1
|
Hansen AH, Mortensen JH, Rønnow SR, Karsdal MA, Leeming DJ, Sand JMB. A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. J Clin Med 2023; 12:7589. [PMID: 38137658 PMCID: PMC10743791 DOI: 10.3390/jcm12247589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophil activation can release neutrophil extracellular traps (NETs) in acute inflammation. NETs result in the release of human neutrophil elastase (HNE) and calprotectin, where the former can degrade the latter and generate protein fragments associated with neutrophil activity. We investigated this in chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) using the novel neoepitope biomarker CPa9-HNE, quantifying a specific HNE-mediated fragment of calprotectin in serum. CPa9-HNE was compared to total calprotectin. Initially, CPa9-HNE was measured in healthy (n = 39), COPD (n = 67), and IPF (n = 16) serum using a neoepitope-specific competitive enzyme-linked immunosorbent assay. Then, a head-to-head comparison of CPa9-HNE and total calprotectin, a non-neoepitope, was conducted in healthy (n = 19), COPD (n = 25), and IPF (n = 19) participants. CPa9-HNE levels were significantly increased in COPD (p < 0.0001) and IPF subjects (p = 0.0001) when compared to healthy participants. Additionally, CPa9-HNE distinguished IPF (p < 0.0001) and COPD (p < 0.0001) from healthy participants more effectively than total calprotectin for IPF (p = 0.0051) and COPD (p = 0.0069). Here, CPa9-HNE also distinguished IPF from COPD (p = 0.045) participants, which was not observed for total calprotectin (p = 0.98). Neutrophil activity was significantly higher, as assessed via serum CPa9-HNE, for COPD and IPF compared to healthy participants. Additionally, CPa9-HNE exceeded the ability of non-neoepitope calprotectin serum measurements to separate healthy from lung disease and even COPD from IPF participants, indicating that neutrophil activity is essential for both COPD and IPF.
Collapse
|
2
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188891. [PMID: 37001615 DOI: 10.1016/j.bbcan.2023.188891] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.
Collapse
|
4
|
Guo Y, Zheng Z, Mao S, Yang F, Wang R, Wang H, Liu J, Li C, Wang Q, Zhang W, Yao X, Liu S. Metabolic-associated signature and hub genes associated with immune microenvironment and prognosis in bladder cancer. Mol Carcinog 2023; 62:185-199. [PMID: 36250643 DOI: 10.1002/mc.23475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023]
Abstract
The relationship between metabolism and immune microenvironment remains to be studied in bladder cancer (BCa). We aimed to construct a metabolic-associated signature for prognostic prediction and investigate its relationship with the immune microenvironment in BCa. The RNA expression of metabolism associated genes was obtained from a combined data set including The Cancer Genome Atlas, GSE48075, and GSE13507 to divide BCa patients into different clusters. A metabolic-associated signature was constructed using the differentially expressed genes between clusters in the combined data set and validated in the IMvigor210 trial and our center. The composition of tumor-infiltrating immune cells (TIICs) was evaluated using the single-sample Gene Set Variation Analysis. BCa patients in Cluster A or high-risk level were associated with advanced clinicopathological features and poor survival outcomes. The percentage of high-risk patients was significantly lower in patients responding to anti-PD-L1 treatment. Compared with low-risk patients, the IC50 values of cisplatin and gemcitabine were significantly lower in high-risk patients. Thiosulfate transferase (TST) and S100A16 were significantly associated with clinicopathological features and prognosis. Downregulation of TST promoted BCa cell invasion, migration, and epithelial-to-mesenchymal transition, which are inhibited by downregulation of S100A16. CD8 + T cells, neutrophils, and dendritic cells had higher infiltration in the TST low-level and the S100A16 high-level. Furthermore, loss of function TST and S100A16 significantly affected the expression of PD-L1 and CD47. The metabolic-associated signature can stratify BCa patients into distinct risk levels with different immunotherapeutic susceptibility and survival outcomes. Metabolism disorder promoted the dysregulation of immune microenvironment, thus contributing to immunosuppression.
Collapse
Affiliation(s)
- Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Zongtai Zheng
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Cheng Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Qinwan Wang
- Central Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Argyris PP, Saavedra F, Malz C, Stone IA, Wei Y, Boyle WS, Johnstone KF, Khammanivong A, Herzberg MC. Intracellular calprotectin (S100A8/A9) facilitates DNA damage responses and promotes apoptosis in head and neck squamous cell carcinoma. Oral Oncol 2023; 137:106304. [PMID: 36608459 PMCID: PMC9877195 DOI: 10.1016/j.oraloncology.2022.106304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA; Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Flávia Saavedra
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Chris Malz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ian A Stone
- Department of Immunology, Microbiology and Virology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - William S Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ali Khammanivong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Tanigawa K, Tsukamoto S, Koma YI, Kitamura Y, Urakami S, Shimizu M, Fujikawa M, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. S100A8/A9 Induced by Interaction with Macrophages in Esophageal Squamous Cell Carcinoma Promotes the Migration and Invasion of Cancer Cells via Akt and p38 MAPK Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:536-552. [PMID: 34954212 DOI: 10.1016/j.ajpath.2021.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages are associated with more malignant phenotypes of esophageal squamous cell carcinoma (ESCC) cells. Previously, an indirect co-culture assay of ESCC cells and macrophages was used to identify several factors associated with ESCC progression. Herein, a direct co-culture assay of ESCC cells and macrophages was established, which more closely simulated the actual cancer microenvironment. Direct co-cultured ESCC cells had significantly increased migration and invasion abilities, and phosphorylation levels of Akt and p38 mitogen-activated protein kinase (MAPK) compared with monocultured ESCC cells. According to a cDNA microarray analysis between monocultured and co-cultured ESCC cells, both the expression and release of S100 calcium binding protein A8 and A9 (S100A8 and S100A9), which commonly exist and function as a heterodimer (herein, S100A8/A9), were significantly enhanced in co-cultured ESCC cells. The addition of recombinant human S100A8/A9 protein induced migration and invasion of ESCC cells via Akt and p38 MAPK signaling. Both S100A8 and S100A9 silencing suppressed migration, invasion, and phosphorylation of Akt and p38 MAPK in co-cultured ESCC cells. Moreover, ESCC patients with high S100A8/A9 expression exhibited significantly shorter disease-free survival (P = 0.005) and cause-specific survival (P = 0.038). These results suggest that S100A8/A9 expression and release in ESCC cells are enhanced by direct co-culture with macrophages and that S100A8/A9 promotes ESCC progression via Akt and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Kohei Tanigawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yu Kitamura
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaki Shimizu
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masataka Fujikawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Guo S, Su Q, Wen J, Zhu K, Tan J, Fu Q, Sun G. S100A9 induces nucleus pulposus cell degeneration through activation of the NF-κB signaling pathway. J Cell Mol Med 2021; 25:4709-4720. [PMID: 33734570 PMCID: PMC8107097 DOI: 10.1111/jcmm.16424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress in the lumbar disc leads to the degeneration of nucleus pulposus (NP). However, the molecular mechanisms underlying this process remain unclear. In this study, we delineated a key calcium-binding protein, S100A9, which was induced by oxidative stress and was highly expressed in the degenerative NP. Immunofluorescence staining and Western blotting revealed that S100A9 induced NP cell apoptosis in vitro by up-regulating the expression of pro-apoptotic markers, including cleaved caspase-3, cytochrome c and Bax. Moreover, RT-PCR analyses revealed that the expression of S100A9 caused NP matrix degradation by up-regulating the expression of matrix degradation enzymes and increased the inflammatory response by up-regulating cytokine expression. Therefore, S100A9 induced NP cell degeneration by exerting pro-apoptotic, pro-degradation and pro-inflammatory effects. The detailed mechanism underlying S100A9-induced NP degeneration was explored by administering SC75741, a specific NF-κB inhibitor in vitro. We concluded that S100A9 induced NP cell apoptosis, caused matrix degradation and amplified the inflammatory response through the activation of the NF-κB signalling pathway. Inhibition of these pro-apoptotic, pro-degradation and pro-inflammatory effects induced by S100A9 in NP may be a favourable therapeutic strategy to slow lumbar disc degeneration.
