São Paulo, São Paulo, 05508-270, Brazil; Master's Program in Veterinary Medicine and Animal Welfare, and Doctoral Program in One Health, Santo Amaro University, São Paulo, 04829-300, Brazil
| | - Bruna Borghi Simonato
- Deparment of Veterinary Medicine, Anhembi Morumbi University Vila Tramontano, São Paulo, SP, 05650-000, Brazil
| | | | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124, Pisa, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy; Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Felestin Sq., Hamedan, Iran
| | - Darci Moraes Barros-Battesti
- Faculty of Veterinary Medicine, University of São Paulo, São Paulo, 05508-270, Brazil; Department of Veterinary Pathology, Universidade Estadual Paulista Julio De Mesquita Filho (UNESP), Jaboticabal, 14884-900, Brazil
| |
Collapse
|
49
|
Barraza-Guerrero SI, Meza-Herrera CA, García-De la Peña C, González-Álvarez VH, Vaca-Paniagua F, Díaz-Velásquez CE, Sánchez-Tortosa F, Ávila-Rodríguez V, Valenzuela-Núñez LM, Herrera-Salazar JC. General Microbiota of the Soft Tick Ornithodoros turicata Parasitizing the Bolson Tortoise ( Gopherus flavomarginatus) in the Mapimi Biosphere Reserve, Mexico. BIOLOGY 2020; 9:biology9090275. [PMID: 32899580 PMCID: PMC7565578 DOI: 10.3390/biology9090275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
The general bacterial microbiota of the soft tick Ornithodoros turicata found on Bolson tortoises (Gopherus flavomarginatus) were analyzed using next generation sequencing. The main aims of the study were to establish the relative abundance of bacterial taxa in the tick, and to document the presence of potentially pathogenic species for this tortoise, other animals, and humans. The study was carried-out in the Mapimi Biosphere Reserve in the northern-arid part of Mexico. Bolson tortoises (n = 45) were inspected for the presence of soft ticks, from which 11 tortoises (24.4%) had ticks in low loads (1–3 ticks per individual). Tick pools (five adult ticks each) were analyzed through 16S rRNA V3–V4 region amplification in a MiSeq Illumina, using EzBioCloud as a taxonomical reference. The operational taxonomic units (OTUs) revealed 28 phyla, 84 classes, 165 orders, 342 families, 1013 genera, and 1326 species. The high number of taxa registered for O. turicata may be the result of the variety of hosts that this tick parasitizes as they live inside G. flavomarginatus burrows. While the most abundant phyla were Proteobacteria, Actinobacteria, and Firmicutes, the most abundant species were two endosymbionts of ticks (Midichloria-like and Coxiella-like). Two bacteria documented as pathogenic to Gopherus spp. were registered (Mycoplasma spp. and Pasteurella testudinis). The bovine and ovine tick-borne pathogens A. marginale and A. ovis, respectively, were recorded, as well as the zoonotic bacteria A. phagocytophilum,Coxiella burnetii, and Neoehrlichia sp. Tortoises parasitized with O. turicata did not show evident signs of disease, which could indicate a possible ecological role as a reservoir that has yet to be demonstrated. In fact, the defense mechanisms of this tortoise against the microorganisms transmitted by ticks during their feeding process are still unknown. Future studies on soft ticks should expand our knowledge about what components of the microbiota are notable across multiple host–microbe dynamics. Likewise, studies are required to better understand the host competence of this tortoise, considered the largest terrestrial reptile in North America distributed throughout the Chihuahuan Desert since the late Pleistocene.
Collapse
Affiliation(s)
- Sergio I. Barraza-Guerrero
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230 Bermejillo, Durango, Mexico; (S.I.B.-G.); (C.A.M.-H.)
| | - César A. Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230 Bermejillo, Durango, Mexico; (S.I.B.-G.); (C.A.M.-H.)
| | - Cristina García-De la Peña
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
- Correspondence: ; Tel.: +52-871-386-7276; Fax: +52-871-715-2077
| | - Vicente H. González-Álvarez
- Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero, 41940 Cuajinicuilapa, Guerrero, Mexico;
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, 54090 Tlalnepantla, Estado de México, Mexico; (F.V.-P.); (C.E.D.-V.)
- Instituto Nacional de Cancerología, 14080 Ciudad de México, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090 Tlalnepantla, Estado de México, Mexico
| | - Clara E. Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, 54090 Tlalnepantla, Estado de México, Mexico; (F.V.-P.); (C.E.D.-V.)
| | - Francisco Sánchez-Tortosa
- Departamento de Zoología, Universidad de Córdoba.Edificio C-1, Campus Rabanales, 14071 Cordoba, Spain;
| | - Verónica Ávila-Rodríguez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| | - Luis M. Valenzuela-Núñez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| | - Juan C. Herrera-Salazar
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| |
Collapse
|
50
|
Alreshidi MM, Veettil VN, Noumi E, Campo RD, Snoussi M. Description of microbial diversity associated with ticks Hyalomma dromedarii (Acari: Ixodidae) isolated from camels in Hail region (Saudi Arabia) using massive sequencing of 16S rDNA. Bioinformation 2020; 16:602-610. [PMID: 33214748 PMCID: PMC7649017 DOI: 10.6026/97320630016602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 11/23/2022] Open
Abstract
Ticks are blood feeder able to transmit a wide diversity of microbes including pathogens. Therefore, it is of our interest to detect the diversity of microorganisms residing within ticks using massive sequencing of 16S rDNA. In this study, 200 adult ticks were collected from healthy camels in two localities from Hail province (Saudi Arabia). The analysis showed high microbial diversity dominated by the two domains (Archaea and Bacteria) associated with Hyalomma dromedarii from both regions. Proteobacteria (61.3%) and Firmicutes (31.2%) dominated the ticks from the Al Khotha region. While, the microbiome of ticks from the Al Gayed region was dominated by Proteobacteria (81.2%) and Firmicutes (9.2%). Twenty-three families were identified in the DNA-pool from the Al Gayed region, and was dominated by Pseudomonadaceae (45.37%), and Marinobacteraceae (14.39%) families. Francisellaceae (46%), Staphylococcaceae (24.26%) dominated the microbiome of the ticks collected from Al Gayed region. Thus, the genera Pseudomonas, Francisella, Proteus, Marinobacter, Glutamicibacter, Pedobacter, and Staphylococcus are largely distributed in the two identified microbiomes. This study concluded that ticks collected from the studied localities contained a wide range of microbial communities. These data have a great veterinary and medical importance in near future.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Science, Ha'il, P.O. 2440, University of Ha'il City 2440, Saudi Arabia
| | - Vajid N Veettil
- Department of Biology, College of Science, Ha'il, P.O. 2440, University of Ha'il City 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, Ha'il, P.O. 2440, University of Ha'il City 2440, Saudi Arabia
- Laboratory of Bioressources: Integrative Biology and Recovery, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Rosa Del Campo
- Servicio de Microbiologia, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramon y Cajal, Carretera de Colmenar, Km 9,1, 28034 - Madrid. Spain
| | - Mejdi Snoussi
- Department of Biology, College of Science, Ha'il, P.O. 2440, University of Ha'il City 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, 5000 Monastir, Tunisia
| |
Collapse
|