1
|
Grivalský T, Lakatos GE, Štěrbová K, Manoel JAC, Beloša R, Divoká P, Kopp J, Kriechbaum R, Spadiut O, Zwirzitz A, Trenzinger K, Masojídek J. Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater. Appl Microbiol Biotechnol 2024; 108:44. [PMID: 38180554 DOI: 10.1007/s00253-023-12924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.
Collapse
Affiliation(s)
- Tomáš Grivalský
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic.
| | - Gergely Ernő Lakatos
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - Karolína Štěrbová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - João Artur Câmara Manoel
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, České Budějovice, Czech Republic
| | - Romana Beloša
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - Petra Divoká
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| | - Julian Kopp
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Getreidemarkt 9, Vienna, Austria
| | - Ricarda Kriechbaum
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Getreidemarkt 9, Vienna, Austria
| | - Oliver Spadiut
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Getreidemarkt 9, Vienna, Austria
| | - Alexander Zwirzitz
- Biosciences Research Group, University of Applied Sciences, Stelzhamerstraße 23, Wels, Austria
| | - Kevin Trenzinger
- Biosciences Research Group, University of Applied Sciences, Stelzhamerstraße 23, Wels, Austria
| | - Jiří Masojídek
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237, Třeboň, Czech Republic
| |
Collapse
|
2
|
Liu Y, Guo W, Wei C, Huang H, Nan F, Liu X, Liu Q, Lv J, Feng J, Xie S. Rainfall-induced changes in aquatic microbial communities and stability of dissolved organic matter: Insight from a Fen river analysis. ENVIRONMENTAL RESEARCH 2024; 246:118107. [PMID: 38181848 DOI: 10.1016/j.envres.2024.118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Microbial communities are pivotal in aquatic ecosystems, as they affect water quality, energy dynamics, nutrient cycling, and hydrological stability. This study explored the effects of rainfall on hydrological and photosynthetic parameters, microbial composition, and functional gene profiles in the Fen River. Our results demonstrated that rainfall-induced decreases in stream temperature, dissolved oxygen, pH, total phosphorus, chemical oxygen demand, and dissolved organic carbon concentrations. In contrast, rainfall increased total dissolved solids, salinity, and ammonia-nitrogen concentrations. A detailed microbial community structure analysis revealed that Cyanobacteria was the dominant microbial taxon in the Fen River, accounting for approximately 75% and 25% of the microalgal and bacterial communities, respectively. The abundance of Chlorophyta and Bacillariophyta increased by 47.66% and 29.92%, respectively, whereas the relative abundance of Bacteroidetes decreased by 37.55% under rainfall conditions. Stochastic processes predominantly affected the assembly of the bacterial community on rainy days. Functional gene analysis revealed variations in bacterial functions between sunny (Sun) and rainy (Rain) conditions, particularly in genes associated with the carbon cycle. The 3-oxoacyl-[acyl-carrier-protein] reductase gene was more abundant in the Fen River bacterial community. Particular genes involved in metabolism and environmental information processing, including the acetyl-CoA C-acetyltransferase (atoB), enoyl-CoA hydratase (paaF), and branched-chain amino acid transport system gene (livK), which are integral to environmental information processing, were more abundant in Sun than the Rain conditions. In contrast, the phosphate transport system gene, the galactose metabolic gene, and the pyruvate metabolic gene were more abundant in Rain. The excitation-emission matrix analysis with parallel factor analysis identified four fluorescence components (C1-C4) in the river, which were predominantly protein- (C1) and humic-like (C2-C4) substances. Rainfall affected organic matter production and transport, leading to changes in the degradation and stability of dissolved organic matter. Overall, this study offers insight into how rainfall affects aquatic ecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weinan Guo