Collapse
Affiliation(s)
- Song Guo
- Department of Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qihang Su
- Department of Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junxiang Wen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Kai Zhu
- Department of Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Tan
- Department of Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guixin Sun
- Department of Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Xu HY, Song HM, Zhou Q. Comprehensive analysis of the expression and prognosis for S100 in human ovarian cancer: A STROBE study. Medicine (Baltimore) 2020; 99:e22777. [PMID: 33217795 PMCID: PMC7676574 DOI: 10.1097/md.0000000000022777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
S100 family members are frequently deregulated in human malignancies, including ovarian cancer. However, the prognostic roles of each individual S100 family member in ovarian cancer (OC) patients remain elusive. In the present study, we assessed the prognostic roles and molecular function of 20 individual members of the S100 family in OC patients using GEPIA, Kaplan-Meier plotter, SurvExpress, GeneMANIA and Funrich database. Our results indicated that the mRNA expression levels of S100A1, S100A2, S100A4, S100A5, S100A11, S100A14, and S100A16 were significantly upregulated in patients with OC, and high mRNA expression of S100A1, S100A3, S100A5, S100A6, and S100A13 were significantly correlated with better overall survival, while increased S100A2, S100A7A, S100A10, and S100A11 mRNA expressions were associated with worse prognosis in OC patients. In stratified analysis, the trends of high expression of individual S100 members were nearly the same in different pathological grade, clinical stage, TP53 mutation status, and treatment. More importantly, S100 family signatures may be useful potential prognostic markers for OC. These findings suggest that S100 family plays a vital role in prognostic value and could potentially be an S100-targeted inhibitors for OC patients.
Collapse
Affiliation(s)
- Hong-Yu Xu
- Department of Gynecology and Obstetrics, the Second People's Hospital of Yichang, China Three Gorges University
| | - Hua-Mei Song
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, Hubei, China
| | - Quan Zhou
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, Hubei, China
| |
Collapse
|
10
|
Zhang H, Yang Y, Ma X, Xin W, Fan X. S100A16 Regulates HeLa Cell through the Phosphatidylinositol 3 Kinase (PI3K)/AKT Signaling Pathway. Med Sci Monit 2020; 26:e919757. [PMID: 31894756 PMCID: PMC6977613 DOI: 10.12659/msm.919757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background S100 calcium-binding protein A16 (S100A16) is closely related to the onset and progression of tumors. Material/Methods In the research, the mainly purpose was to investigate the effect of S100A16 on the proliferation ability, invasion, and angiogenesis of HeLa cells. An adenoviral vector overexpressing S100A16 (Ad-S100A16) was constructed and transfected into HeLa cells, forming a stable cells line of overexpression. The effect of S100A16 on the proliferative capacity of HeLa cells was evaluated by a Cell Counting Kit-8 (CCK-8) assay. Cell migration capacity was determined by a Transwell migration assay. Changes in matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, and vimentin expression were evaluated by a cell-based immunofluorescence assay. The effect of S100A16 on angiogenesis was verified by knockout experiment. Results Overexpression of S100A16 significantly enhanced the proliferative and migratory capacities of HeLa cells (P<0.05), upregulated expression of matrix MMP-2, MMP-9, vimentin, phosphatidylinositol 3 kinase, and phosphorylated protein kinase B, and downregulated expression of E-cadherin. Vascular endothelial growth factor expression increased, phosphatase and tensin homolog expression decreased, and angiogenesis was positively correlated with S100A16 expression. These effects were largely mediated by the activation of the phosphatidylinositol 3 kinase/protein kinase B pathways. Conclusions S100A16 could promote the proliferation, migration, and tumor angiogenesis of HeLa cells by regulating the phosphatidylinositol 3 kinase/protein kinase B signaling pathways.
Collapse
Affiliation(s)
- Haibin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China (mainland).,Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland)
| | - Yongxiu Yang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China (mainland).,Department of Obstetrics, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland).,The Key Laboratory of Gynecological Tumors in Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xueyao Ma
- Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland)
| | - Wenhu Xin
- Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland)
| | - Xuefen Fan
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
11
|
Minner S, Hager D, Steurer S, Höflmayer D, Tsourlakis MC, Möller-Koop C, Clauditz TS, Hube-Magg C, Luebke AM, Simon R, Sauter G, Göbel C, Weidemann S, Lebok P, Dum D, Fraune C, Izbicki J, Burandt E, Schlomm T, Huland H, Heinzer H, Haese A, Graefen M, Heumann A. Down-Regulation of S100A8 is an Independent Predictor of PSA Recurrence in Prostate Cancer Treated by Radical Prostatectomy. Neoplasia 2019; 21:872-881. [PMID: 31382165 PMCID: PMC6698296 DOI: 10.1016/j.neo.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of S100A8 is described in many different human tumor types, but its role in prostate cancer is unknown. To evaluate the clinical relevance of S100A8 expression in prostate cancer, a tissue microarray containing 13,665 tumors was analyzed by immunohistochemistry. Cytoplasmic S100A8 staining was compared to prostate cancer phenotype, patient prognosis and molecular features including TMPRSS2:ERG fusion status and deletions of PTEN, 3p, 5q and 6q. S100A8 immunostaining was typically seen in normal prostate tissue but lost in 60% of 9786 interpretable prostate cancers. In the remaining tumors, S100A8 was considered weak in 17.9%, moderate in 17.8% and strong in 5.4% of cases. Loss of S100A8 expression was linked to advanced tumor stage, high Gleason grade, positive nodal status, positive surgical margin and high preoperative PSA (P < .0001 each). In addition, loss of S100A8 expression was associated with TMPRSS2:ERG fusions (P < .0001), deletions of PTEN, 3p, and 6q (P < .005), and a high number of genomic deletions per tumor (P = .0009). Absence of S100A8 immunostaining was also linked to an elevated risk for early PSA recurrence (P < .0001). In a multivariate analysis limited to features that are preoperatively available, the prognostic impact of S100A8 expression (P < .0001) was independent of clinical stage, Gleason grade, and serum PSA level (P < .0001). Taken together, the results of our study demonstrate that complete loss of S100A8 expression is linked to adverse tumor features and predicts early biochemical recurrence in prostate cancer. S100A8 measurement, either alone or in combination might be of clinical utility in prostate cancers.