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Caihua Wei
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hanjie Huang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Patel AK, Vadrale AP, Singhania RR, Chen CW, Chang JS, Dong CD. Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16. BIORESOURCE TECHNOLOGY 2023; 386:129477. [PMID: 37437816 DOI: 10.1016/j.biortech.2023.129477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The current work aims to isolate high lutein-producing microalgae and maximize lutein production under a sustainable lutein-lipid biorefinery scheme. Lutein reduces retinitis, macular degeneration risk and improves eye health. An effective bioprocess design optimized nutrients, temperature, light, and salinity for biomass and lutein yield enhancement. 3X macro/micronutrients maximally enhanced biomass and lutein yields, 5.2 g/Land 71.13 mg/L. Temperature 32 °C exhibited maximum 17.4 mg/g lutein content and 10 k lux was most favorable for growth and lutein yield (15.47 mg/g). A 25% seawater addition led maximum of 21-27% lipid that could be used for biodiesel. Isolate was identified as Chlorella sorokiniana C16, which exhibited one of the highest lutein yields reported among recent studies, positioning it as a promising candidate for commercial lutein production. This study provides valuable insights into an effective bioprocess design and highlights the C16 strain potential as a sustainable platform for high-value lutein production under a biorefinery scheme.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta-Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Jo Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
4
|
Masojídek J, Štěrbová K, Serrano CG, da Silva JC, Grivalský T, Figueroa FL, Fernández FGA. Photosynthetic performance of Chlamydopodium (Chlorophyta) cultures grown in outdoor bioreactors. Appl Microbiol Biotechnol 2023; 107:2249-2262. [PMID: 36905416 DOI: 10.1007/s00253-023-12428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 03/12/2023]
Abstract
The microalga Chlamydopodium fusiforme MACC-430 was cultured in two types of outdoor pilot cultivation units-a thin-layer cascade (TLC) and a raceway pond (RWP) placed in a greenhouse. This case study aimed to test their potential suitability for cultivation scale-up to produce biomass for agriculture purposes (e.g., as biofertilizer or biostimulant). The culture response to the alteration of environmental conditions was evaluated in "exemplary" situations of good and bad weather conditions using several photosynthesis measuring techniques, namely oxygen production, and chlorophyll (Chl) fluorescence. Validation of their suitability for online monitoring in large-scale plants has been one of the objectives of the trials. Both techniques were found fast and robust reliable to monitor microalgae activity in large-scale cultivation units. In both bioreactors, Chlamydopodium cultures grew well in the semi-continuous regime using daily dilution (0.20-0.25 day-1). The biomass productivity calculated per volume was significantly (about 5 times) higher in the RWPs compared to the TLCs. The measured photosynthesis variables showed that the build-up of dissolved oxygen concentration in the TLC was higher, up to 125-150% of saturation (%sat) as compared to the RWP (102-104%sat). As only ambient CO2 was available, its shortage was indicated by a pH increase due to photosynthetic activity in the thin-layer bioreactor at higher irradiance intensities. In this setup, the RWP was considered more suitable for scale-up due to higher areal productivity, lower construction and maintenance costs, the smaller land area required to maintain large culture volumes, as well as lower carbon depletion and dissolved oxygen build-up. KEY POINTS: • Chlamydopodium was grown in both raceways and thin-layer cascades in pilot-scale. • Various photosynthesis techniques were validated for growth monitoring. • In general, raceway ponds were evaluated as more suitable for cultivation scale-up.
Collapse
Affiliation(s)
- Jiří Masojídek
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Karolína Štěrbová
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Cintia Gómez Serrano
- Department of Chemical Engineering, University of Almería, Almería, Spain
- CIESOL Solar Energy Research Centre, Joint Centre University ofAlmería-CIEMAT, Almería, Spain
| | - Jaqueline Carmo da Silva
- Department of Botany, Center of Biological Studies, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Tomáš Grivalský
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Félix Lopez Figueroa
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), University of Málaga, Málaga, Spain
| | - Francisco Gabriel Acién Fernández
- Department of Chemical Engineering, University of Almería, Almería, Spain
- CIESOL Solar Energy Research Centre, Joint Centre University ofAlmería-CIEMAT, Almería, Spain
| |
Collapse
|
5
|
Clagnan E, Dell'Orto M, Štěrbová K, Grivalský T, Artur Câmara Manoel J, Masojídek J, D'Imporzano G, Gabriel Acién-Fernández F, Adani F. Impact of photobioreactor design on microalgae-bacteria communities grown on wastewater: Differences between thin-layer cascade and thin-layer raceway ponds. BIORESOURCE TECHNOLOGY 2023; 374:128781. [PMID: 36828223 DOI: 10.1016/j.biortech.2023.128781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Thin-layer (TL) photobioreactors (PBRs) are characterised by high productivity. However, their use is limited to lab/pilot-scale, and a deeper level of characterisation is needed to reach industrial scale and test the resistance of multiple microalgae. Here, the performance and composition of eight microalgal communities cultivated in the two main TLs design (thin-layer cascade (TLC) and thin-layer raceway pond (RW)) were investigated through Illumina sequencing. Chlorella vulgaris showed robustness in both designs and often acted as an "invasive" species. Inoculum and reactor type brought variability. Eukaryotic microalgae inocula led to a more robust and stable community (higher similarity), however, RWs were characterised by a higher variability and did not favour the eukaryotic microalgae. The only cyanobacterial inoculum, Nostoc piscinale, was maintained, however the community was variable between designs. The reactor design had an effect on the N cycle with the TLC and RW configurations, enhancing nitrification and denitrification respectively.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy.
| | - Marta Dell'Orto
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Karolína Štěrbová
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology CAS, Novohradská 237, 37901 Třeboň, Czech Republic
| | - Tomáš Grivalský
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology CAS, Novohradská 237, 37901 Třeboň, Czech Republic
| | - João Artur Câmara Manoel
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology CAS, Novohradská 237, 37901 Třeboň, Czech Republic
| | - Jiří Masojídek
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology CAS, Novohradská 237, 37901 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Giuliana D'Imporzano
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Francisco Gabriel Acién-Fernández
- Department of Chemical Engineering, CIESOL Solar Energy Research Centre, University of Almeria, Cañada San Urbano, s/n, 04120 Almeria, Spain
| | - Fabrizio Adani
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| |
Collapse
|
6
|
Vergara-Barros P, Alcorta J, Casanova-Katny A, Nürnberg DJ, Díez B. Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain. Molecules 2022; 27:8515. [PMID: 36500606 PMCID: PMC9740203 DOI: 10.3390/molecules27238515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.
Collapse
Affiliation(s)
- Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Temuco 4780000, Chile
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
7
|
Zeng W, Ma S, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. Bifunctional lighting/supporting substrate for microalgal photosynthetic biofilm to bio-remove ammonia nitrogen from high turbidity wastewater. WATER RESEARCH 2022; 223:119041. [PMID: 36081254 DOI: 10.1016/j.watres.2022.119041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Treatment technologies based on microalgal biofilms have an enormous potential for dealing with water pollution because they can efficiently redirect nutrients from wastewater to renewable biomass feedstock. However, poor light transmittance is caused by the high turbidity of wastewater, which hinders the commercial application of microalgal biofilm-based wastewater treatment. Here, a bifunctional substrate with lighting and biofilm support functions was constructed using a light guide plate. In a biofilm photobioreactor (bPBR) with a bifunctional lighting/supporting substrate (BL/S substrate), light can directly irradiate the biofilm to avoid attenuation by the turbid wastewater. Direct irradiation of light onto the biofilm led to a 93.0% enhancement of microalgal photoconversion efficiency when compared to that of a supporting substrate without lighting (SO substrate). Meanwhile, the maximum growth rate of the microalgal biofilm on the BL/S substrate was 8.7 g m-2 d-1, which was increased by 60.3%. The removal rate of ammonia nitrogen (NH4+-N) from the digested wastewater contributed by the microalgal biofilm reached 22.6 mg L-1 d-1, which was higher than the previously reported that of NH4+-N from turbid digested wastewater by the biofilms. Furthermore, the BL/S substrate can facilitate the secretion of abundant extracellular polymeric substrates, which results in the stable adhesion of the biofilm onto the BL/S substrate. The optical density of the microalgae cells at the outlet of the bPBR with BL/S substrate was below 0.1, which was 94% lower than that of the bPBR with the SO substrate. The results indicated the BL/S substrate may avoid the loss of microalgal biomass, and almost all biomass could be easily harvested from the biofilm for algae-based biomass resources. Consequently, this study can offer a promising alternative with efficient treatment technologies for wastewater with high turbidity.