Collapse
Affiliation(s)
- Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominik Hager
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
12
|
Luo W, Wang M, Liu J, Cui X, Wang H. Identification of a six lncRNAs signature as novel diagnostic biomarkers for cervical cancer. J Cell Physiol 2019; 235:993-1000. [PMID: 31332778 DOI: 10.1002/jcp.29015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 01/17/2023]
Abstract
Cervical cancer is a tumor with the second highest morbidity and mortality in the world, and it is also the most common cancer and the eighth lethal factor among malignant tumors in Chinese female. This study aimed to identify long noncoding RNAs (lncRNAs) that related to diagnosis and prognosis in cervical cancer to improve early diagnosis and treatment. First, we extracted transcriptome profilings of cervical cancer samples from the cancer genome atlas (TCGA) database, and then extracted the lncRNAs and mRNAs expression profiles. Based on the lncRNAs expression profiles of test set, we screened lncRNAs that related to progression of cervical cancer tumors. We found six lncRNAs associated with tumor progression in cervical cancer patients, in which five lncRNAs have highly similar expression patterns but the other one has the opposite expression pattern. We found that these six lncRNAs might be related to keratinization and immunity by enrichment analysis, and two of them (AC126474 and C5orf66-AS1) were associated with prognosis in patients with cervical cancer. And these results were validated using the validation set. Overall, we identified six lncRNAs that played an important role in the development of cervical cancer, and two of them might be associated with the prognosis of cervical cancer, which provides new insight into the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Weiming Luo
- Department of Radiation Oncology, Cancer Hospital of Fudan University Minhang Branch, Shanghai, China
| | - Meng Wang
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Juan Liu
- Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xuan Cui
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huai'an, Jiangsu, P.R. China
| | - Hui Wang
- Nursing Department, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
13
|
Li Y, Kong F, Jin C, Hu E, Shao Q, Liu J, He D, Xiao X. The expression of S100A8/S100A9 is inducible and regulated by the Hippo/YAP pathway in squamous cell carcinomas. BMC Cancer 2019; 19:597. [PMID: 31208368 PMCID: PMC6580480 DOI: 10.1186/s12885-019-5784-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background S100A8 and S100A9, two heterodimer-forming members of the S100 family, aberrantly express in a variety of cancer types. However, little is known about the mechanism that regulates S100A8/S100A9 co-expression in cancer cells. Methods The expression level of S100A8/S100A9 measured in three squamous cell carcinomas (SCC) cell lines and their corresponding xenografts, as well as in 257 SCC tissues. The correlation between S100A8/S100A9, Hippo pathway and F-actin cytoskeleton were evaluated using western blot, qPCR, ChIP and Immunofluorescence staining tests. IncuCyte ZOOM long time live cell image monitoring system, qPCR and Flow Cytometry measured the effects of S100A8/S100A9 and YAP on cell proliferation, cell differentiation and apoptosis. Results Here, we report that through activation of the Hippo pathway, suspension and dense culture significantly induce S100A8/S100A9 co-expression and co-localization in SCC cells. Furthermore, these expressional characteristics of S100A8/S100A9 also observed in the xenografts derived from the corresponding SCC cells. Importantly, Co-expression of S100A8/S100A9 detected in 257 SCC specimens derived from five types of SCC tissues. Activation of the Hippo pathway by overexpression of Lats1, knockdown of YAP, as well as disruption of F-actin indeed obviously results in S100A8/S100A9 co-expression in attached SCC cells. Conversely, inhibition of the Hippo pathway leads to S100A8/S100A9 co-expression in a manner opposite of cell suspension and dense. In addition, we found that TEAD1 is required for YAP-induced S100A8/S100A9-expressions. The functional studies provide evidence that knockdown of S100A8/S100A9 together significantly inhibit cell proliferation but promote squamous differentiation and apoptosis. Conclusions Our findings demonstrate for the first time that the expression of S100A8/S100A9 is inducible by changes of cell shape and density through activation of the Hippo pathway in SCC cells. Induced S100A8/S100A9 promoted cell proliferation, inhibit cell differentiation and apoptosis. Electronic supplementary material The online version of this article (10.1186/s12885-019-5784-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunguang Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Fei Kong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Chang Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Enze Hu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Qirui Shao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Jin Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Xueyuan Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China.
| |
Collapse
|
14
|
Affiliation(s)
- Vahid Bagheri
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | | |
Collapse
|
15
|
Zhang W, Chen M, Cheng H, Shen Q, Wang Y, Zhu X. The role of calgranulin B gene on the biological behavior of squamous cervical cancer in vitro and in vivo. Cancer Manag Res 2018; 10:323-338. [PMID: 29497331 PMCID: PMC5818869 DOI: 10.2147/cmar.s153036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective The objective of the study was to explore the role of calgranulin B gene on the biological behavior of squamous cervical cancer. Methods Differential transcription in calgranulin B gene between human papillomavirus (HPV)-positive and negative cervical cancer groups was identified, and the relationship between calgranulin B gene and matrix metalloproteinase (MMP) genes were explored using The Cancer Genome Atlas database. Subsequently, the role of calgranulin B on the cell proliferation, apoptosis, invasion and migration was investigated, through overexpression and/or underexpression of calgranulin B in cervical cancer cells. In addition, the effect of calgranulin B on the growth of the cervical cancer was studied via constructing xenograft model in BALB/c nude mice that either overexpressed or underexpressed calgranulin B. Results Calgranulin B gene transcription in cervical cancer was highly correlated with the high-risk HPV-16 and HPV-45. In addition, overexpression of calgranulin B increased cell proliferation, invasion and migration, whereas it did not significantly affect cell apoptosis. This effect was also confirmed by calgranulin B knockdown assay. Additionally, we found that the transcription of calgranulin B gene was negatively correlated with MMP15 and MMP24 genes, but positively associated with MMP25 genes in cervical cancer. Furthermore, calgranulin B significantly promoted the growth of cervical cancer in vivo. Conclusion Calgranulin B promotes cell proliferation, migration and invasion of squamous cervical cancer, possibly via regulation of MMPs. Whether there are synergistic actions between calgranulin B and HPV-16/HPV-45 infection on the squamous cervical carcinogenesis or progression need further study.