Collapse
Affiliation(s)
- Weida Zeng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Shiyan Ma
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Ziganshina EE, Bulynina SS, Ziganshin AM. Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:1086. [PMID: 35448814 PMCID: PMC9031775 DOI: 10.3390/plants11081086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The cultivation of microalgae requires the selection of optimal parameters. In this work, the effect of various forms of nitrogen on the growth and productivity of Chlorella sorokiniana AM-02 when cultivated at different temperatures was evaluated. Regardless of the temperature conditions, the highest specific growth rate of 1.26 day-1 was observed in modified Bold's basal medium (BBM) with NH4+ as a nitrogen source, while the highest specific growth rate in BBM with NO3- as a nitrogen source achieved only 1.07 day-1. Moreover, C. sorokiniana grew well in medium based on anaerobic digester effluent (ADE; after anaerobic digestion of chicken/cow manure) with the highest growth rate being 0.92 day-1. The accumulation of proteins in algal cells was comparable in all experiments and reached a maximum of 42% of dry weight. The biomass productivity reached 0.41-0.50 g L-1 day-1 when cultivated in BBM, whereas biomass productivity of 0.32-0.35 g L-1 day-1 was obtained in ADE-based medium. The results, based on a bacterial 16S rRNA gene sequencing approach, revealed the growth of various bacterial species in ADE-based medium in the presence of algal cells (their abundance varied depending on the temperature regimen). The results indicate that biomass from C. sorokiniana AM-02 may be sustainable for animal feed production considering the high protein yields.
Collapse
|
9
|
Zhong J, Chen C, Yu J, Shen Q, Liu C, Fan C. Effect of dredging and capping with clean soil on the mitigation of algae-induced black blooms in Lake Taihu, China: A simulation study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114106. [PMID: 34784568 DOI: 10.1016/j.jenvman.2021.114106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Sediment is an important source of matter that causes blackening and odor formation in a water body. The restoration of polluted sediment can suppress algae-induced black blooms to a certain degree. In this study, we compared the control effects of sediment dredging and capping with clean soil on algae-induced black blooms in Lake Taihu using indoor simulation experiments. In addition, we explored the driving effect of temperature on algae-induced black blooms using the method of gradual warming (18, 23, and 28 °C) during the experiment. No blackening of the water body was observed in the simulation stages I (18 °C) and II (23 °C), and the blackening and odor formation occurred within 3 d when the temperature increased to 28 °C in stage III, implying that high temperature was an important driving factor for algae-induced black blooms. Dredging and capping inhibited the blackening and odor formation to some extent, and the colorimetric values in the water columns were lower in the treatment groups than in the control group. At the end of the experiment, the colorimetric values of dredging and capping treatments were 56.5% and 96.7% of the colorimetric value of the control group, respectively. The control effect of dredging on the blackening elements, i.e., Fe2+ and S2- and the main odor forming compounds, i.e., dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS) was observed in stage II (11-20 d) and stage III (21-27 d), respectively, and the inhibition ability of dredging to suppress algal-induced black blooms was superior than that of capping with clean soil.
Collapse
Affiliation(s)
- Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, PR China
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Chengxin Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
10
|
Maia IB, Carneiro M, Magina T, Malcata FX, Otero A, Navalho J, Varela J, Pereira H. Diel biochemical and photosynthetic monitorization of Skeletonema costatum and Phaeodactylum tricornutum grown in outdoor pilot-scale flat panel photobioreactors. J Biotechnol 2022; 343:110-119. [PMID: 34856224 DOI: 10.1016/j.jbiotec.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022]
Abstract
Diatoms are currently considered valuable feedstocks for different biotechnological applications. To deepen the knowledge on the production of these microalgae, the diel pattern of batch growth, photosystem II performance, and accumulation of target metabolites of two commercially relevant diatoms, Phaeodactylum tricornutum and Skeletonema costatum, were followed outdoors in 100-L flat panel photobioreactors. S. costatum presented a higher light-to-biomass conversion resulting in higher growth than P. tricornutum. Both fluorescence data and principal component analysis pointed to temperature as a limiting factor for the growth of P. tricornutum. Higher protein and carbohydrate contents were found in P. tricornutum, whereas S. costatum fatty acids were characterized by a higher unsaturation degree. Higher productivities were found at 1 p.m. for protein, lipid, and ash in the case of S. costatum. Overall, S. costatum showed great potential for outdoor cultivation, revealing a broader temperature tolerance and increased biomass productivity than P. tricornutum.
Collapse
Affiliation(s)
- Inês B Maia
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal; Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal
| | - Mariana Carneiro
- Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Magina
- Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal
| | - F Xavier Malcata
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Otero
- USC - Instituto de Acuicultura y Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João Navalho
- Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal
| | - João Varela
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal; GreenCoLab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Hugo Pereira
- GreenCoLab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
11
|
Celis-Plá PS, Rearte TA, Neori A, Masojídek J, Bonomi-Barufi J, Álvarez-Gómez F, Ranglová K, Carmo da Silva J, Abdala R, Gómez C, Caporgno M, Torzillo G, Silva Benavides AM, Ralph PJ, Fávero Massocato T, Atzmüller R, Vega J, Chávez P, Figueroa FL. A new approach for cultivating the cyanobacterium Nostoc calcicola (MACC-612) to produce biomass and bioactive compounds using a thin-layer raceway pond. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Ortiz Tena F, Ranglová K, Kubač D, Steinweg C, Thomson C, Masojidek J, Posten C. Characterization of an aerated submerged hollow fiber ultrafiltration device for efficient microalgae harvesting. Eng Life Sci 2021; 21:607-622. [PMID: 34690632 PMCID: PMC8518668 DOI: 10.1002/elsc.202100052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022] Open
Abstract
The present work characterizes a submerged aerated hollow fiber polyvinylidene fluorid (PVDF) membrane (0.03 μm) device (Harvester) designed for the ultrafiltration (UF) of microalgae suspensions. Commercial baker's yeast served as model suspension to investigate the influence of the aeration rate of the hollow fibers on the critical flux (CF, J c) for different cell concentrations. An optimal aeration rate of 1.25 vvm was determined. Moreover, the CF was evaluated using two different Chlorella cultures (axenic and non-axenic) of various biomass densities (0.8-17.5 g DW/L). Comparably high CFs of 15.57 and 10.08 L/m/2/h were measured for microalgae concentrations of 4.8 and 10.0 g DW/L, respectively, applying very strict CF criteria. Furthermore, the J c-values correlated (negative) linearly with the biomass concentration (0.8-10.0 g DW/L). Concentration factors between 2.8 and 12.4 and volumetric reduction factors varying from 3.5 to 11.5 could be achieved in short-term filtration, whereat a stable filtration handling biomass concentrations up to 40.0 g DW/L was feasible. Measures for fouling control (aeration of membrane fibers, periodic backflushing) have thus been proven to be successful. Estimations on energy consumption revealed very low energy demand of 17.97 kJ/m3 treated microalgae feed suspension (4.99 × 10-3 kWh/m3) and 37.83 kJ/kg treated biomass (1.05 × 10-2 kWh/kg), respectively, for an up-concentration from 2 to 40 g DW/L of a microalgae suspension.