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Miaomiao Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Huihui Cheng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qi Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Argyris PP, Slama ZM, Ross KF, Khammanivong A, Herzberg MC. Calprotectin and the Initiation and Progression of Head and Neck Cancer. J Dent Res 2018; 97:674-682. [PMID: 29443623 DOI: 10.1177/0022034518756330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric complex of calcium-binding proteins S100A8 and S100A9, is encoded by genes mapping to the chromosomal locus 1q21.3 of the epidermal differentiation complex. Whereas extracellular calprotectin shows proinflammatory and antimicrobial properties by signaling through RAGE and TLR4, intracytoplasmic S100A8/A9 appears to be important for cellular development, maintenance, and survival. S100A8/A9 is constitutively expressed in myeloid cells and the stratified mucosal epithelia lining the oropharyngeal and genitourinary mucosae. While upregulated in adenocarcinomas and other cancers, calprotectin mRNA and protein levels decline in head and neck squamous cell carcinoma (HNSCC). S100A8/A9 is also lost during head and neck preneoplasia (dysplasia). Calprotectin decrease does not correlate with the clinical stage (TNM) of HNSCC. When expressed in carcinoma cells, S100A8/A9 downregulates matrix metalloproteinase 2 expression and inhibits invasion and migration in vitro. S100A8/A9 regulates cell cycle progression and decelerates cancer cell proliferation by arresting at the G2/M checkpoint in a protein phosphatase 2α-dependent manner. In HNSCC, S100A8 and S100A9 coregulate with gene networks controlling cellular development and differentiation, cell-to-cell signaling, and cell morphology, while S100A8/A9 appears to downregulate expression of invasion- and tumorigenesis-associated genes. Indeed, tumor formation capacity is attenuated in S100A8/A9-expressing carcinoma cells in vivo. Hence, intracellular calprotectin appears to function as a tumor suppressor in head and neck carcinogenesis. When compared with S100A8/A9-low HNSCC based on analysis of TCGA, S100A8/A9-high HNSCC shows significant upregulation of apoptosis-related genes, including multiple caspases. Accordingly, S100A8/A9 facilitates DNA damage responses in HNSCC, promotes apoptotic cell death, and confers sensitivity to cisplatin and X-radiation in vitro. In the tumor milieu, loss of S100A8/A9 strongly associates with poor squamous differentiation and higher tumor grading, EGFR upregulation, increased DNA methylation, and, finally, poorer overall survival for patients with HNSCC. Hence, intracellular calprotectin shows a multifaceted protective role against the development of HNSCC.
Collapse
Affiliation(s)
- P P Argyris
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Z M Slama
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - K F Ross
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - A Khammanivong
- 2 Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,3 Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - M C Herzberg
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Khammanivong A, Sorenson BS, Ross KF, Dickerson EB, Hasina R, Lingen MW, Herzberg MC. Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC. Oncotarget 2017; 7:14029-47. [PMID: 26883112 PMCID: PMC4924696 DOI: 10.18632/oncotarget.7373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brent S Sorenson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Ross
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rifat Hasina
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN, USA
| |
Collapse
|
18
|
Zhu M, Wang H, Cui J, Li W, An G, Pan Y, Zhang Q, Xing R, Lu Y. Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis 2017; 8:e2938. [PMID: 28726786 PMCID: PMC5550849 DOI: 10.1038/cddis.2017.297] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023]
Abstract
S100A14 is a calcium-binding protein involved in cell proliferation and differentiation as well as the metastasis of human tumors. In this study, we characterized the regulation of S100A14 expression between biological signatures and clinical pathological features in gastric cancer (GC). Our data demonstrated that S100A14 induced the differentiation of GC by upregulating the expression of E-cadherin and PGII. Moreover, S100A14 expression negatively correlated with cell migration and invasion in in vitro and in vivo experimental models. Interestingly, S100A14 blocked the store-operated Ca2+ influx by suppressing Orai1 and STIM1 expression, leading to FAK expression activation, focal adhesion assembly and MMP downregulation. Taken together, our results indicate that S100A14 may have a role in the induction of differentiation and inhibition of cell metastasis in GC.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiantao Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wenmei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuanming Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingying Zhang
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Jinping District, Guangdong 515041, China. Tel: +86 754 88900445; Fax: +86 754 88557562; E-mail:
| | - Rui Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| | - Youyong Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| |
Collapse
|
19
|
Xu YD, Wang Y, Yin LM, Peng LL, Park GH, Yang YQ. S100A8 inhibits PDGF-induced proliferation of airway smooth muscle cells dependent on the receptor for advanced glycation end-products. Biol Res 2017. [PMID: 28637501 PMCID: PMC5479006 DOI: 10.1186/s40659-017-0128-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Airway remodeling is a key feature of asthma, characterized by increased proliferation of airway smooth muscle cells (ASMCs). S100A8 is a calcium-binding protein with a potential to regulate cell proliferation. Here, the effect of exogenous S100A8 protein on the proliferation of ASMCs induced by platelet-derived growth factor (PDGF) and the underlying molecular mechanism was investigated. Methods Rat ASMCs were cultured with or without a neutralizing antibody to the receptor for advanced glycation end-products (RAGE), a potential receptor for S100A8 protein. Purified recombinant rat S100A8 protein was then added into the cultured cells, and the proliferation of ASMCs induced by PDGF was detected by colorimetric-based WST-8 assay and ampedance-based xCELLigence proliferation assay. The expression levels of RAGE in ASMCs were analyzed using western blotting assay. Results Results showed that exogenous S100A8 inhibited the PDGF-induced proliferation of rat ASMCs in a dose-dependent manner with the maximal effect at 1 μg/ml in vitro. Furthermore, when ASMCs was pre-treated with anti-RAGE neutralizing antibody, the inhibitory effect of S100A8 on PDGF-induced proliferation was significantly suppressed. In addition, neither the treatment with S100A8 or PDGF alone nor the pre-treatment with rS100A8 followed by PDGF stimulation affected the expression levels of RAGE. Conclusions Our study demonstrated that S100A8 inhibits PDGF-induced ASMCs proliferation in a manner dependent on membrane receptor RAGE.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 650 South Wanping Road, Shanghai, 200030, China
| | - Yu Wang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 650 South Wanping Road, Shanghai, 200030, China
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 650 South Wanping Road, Shanghai, 200030, China
| | - Ling-Ling Peng
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 650 South Wanping Road, Shanghai, 200030, China
| | - Gyoung-Hee Park
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 650 South Wanping Road, Shanghai, 200030, China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 650 South Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
20
|
Low D, Subramaniam R, Lin L, Aomatsu T, Mizoguchi A, Ng A, DeGruttola AK, Lee CG, Elias JA, Andoh A, Mino-Kenudson M, Mizoguchi E. Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget 2017; 6:36535-50. [PMID: 26431492 PMCID: PMC4742194 DOI: 10.18632/oncotarget.5440] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/16/2015] [Indexed: 01/20/2023] Open
Abstract
Many host-factors are inducibly expressed during the development of inflammatory bowel disease (IBD), each having their unique properties, such as immune activation, bacterial clearance, and tissue repair/remodeling. Dysregulation/imbalance of these factors may have pathogenic effects that can contribute to colitis-associated cancer (CAC). Previous reports showed that IBD patients inducibly express colonic chitinase 3-like 1 (CHI3L1) that is further upregulated during CAC development. However, little is known about the direct pathogenic involvement of CHI3L1 in vivo. Here we demonstrate that CHI3L1 (aka Brp39) knockout (KO) mice treated with azoxymethane (AOM)/dextran sulphate sodium (DSS) developed severe colitis but lesser incidence of CAC as compared to that in wild-type (WT) mice. Highest CHI3L1 expression was found during the chronic phase of colitis, rather than the acute phase, and is essential to promote intestinal epithelial cell (IEC) proliferation in vivo. This CHI3L1-mediated cell proliferation/survival involves partial downregulation of the pro-apoptotic S100A9 protein that is highly expressed during the acute phase of colitis, by binding to the S100A9 receptor, RAGE (Receptor for Advanced Glycation End products). This interaction disrupts the S100A9-associated expression positive feedback loop during early immune activation, creating a CHI3L1hi S100A9low colonic environment, especially in the later phase of colitis, which promotes cell proliferation/survival of both normal IECs and tumor cells.