Collapse
Affiliation(s)
- Franziska Ortiz Tena
- Institute of Process Engineering in Life SciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Karolína Ranglová
- Laboratory of Algal BiotechnologyCentre AlgatechCzech Academy of ScienceInstitute of MicrobiologyTřeboňCzech Republic
| | - David Kubač
- Laboratory of Algal BiotechnologyCentre AlgatechCzech Academy of ScienceInstitute of MicrobiologyTřeboňCzech Republic
| | - Christian Steinweg
- Institute of Process Engineering in Life SciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | | | - Jiří Masojidek
- Laboratory of Algal BiotechnologyCentre AlgatechCzech Academy of ScienceInstitute of MicrobiologyTřeboňCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Clemens Posten
- Institute of Process Engineering in Life SciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| |
Collapse
|
13
|
Carneiro M, Chini Zittelli G, Cicchi B, Touloupakis E, Faraloni C, Maia IB, Pereira H, Santos T, Malcata FX, Otero A, Varela J, Torzillo G. In situ monitoring of chlorophyll a fluorescence in Nannochloropsis oceanica cultures to assess photochemical changes and the onset of lipid accumulation during nitrogen deprivation. Biotechnol Bioeng 2021; 118:4375-4388. [PMID: 34319592 DOI: 10.1002/bit.27906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 01/28/2023]
Abstract
In situ chlorophyll a fluorescence measurements were applied to monitor changes in the photochemical variables of Nannochloropsis oceanica cultures under nitrogen-deplete and nitrogen-replete (control) conditions. In addition, growth, lipid, fatty acid, and pigment contents were also followed. In the control culture, growth was promoted along with pigment content, electron transport rate (ETR), and polyunsaturated fatty acids, while total lipid content and fatty acid saturation level diminished. Under nitrogen-deplete conditions, the culture showed a higher de-epoxidation state of the xanthophyll cycle pigments. Fast transients revealed a poor processing efficiency for electron transfer beyond QA , which was in line with the low ETR due to nitrogen depletion. Lipid content and the de-epoxidation state were the first biochemical variables triggered by the change in nutrient status, which coincided with a 20% drop in the in situ effective quantum yield of PSII (ΔF'/Fm '), and a raise in the Vj measurements. A good correlation was found between the changes in ΔF'/Fm ' and lipid content (r = -0.96, p < 0.01). The results confirm the reliability and applicability of in situ fluorescence measurements to monitor lipid induction in N. oceanica.
Collapse
Affiliation(s)
- Mariana Carneiro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Porto, Portugal
| | | | - Bernardo Cicchi
- CNR-IBE-Consiglio Nazionale delle Ricerche-Istituto per la BioEconomia, Florence, Italy
| | - Eleftherios Touloupakis
- CNR-IRET - Consiglio Nazionale delle Ricerche-Istituto di Ricerca sugli Ecosistemi Terrestri, Florence, Italy
| | - Cecilia Faraloni
- CNR-IBE-Consiglio Nazionale delle Ricerche-Istituto per la BioEconomia, Florence, Italy
| | - Inês B Maia
- CCMAR-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Hugo Pereira
- Green Colab-Associação Oceano Verde, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Tamára Santos
- CCMAR-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Francisco X Malcata
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Ana Otero
- USC-Instituto de Acuicultura and Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - João Varela
- CCMAR-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Giuseppe Torzillo
- CNR-IBE-Consiglio Nazionale delle Ricerche-Istituto per la BioEconomia, Florence, Italy.,CIMAR-Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
14
|
Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Masojídek J, Ranglová K, Rearte TA, Celis Plá PS, Torzillo G, Benavides AMS, Neori A, Gómez C, Álvarez-Gómez F, Lukeš M, Caporgno MP, Abdala R, Miazek K, Massocato TF, da Silva JC, Atzmüller R, Al Mahrouqui H, Estrella FS, Figueroa FL. Changes in photosynthesis, growth and biomass composition in outdoor Chlorella g120 culture during the metabolic shift from heterotrophic to phototrophic cultivation regime. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Abstract
Since the 1950s, microalgae have been grown commercially in man-made cultivation units and used for biomass production as a source of food and feed supplements, pharmaceuticals, cosmetics and lately biofuels, as well as a means for wastewater treatment and mitigation of atmospheric CO2 build-up. In this work, photosynthesis and growth affecting variables—light intensity, pH, CO2/O2 exchange, nutrient supply, culture turbulence, light/dark cell cycling, biomass density and culture depth (light path)—are reviewed as concerns in microalgae mass cultures. Various photosynthesis monitoring techniques were employed to study photosynthetic performance to optimize the growth of microalgae strains in outdoor cultivation units. The most operative and reliable techniques appeared to be fast-response ones based on chlorophyll fluorescence and oxygen production monitoring, which provide analogous results.
Collapse
|
17
|
Wang B, Ye T, Li X, Bian P, Liu Y, Wang G. Survival of desert algae Chlorella exposed to Mars-like near space environment. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:22-29. [PMID: 33888284 DOI: 10.1016/j.lssr.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Desert was considered terrestrial analogues of Mars. In this study, dried cells of desert green algae Chlorella were exposed to Mars-like near-space environment using high-altitude scientific balloons. We found that while a majority of Chlorella cells survived, they exhibited considerable damage, such as low photosynthetic activity, reduced cell growth, increased cell mortality rate, and altered chloroplast and mitochondrial ultrastructure. Additionally, transcriptome analysis of near space-exposed Chlorella cells revealed 3292 differentially expressed genes compared to cells in the control ground group, including heat shock proteins, antioxidant enzymes, DNA repair systems, as well as proteins related to the PSII apparatus and ribosomes. These data shed light on the possible survival strategy of desert algae to near space environments. Our results indicated that Mars-like near space conditions represent an extreme environment for desert algae in terms of temperature, pressure, and radiations. The survival strategy of Chlorella in response to near space will help gain insights into the possibility of extremophile colonization on the surface of Mars and in similar extraterrestrial habitats.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Po Bian
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, China
| | - Yongding Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Photosynthetic monitoring techniques indicate maximum glycogen accumulation in nitrogen-limited Synechocystis sp. PCC 6803 culture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Suárez Estrella F, Acién Fernández FG, Molnár Z, Ördög V, Masojídek J. Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102136] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Zhou C, Miao T, Jiang L, Zhang H, Zhang Y, Zhang X. Conditions that promote the formation of black bloom in aquatic microcosms and its effects on sediment bacteria related to iron and sulfur cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141869. [PMID: 32882542 DOI: 10.1016/j.scitotenv.2020.141869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Black bloom occurs frequently in eutrophic waters. We investigated the conditions promoted the formation of black bloom via in-situ measurement in two aquatic microcosms and the effects of black bloom on the bacterial community composition. Although larger changes in dissolved oxygen (DO) were detected in the Hydrilla verticillata-dominated microcosm over the 90-day simulation, black bloom occurred more readily in the phytoplankton-dominated than macrophyte-dominated microcosm under conditions of O2 depletion and temperature above 30 °C. The sediment bacterial community composition shifted after black bloom; the relative abundance of Thiobacillus and Sideroxydans, which oxidize iron (Fe) and sulfur (S), decreased by 47% and 48%, respectively, in the phytoplankton-dominated microcosm and by 18% and 20% in the macrophyte-dominated microcosm. By contrast, Desulfatiglans increased by 13% and 19%, respectively, after black bloom. Furthermore, inter-taxa correlations remarkably changed according to co-occurrence network analysis. Thirty-six different taxa from the phylum to the genus level were identified as biomarkers of sediments collected before and after the black bloom event. Most of these biomarkers are related to Fe/S cycling in aquatic ecosystems.