Collapse
Affiliation(s)
- Daren Low
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Renuka Subramaniam
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Lin
- Laboratory of Cardiovascular Science, National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tomoki Aomatsu
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, Japan
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Aylwin Ng
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Arianna K DeGruttola
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun Geun Lee
- Department of Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Jack A Elias
- Department of Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Akira Andoh
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, Japan
| | - Mari Mino-Kenudson
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for The Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Kim KH, Yeo SG, Yoo BC, Myung JK. Identification of calgranulin B interacting proteins and network analysis in gastrointestinal cancer cells. PLoS One 2017; 12:e0171232. [PMID: 28152021 PMCID: PMC5289589 DOI: 10.1371/journal.pone.0171232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/17/2017] [Indexed: 01/14/2023] Open
Abstract
Calgranulin B is known to be involved in tumor development, but the underlying molecular mechanism is not clear. To gain insight into possible roles of calgranulin B, we screened for calgranulin B-interacting molecules in the SNU-484 gastric cancer and the SNU-81 colon cancer cells. Calgranulin B-interacting partners were identified by yeast two-hybrid and functional information was obtained by computational analysis. Most of the calgranulin B-interacting partners were involved in metabolic and cellular processes, and found to have molecular function of binding and catalytic activities. Interestingly, 46 molecules in the network of the calgranulin B-interacting proteins are known to be associated with cancer and FKBP2 was found to interact with calgranulin B in both SNU-484 and SNU-81 cells. Polyubiquitin-C encoded by UBC, which exhibited an interaction with calgranulin B, has been associated with various molecules of the extracellular space and plasma membrane identified in our screening, including Na-K-Cl cotransporter 1 and dystonin in SNU-484 cells, and ATPase subunit beta-1 in SNU-81 cells. Our data provide novel insight into the roles of calgranulin B of gastrointestinal cancer cells, and offer new clues suggesting calgranulin B acts as an effector molecule through which the cell can communicate with the tumor microenvironment via polyubiquitin-C.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jae Kyung Myung
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
22
|
Fu QR, Song W, Deng YT, Li HL, Mao XM, Lin CL, Zheng YH, Chen SM, Chen QH, Chen QX. ESC-3 induces apoptosis of human ovarian carcinomas through Wnt/β-catenin and Notch signaling in vitro and in vivo. Int J Oncol 2016; 50:241-251. [DOI: 10.3892/ijo.2016.3773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/07/2016] [Indexed: 11/06/2022] Open
|
23
|
Ra SH, Su A, Li X, Zhou J, Cochran AJ, Kulkarni RP, Binder SW. Keratoacanthoma and squamous cell carcinoma are distinct from a molecular perspective. Mod Pathol 2015; 28:799-806. [PMID: 25676557 DOI: 10.1038/modpathol.2015.5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 12/23/2022]
Abstract
Keratoacanthoma is a controversial entity. Some consider keratoacanthoma as a variant of squamous cell carcinoma, whereas others see it as a distinct self-resolving squamoproliferative lesion. Our objective is to examine the relationship of keratoacanthoma with squamous cell carcinoma and normal skin by using DNA microarrays. DNA microarray studies were performed on formalin-fixed and paraffin-embedded blocks from ten cases of actinic keratoacanthoma utilizing the U133plus2.0 array. These results were compared with our previously developed microarray database of ten squamous cell carcinoma and ten normal skin samples. Keratoacanthoma demonstrated 1449 differentially expressed genes in comparison with squamous cell carcinoma (>5-fold change: P<0.01) with 908 genes upregulated and 541 genes downregulated. Keratoacanthoma showed 2435 differentially expressed genes in comparison with normal skin (>5-fold change: P<0.01) with 1085 genes upregulated and 1350 genes downregulated. The most upregulated genes, comparing keratoacanthoma with normal skin included MALAT1, S100A8, CDR1, TPM4, and CALM1. The most downregulated genes included SCGB2A2, DCD, THRSP, ADIPOQ, adiponectin, and ADH1B. The molecular biological pathway analysis comparing keratoacanthoma with normal skin showed that cellular development, cellular growth and proliferation, cell death/apoptosis, and cell cycle pathways are prominently involved in the pathogenesis of keratoacanthoma. The most enriched canonical pathways were clathrin-mediated endocytosis signaling, molecular mechanisms of cancer and integrin signaling. The distinctive gene expression profile of keratoacanthoma reveals that it is molecularly distinct from squamous cell carcinoma. The molecular pathways and genes differentially expressed in comparing keratoacanthoma with normal skin suggest that keratoacanthoma is a neoplasm that can regress due to upregulation of the cell death/apoptosis pathway.
Collapse
Affiliation(s)
- Seong H Ra
- 1] San Diego Pathology Medical Group, San Diego, CA, USA [2] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Albert Su
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jaime Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alistair J Cochran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rajan P Kulkarni
- Department of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott W Binder
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Clin Transl Oncol 2015; 17:620-31. [DOI: 10.1007/s12094-015-1287-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
|
25
|
Iotzova-Weiss G, Dziunycz PJ, Freiberger SN, Läuchli S, Hafner J, Vogl T, French LE, Hofbauer GFL. S100A8/A9 stimulates keratinocyte proliferation in the development of squamous cell carcinoma of the skin via the receptor for advanced glycation-end products. PLoS One 2015; 10:e0120971. [PMID: 25811984 PMCID: PMC4374726 DOI: 10.1371/journal.pone.0120971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common neoplasm in organ transplant recipients (OTR) on long-term immunosuppression and occurs 60- to 100-fold more frequently than in the general population. Here, we present the receptor for advanced glycation end products (RAGE) and S100A8/A9 as important factors driving normal and tumor keratinocyte proliferation. RAGE and S100A8/A9 were transcriptionally upregulated in SCC compared to normal epidermis, as well as in OTR compared to immunocompetent patients (IC) with SCC. The proliferation of normal and SCC keratinocytes was induced by exposure to exogenous S100A8/A9 which in turn was abolished by blocking of RAGE. The migratory activities of normal and SCC keratinocytes were also increased upon exposure to S100A8/A9. We demonstrated that exogenous S100A8/A9 induces phosphorylation of p38 and SAPK/JNK followed by activation of ERK1/2. We hypothesize that RAGE and S100A8/A9 contribute to the development of human SCC by modulating keratinocyte growth and migration. These processes do not seem to be impaired by profound drug-mediated immunosuppression in OTR.