Collapse
Affiliation(s)
- Chi Zhou
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Teng Miao
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Lai Jiang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Hang Zhang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Yi Zhang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Xu Zhang
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
21
|
Mylenko M, Vu DL, Kuta J, Ranglová K, Kubáč D, Lakatos G, Grivalský T, Caporgno MP, da Câmara Manoel JA, Kopecký J, Masojídek J, Hrouzek P. Selenium Incorporation to Amino Acids in Chlorella Cultures Grown in Phototrophic and Heterotrophic Regimes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1654-1665. [PMID: 31935099 DOI: 10.1021/acs.jafc.9b06196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae accumulate bioavailable selenium-containing amino acids (Se-AAs), and these are useful as a food supplement. While this accumulation has been studied in phototrophic algal cultures, little data exists for heterotrophic cultures. We have determined the Se-AAs content, selenium/sulfur (Se/S) substitution rates, and overall Se accumulation balance in photo- and heterotrophic Chlorella cultures. Laboratory trials revealed that heterotrophic cultures tolerate Se doses ∼8-fold higher compared to phototrophic cultures, resulting in a ∼2-3-fold higher Se-AAs content. In large-scale experiments, both cultivation regimes provided comparable Se-AAs content. Outdoor phototrophic cultures accumulated up to 400 μg g-1 of total Se-AAs and exhibited a high level of Se/S substitution (5-10%) with 30-60% organic/total Se embedded in the biomass. A slightly higher content of Se-AAs and ratio of Se/S substitution was obtained for a heterotrophic culture in pilot-scale fermentors. The data presented here shows that heterotrophic Chlorella cultures provide an alternative for Se-enriched biomass production and provides information on Se-AAs content and speciation in different cultivation regimes.
Collapse
Affiliation(s)
- Mykola Mylenko
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Dai Long Vu
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Jan Kuta
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | - Karolína Ranglová
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Faculty of Agriculture , University of South Bohemia , Branišovská 1160/31 , 370 05 České Budějovice , Czech Republic
| | - David Kubáč
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Gergely Lakatos
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Tomáš Grivalský
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Martin Pablo Caporgno
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - João Artur da Câmara Manoel
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Faculty of Science , University of South Bohemia , Branišovská 1760 , 370 05 České Budějovice , Czech Republic
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| |
Collapse
|
22
|
Interactions between Microalgae and Bacteria in the Treatment of Wastewater from Milk Whey Processing. WATER 2020. [DOI: 10.3390/w12010297] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Milk whey processing wastewaters (MWPWs) are characterized by high COD and organic nitrogen content; the concentrations of phosphorus are also relevant. A microalgal-based process was tested at lab scale in order to assess the feasibility of treating MWPW without any dilution or pre-treatment. Different microalgal strains and populations were tested. Based on the obtained results, Scenedesmus acuminatus (SA) and a mixed population (PM) chiefly made of Chlorella, Scenedesmus, and Chlamydomonas spp. were grown in duplicate for 70 days in Plexiglas column photobioreactors (PBRs), fed continuously (2.5 L culture volume, 7 days hydraulic retention time). Nutrient removal, microalgae growth, photosynthetic efficiency, and the composition of microalgal populations in the columns were monitored. At steady state, the microalgal growth was similar for SA and PM. The average removal efficiencies for the main pollutants were: 93% (SA), 94% (PM) for COD; 88% (SA) and 90% (PM) for total N; and 69% (SA) and 73% (PM) for total P. The residual pollution levels in the effluent from the PBRs were low enough to allow their discharge into surface waters; such good results were achieved thanks to the synergy between the microalgae and bacteria in the CO2 and oxygen production/consumption and in the nitrogen mineralization.
Collapse
|
23
|
Prášil O. Special issue dedicated to the memory of Ivan Šetlík. Folia Microbiol (Praha) 2019; 64:601-602. [PMID: 31385158 DOI: 10.1007/s12223-019-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
The following series of articles form a special issue organized by the Algatech Center of the Institute of Microbiology CAS dedicated to the memory of Dr. Ivan Šetlík.
Collapse
Affiliation(s)
- Ondřej Prášil
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, 379 81, Třeboň, Czech Republic.
| |
Collapse
|