Collapse
Affiliation(s)
| | - Piotr J. Dziunycz
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Vogl
- Institute of Immunology, University Clinic Münster, Münster, Germany
| | - Lars E. French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
26
|
Gumireddy K, Li A, Kossenkov AV, Cai KQ, Liu Q, Yan J, Xu H, Showe L, Zhang L, Huang Q. ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res 2014; 12:1334-43. [PMID: 24948111 DOI: 10.1158/1541-7786.mcr-14-0049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Metastasis is a major factor responsible for mortality in patients with breast cancer. Inhibitor of DNA binding 1 (Id1) has been shown to play an important role in cell differentiation, tumor angiogenesis, cell invasion, and metastasis. Despite the data establishing Id1 as a critical factor for lung metastasis in breast cancer, the pathways and molecular mechanisms of Id1 functions in metastasis remain to be defined. Here, we show that Id1 interacts with TFAP2A to suppress S100A9 expression. We show that expression of Id1 and S100A9 is inversely correlated in both breast cancer cell lines and clinical samples. We also show that the migratory and invasive phenotypes in vitro and metastasis in vivo induced by Id1 expression are rescued by reestablishment of S100A9 expression. S100A9 also suppresses the expression of known metastasis-promoting factor RhoC activated by Id1 expression. Our results suggest that Id1 promotes breast cancer metastasis by the suppression of S100A9 expression. IMPLICATIONS Novel pathways by Id1 regulation in metastasis.
Collapse
Affiliation(s)
| | - Anping Li
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Jinchun Yan
- University of Washington Medical Center, Seattle, Washington
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Louise Showe
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Lin Zhang
- Center for Research on Early Detection and Cure of Ovarian Cancer, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qihong Huang
- The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Clinicopathological roles of S100A8 and S100A9 in cutaneous squamous cell carcinoma in vivo and in vitro. Arch Dermatol Res 2014; 306:489-96. [PMID: 24550082 DOI: 10.1007/s00403-014-1453-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
S100A8 and S100A9 are members of the S100 protein family and exist in neutrophils, monocytes, and macrophages. Recent studies have shown that S100A8 and S100A9 are associated with various neoplastic disorders; however, their roles in cutaneous squamous cell carcinoma (SCC) are not well defined. To investigate the expression and function of S100A8 and S100A9 in skin tumors, we examined the expression levels of S100A8 and S100A9 between premalignant and malignant skin tumors and investigated the functional roles of S100A8 and S100A9 in vitro and in vivo using recombinant adenovirus expressing S100A8 or S100A9. The immunopositive staining rates and intensities of S100A8 and S100A9 were higher in SCC than in premalignant skin tumors. When S100A8 and/or S100A9 were overexpressed in SCC12 cells using a recombinant adenovirus, cell growth and motility were increased. Similarly, when mouse skin was intradermally injected with SCC12 cells overexpressing S100A8 and/or S100A9, there were remarkable increases in tumor growth and volume. Both S100A8 and S100A9 are highly expressed in cutaneous SCC and play important roles in tumorigenesis. We suggest that S100A8 and S100A9 may be potential therapeutic targets for the prevention or treatment of SCC in skin.
Collapse
|
28
|
Popescu ID, Codrici E, Albulescu L, Mihai S, Enciu AM, Albulescu R, Tanase CP. Potential serum biomarkers for glioblastoma diagnostic assessed by proteomic approaches. Proteome Sci 2014; 12:47. [PMID: 25298751 PMCID: PMC4189552 DOI: 10.1186/s12953-014-0047-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rapid progress of proteomics over the past years has allowed the discovery of a large number of potential biomarker candidates to improve early tumor diagnosis and therapeutic response, thus being further integrated into clinical environment. High grade gliomas represent one of the most aggressive and treatment-resistant types of human brain cancer, with approximately 9-12 months median survival rate for patients with grade IV glioma (glioblastoma). Using state-of-the-art proteomics technologies, we have investigated the proteome profile for glioblastoma patients in order to identify a novel protein biomarker panel that could discriminate glioblastoma patients from controls and increase diagnostic accuracy. RESULTS In this study, SELDI-ToF MS technology was used to screen potential protein patterns in glioblastoma patients serum; furthermore, LC-MS/MS technology was applied to identify the candidate biomarkers peaks. Through these proteomic approaches, three proteins S100A8, S100A9 and CXCL4 were selected as putative biomarkers and confirmed by ELISA. Next step was to validate the above mentioned molecules as biomarkers through identification of protein expression by Western blot in tumoral versus peritumoral tissue. CONCLUSIONS Proteomic technologies have been used to investigate the protein profile of glioblastoma patients and established several potential diagnostic biomarkers. While it is unlikely for a single biomarker to be highly effective for glioblastoma diagnostic, our data proposed an alternative and efficient approach by using a novel combination of multiple biomarkers.
Collapse
Affiliation(s)
- Ionela Daniela Popescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, no. 91-95 Splaiul Independentei, 050095 Sector 5, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
| | - Lucian Albulescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- Current address: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Simona Mihai
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- Cellular and Molecular Medicine Department, Carol Davila University of Medicine and Pharmacy, no 8 B-dul Eroilor Sanitari, 050474 Sector 5, Bucharest, Romania
| | - Radu Albulescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- National Institute for Chemical Pharmaceutical R&D, 112 Calea Vitan, 031299 Sector 3, Bucharest, Romania
| | - Cristiana Pistol Tanase
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
| |
Collapse
|
29
|
Cortés-Malagón EM, Bonilla-Delgado J, Díaz-Chávez J, Hidalgo-Miranda A, Romero-Cordoba S, Uren A, Celik H, McCormick M, Munguía-Moreno JA, Ibarra-Sierra E, Escobar-Herrera J, Lambert PF, Mendoza-Villanueva D, Bermudez-Cruz RM, Gariglio P. Gene expression profile regulated by the HPV16 E7 oncoprotein and estradiol in cervical tissue. Virology 2013; 447:155-65. [PMID: 24210110 DOI: 10.1016/j.virol.2013.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/15/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022]
Abstract
The HPV16 E7 oncoprotein and 17β-estradiol are important factors for the induction of premalignant lesions and cervical cancer. The study of these factors is crucial for a better understanding of cervical tumorigenesis. Here, we assessed the global gene expression profiles induced by the HPV16 E7 oncoprotein and/or 17β-estradiol in cervical tissue of FvB and K14E7 transgenic mice. We found that the most dramatic changes in gene expression occurred in K14E7 and FvB groups treated with 17β-estradiol. A large number of differentially expressed genes involved in the immune response were observed in 17β-estradiol treated groups. The E7 oncoprotein mainly affected the expression of genes involved in cellular metabolism. Our microarray data also identified differentially expressed genes that have not previously been reported in cervical cancer. The identification of genes regulated by E7 and 17β-estradiol, provides the basis for further studies on their role in cervical carcinogenesis.
Collapse
Affiliation(s)
- Enoc M Cortés-Malagón
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico; Research Unit, Hospital Juárez de México, Mexico City 07760, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Song W, Yang HB, Chen P, Wang SM, Zhao LP, Xu WH, Fan HF, Gu X, Chen LY. Apoptosis of human gastric carcinoma SGC-7901 induced by deoxycholic acid via the mitochondrial-dependent pathway. Appl Biochem Biotechnol 2013; 171:1061-71. [PMID: 23943012 DOI: 10.1007/s12010-013-0417-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023]
Abstract
The study aimed to evaluate the effects of deoxycholic acid (DCA) on human gastric carcinoma cell lines and to explore its mechanisms. In the present study, effects of DCA on SGC-7901 cell growth, cell cycle, and apoptosis were investigated by MTT assay, inverted microscopy, fluorescence microscopy, PI single- and FITC/PI double-staining flow cytometry, and western blotting. The study have revealed that DCA significantly inhibited the growth of SGC-7901 cells in a dose- and time-dependent manner and arrested cell cycle at G0/G1 phase. SGC-7901 cells showed typical apoptotic morphological changes after treated with DCA for 48 h. The intensity of typical apoptosis pattern- "ladders" formed by DNA in fragments of multiples of 200 base pairs was also observed. Apoptosis of SGC-7901 cells induced by DCA were associated with collapse of the mitochondrial membrane potential. DCA treatment could also increase the ratio of Bax to Bcl-2 in SGC-7901 cells. Meanwhile, the expression of p53, cyclinD1, and c-Myc were changed after DCA treatment. These results suggest that DCA induces apoptosis of gastric carcinoma cells through an intrinsic mitochondrial-dependent pathway, and the increase in the Bax/Bcl-2 ratio and collapse of the mitochondrial membrane potential may play important roles in DCA-induced apoptosis of gastric carcinoma cells.
Collapse
Affiliation(s)
- Wei Song
- School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467044, Henan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Khammanivong A, Wang C, Sorenson BS, Ross KF, Herzberg MC. S100A8/A9 (calprotectin) negatively regulates G2/M cell cycle progression and growth of squamous cell carcinoma. PLoS One 2013; 8:e69395. [PMID: 23874958 PMCID: PMC3706396 DOI: 10.1371/journal.pone.0069395] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/14/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chengxing Wang
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brent S. Sorenson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Karen F. Ross
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PLoS One 2013; 8:e62092. [PMID: 23637971 PMCID: PMC3637369 DOI: 10.1371/journal.pone.0062092] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/15/2013] [Indexed: 01/05/2023] Open
Abstract
Background and Objective S100A8 and S100A9, two members of the S100 protein family, have been reported in association with the tumor cell differentiation and tumor progression. Previous study has showed that their expression in stromal cells of colorectal carcinoma (CRC) is associated with tumor size. Here, we investigated the clinical significances of S100A8 and S100A9 in tumor cells of CRC and their underlying molecular mechanisms. Methods Expression of S100A8 and S100A9 in colorectal carcinoma and matching distal normal tissues were measured by reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. CRC cell lines treated with the recombinant S100A8 and S100A9 proteins were used to analyze the roles and molecular mechanisms of the two proteins in CRC in vitro. Results S100A8 and S100A9 were elevated in more than 50% of CRC tissues and their expression in tumor cells was associated with differentiation, Dukes stage and lymph node metastasis. The CRC cell lines treatment with recombinant S100A8 and S100A9 proteins promoted the viability and migration of CRC cells. Furthermore, the two recombinant proteins also resulted in the increased levels of β-catenin and its target genes c-myc and MMP7. β-catenin over-expression in CRC cells by Adβ-catenin increased cell viability and migration. β-catenin knock-down by Adsiβ-catenin reduced cell viability and migration. Furthermore, β-catenin knockdown also partially abolished the promotive effects of recombinant S100A8 and S100A9 proteins on the viability and migration of CRC cells. Conclusions Our work demonstrated that S100A8 and S100A9 are linked to the CRC progression, and one of the underlying molecular mechanisms is that extracellular S100A8 and S100A9 proteins contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway.
Collapse
|
33
|
Song W, Li SS, Qiu PP, Shen DY, Tian L, Zhang QY, Liao LX, Chen QX. Apoptosis Induced by Aqueous Extracts of Crocodile Bile in Human Heptacarcinoma SMMC-7721. Appl Biochem Biotechnol 2013; 170:15-24. [DOI: 10.1007/s12010-013-0120-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/14/2013] [Indexed: 12/12/2022]
|
34
|
Jakhesara SJ, Koringa PG, Bhatt VD, Shah TM, Vangipuram S, Shah S, Joshi CG. RNA-Seq reveals differentially expressed isoforms and novel splice variants in buccal mucosal cancer. Gene 2013; 516:24-32. [DOI: 10.1016/j.gene.2012.11.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/25/2022]
|
35
|
Rao UNM, Hood BL, Jones-Laughner JM, Sun M, Conrads TP. Distinct profiles of oxidative stress-related and matrix proteins in adult bone and soft tissue osteosarcoma and desmoid tumors: a proteomics study. Hum Pathol 2012; 44:725-33. [PMID: 23063503 DOI: 10.1016/j.humpath.2012.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022]
Abstract
Osteosarcomas rarely occur in older adults. Proteomics has not been reported to date in osteosarcoma occurring in the older adult population. This proteomic investigation was conducted to identify differentially expressed proteins in osteosarcoma occurring in various backgrounds from older adults. Desmoid tumors, known to recur locally but not metastasize, were also analyzed. Protein digests isolated from formalin-fixed, paraffin-embedded tumor tissue specimen representing 14 primary osteosarcomas of soft tissue and bone and 18 desmoid tumors were analyzed by high-resolution liquid chromatography-tandem mass spectrometry for protein identification and relative quantification by spectral counting. Elevated abundance levels of several proteins including heat shock protein 90 (HSP90), elastin microfibril interface-located protein 1, and clusterin were identified in osteosarcoma with slight differences in proteomic profiles. Desmoids had an abundance of collagen II and periostin only. The findings were confirmed by immunohistochemical staining for HSP90 and clusterin in the experimental samples and additionally in 16 posttherapy conventional osteosarcomas in tissue microarrays constructed from heterogeneous sarcomas and benign lesions. All osteosarcomas were positive for HSP90 and clusterin to a variable extent. One case of well-differentiated parosteal osteosarcoma was negative. Thirty of 75 other high-grade sarcomas including cases of chondrosarcoma were positive for HSP90. Low-grade and benign lesions and scars and 18 desmoid tumors had little or no expression of these proteins. HSP90 and clusterin represent candidate markers of aggressiveness in osteosarcoma occurring in older adults and may be indicative of drug resistance.
Collapse
Affiliation(s)
- Uma N M Rao
- Department of Pathology, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian/Shadyside Hospitals, Pittsburgh, PA 15232, USA.
| | | | | | | | | |
Collapse
|
36
|
Low concentration of S100A8/9 promotes angiogenesis-related activity of vascular endothelial cells: bridges among inflammation, angiogenesis, and tumorigenesis? Mediators Inflamm 2012; 2012:248574. [PMID: 22685372 PMCID: PMC3363068 DOI: 10.1155/2012/248574] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/28/2012] [Accepted: 02/04/2012] [Indexed: 01/25/2023] Open
Abstract
Previous studies showed that several members of the S100A family are involved in neovascularization and tumor development. This study checked whether low concentrations of S100A8 or S100A9 has any effect on the behaviour of vascular endothelial cells. A human umbilical vascular endothelial cell (HUVEC) line was used to measure vascular endothelial cell bioactivity related to angiogenesis, such as cell proliferation, migration, and vessel formation. In the low concentration range up to 10 μg/mL, either each alone or in combination, S100A8 and S100A9 proteins promoted proliferation of HUVEC cells in a dose-dependent manner. The presence of both proteins in culture showed additive effects over each single protein. Both proteins enhanced HUVEC cells to migrate across the transwell membrane and to form tube-like structures on the Matrigel surface. When mixed in Matrigel and injected subcutaneously in Balb/c mice, both proteins increased vessel development in the gel plugs. Microarray assay of HUVEC cells treated with 10 μg/mL S100A8 revealed that ribosome pathway, pathogenic Escherichia coli infection pathway, apoptosis, and stress response genes were modulated by S100A8 treatment. We propose that S100A8 and S100A9 proteins from either infiltrating inflammatory cells or tumor cells play an important role in the interplay among inflammation, angiogenesis, and tumorigenesis.
Collapse
|
37
|
Song W, Shen DY, Kang JH, Li SS, Zhan HW, Shi Y, Xiong YX, Liang G, Chen QX. Apoptosis of human cholangiocarcinoma cells induced by ESC-3 from Crocodylus siamensis bile. World J Gastroenterol 2012; 18:704-11. [PMID: 22363144 PMCID: PMC3281230 DOI: 10.3748/wjg.v18.i7.704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/10/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of ESC-3 isolated from crocodile bile on the growth and apoptosis induction of human cholangiocarcinoma cells.
METHODS: ESC-3 was isolated from crocodile bile by Sephadex LH-20 and RP-18 reversed-phase column. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was conducted to determine the effects of ESC-3 on the proliferation of human cholangiocarcinoma cell lines (QBC939, Sk-ChA-1 and MZ-ChA-1). Giemsa staining, Hoechst 33258 and acridine orange/ethidium bromide staining showed the morphological changes of Mz-ChA-1 cells exposed to ESC-3 at different concentrations. Flow cytometry with regular propidium iodide (PI) staining was performed to analyze the cell cycle distribution of Mz-ChA-1 cells and to assess apoptosis by annexin v-fluorescein isothiocyanate (V-FITC)/PI staining. Rh123 staining was used to detect the alteration of mitochondrial membrane potential (ΔΨm). The protein levels of Bax, Bcl-2, Cdk2, cytochrome c and caspase-3 were further confirmed by Western blotting.
RESULTS: ESC-3 significantly inhibited the growth of three human cholangiocarcinoma cell lines and arrested Mz-ChA-1 cell cycle at G0/G1 phase. Mz-ChA-1 cells showed typical apoptotic morphological changes after treated with ESC-3 (10 μg/mL) for 48 h. Cell death assay indicated that Mz-ChA-1 cells underwent apoptosis in a dose-dependent manner induced by ESC-3. In addition, ESC-3 treatment could downregulate the protein level of Bcl-2 and upregulate the Bax, leading to the increase in the ratio of Bax to Bcl-2 in Mz-ChA-1 cells. Meanwhile, cytochrome c was released from the mitochondria into the cytosol, which subsequently initiated the activation of caspase-3. All these events were associated with the collapse of the mitochondrial membrane potential.
CONCLUSION: ESC-3, the active ingredient of crocodile bile, induced apoptosis in Mz-ChA-1 cells through the mitochondria-dependent pathway and may be a potential chemotherapeutic drug for the treatment of cholangiocarcinoma.
Collapse
|
38
|
Yano J, Noverr MC, Fidel PL. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins. Cytokine 2011; 58:118-28. [PMID: 22182685 DOI: 10.1016/j.cyto.2011.11.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 01/06/2023]
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4(+) T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators.
Collapse
Affiliation(s)
- Junko Yano
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
39
|
Chang KP, Yu JS, Chien KY, Lee CW, Liang Y, Liao CT, Yen TC, Lee LY, Huang LL, Liu SC, Chang YS, Chi LM. Identification of PRDX4 and P4HA2 as metastasis-associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology. J Proteome Res 2011; 10:4935-47. [PMID: 21859152 DOI: 10.1021/pr200311p] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cervical lymph node metastasis represents the major prognosticator for oral cavity squamous cell carcinoma (OSCC). Here, we used an iTRAQ-based quantitative proteomic approach to identify proteins that are differentially expressed between microdissected primary and metastatic OSCC tumors. The selected candidates were examined in tissue sections via immunohistochemistry, and their roles in OSCC cell function investigated using RNA interference. Seventy-four differentially expressed proteins in nodal metastases, including PRDX4 and P4HA2, were identified. Immunohistochemical analysis revealed significantly higher levels of PRDX4 and P4HA2 in tumor cells than adjacent non-tumor epithelia (P < 0.0001 and P < 0.0001, respectively), and even higher expression in the 31 metastatic tumors of lymph nodes, compared to the corresponding primary tumors (P = 0.060 and P = 0.002, respectively). Overexpression of PRDX4 and P4HA2 was significantly associated with positive pN status (P = 0.048 and P = 0.021, respectively). PRDX4 overexpression was a significant prognostic factor for disease-specific survival in both univariate and multivariate analyses (P = 0.034 and P = 0.032, respectively). Additionally, cell migration and invasiveness were attenuated in OEC-M1 cells upon in vitro knockdown of PRDX4 and P4HA2 with specific interfering RNA. Novel metastasis-related prognostic markers for OSCC could be identified by our approach.
Collapse
Affiliation(s)
- Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
S100A14 regulates the invasive potential of oral squamous cell carcinoma derived cell-lines in vitro by modulating expression of matrix metalloproteinases, MMP1 and MMP9. Eur J Cancer 2011; 47:600-10. [DOI: 10.1016/j.ejca.2010.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/14/2010] [Indexed: 12/13/2022]
|
41
|
|