1
|
Pandey S, Kannaujiya VK. Bacterial extracellular biopolymers: Eco-diversification, biosynthesis, technological development and commercial applications. Int J Biol Macromol 2024; 279:135261. [PMID: 39244116 DOI: 10.1016/j.ijbiomac.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Synthetic polymers have been widely thriving as mega industries at a commercial scale in various commercial sectors over the last few decades. The extensive use of synthetic polymers has caused several negative repercussions on the health of humans and the environment. Recently, biopolymers have gained more attention among scientists of different disciplines by their potential therapeutic and commercial applications. Biopolymers are chain-like repeating units of molecules isolated from green sources. They are self-degradable, biocompatible, and non-toxic in nature. Recently, eco-friendly biopolymers such as extracellular polymeric substances (EPSs) have received much attention for their wide applications in the fields of emulsification, flocculation, preservatives, wastewater treatment, nanomaterial functionalization, drug delivery, cosmetics, glycomics, medicinal chemistry, and purification technology. The dynamicity of applications has raised the industrial and consumer demands to cater to the needs of mankind. This review deals with current insights and highlights on database surveys, potential sources, classification, extremophilic EPSs, bioprospecting, patents, microenvironment stability, biosynthesis, and genetic advances for production of high valued ecofriendly polymers. The importance of high valued EPSs in commercial and industrial applications in the global market economy is also summarized. This review concludes with future perspectives and commercial applications for the well-being of humanity.
Collapse
Affiliation(s)
- Saumi Pandey
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Xu Y, Xu T, Huang C, Liu L, Kwame AW, Zhu Y, Ren J. Preventive intervention with Agaricus blazei murill polysaccharide exerts anti-tumor immune effect on intraperitoneal metastasis colorectal cancer. Int J Biol Macromol 2024:136810. [PMID: 39471924 DOI: 10.1016/j.ijbiomac.2024.136810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Agaricus blazei murill (ABM) mainly exerts its antitumor effect via modulation of the immune system. However, the immunomodulatory role of the ABM polysaccharide (ABMP) in mice with subcutaneously and intraperitoneally implanted MC38 tumor remains to be explored. This study aimed to define the progression effect of inhibiting tumor of ABMP in subcutaneous and intraperitoneal models and its effect on tumor microenvironment (TME) metabolism. In vitro experiments showed that ABMP could significantly promote the activity of CD8+ T immune cells in the co-culture system and promoted their colorectal cancer killing function (p < 0.05). In vivo animal exploration further showed that ABMP could inhibit the growth of intraperitoneal but not subcutaneous tumors. MCR-ALS analysis revealed a significant reduction in the signal of lipid-related spectral components in the TME of peritoneal tumors after ABMP intervention. In addition, preventive intervention with ABMP increased ω-3 polyunsaturated fatty acids content in intraperitoneal TME, revealing that ABMP shifted the metabolic landscape of the TME to promote T cell function and achieved immune regulation. These results suggest that the inhibitory effect of ABMP on colon cancer may be tumor stage-dependent, and that remodeling of fatty acid composition may be an important determinant of its action at any given stage.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lun Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Amakye William Kwame
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou 510665, Guangdong, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Gal J, Johnson SM. An Exopolysaccharide from the Cyanobacterium Arthrospira platensis May Utilize CH-π Bonding: A Review of the Isolation, Purification, and Chemical Structure of Calcium-Spirulan. ACS OMEGA 2024; 9:35243-35255. [PMID: 39184464 PMCID: PMC11339812 DOI: 10.1021/acsomega.4c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
The CH-π bonding potential of a saccharide is determined primarily by the number of hydrogen atoms available for bonding and is reduced by side groups that interfere with the CH-π bond. Each hydrogen bond increases the total bond energy, while interfering hydroxyl groups and other side groups reduce the bond energy by repulsion. The disaccharide repeating units of Calcium-Spirulan (Ca-SP), a large exopolysaccharide sub fractionated from the supernatant of the cyanobacterium Arthrospira platensis, contain a unique monosaccharide that is completely devoid of hydroxyl groups and side groups on its entire beta surface, leaving five hydrogen atoms available for CH-π bonding in the planar conformation. While planar conformations of independent pyranose rings are rare-to-nonexistent, due to ring strain associated with that conformation, the binding site of a protein could provide the conformational energy needed to overcome that energy barrier. By enabling a planar conformation, a protein could also enable the sugar to form a novel 5-hydrogen CH-π bond configuration. One study of the anticoagulant property of Ca-SP shows that the molecule acts as an activator of Heparin Cofactor II (HC-II), boosting its anticoagulant kinetics by 104. In comparison, the longstanding anticoagulant drug Heparin boosts the HC-II kinetics by 103. The difference may be explained by this unique CH-π configuration. Here, we review current knowledge and experience on the isolation techniques, analytical methods, and chemical structures of Ca-SP. We emphasize a discussion of the CH-π bonding potential of this unique polysaccharide because it is a topic that has not yet been addressed. By introducing the topic of CH-π bonding to the cyanobacterial research community, this review may help to set the stage for further investigation of these unique molecules, their genetics, their biosynthetic pathways, their chemistry, and their biological functions.
Collapse
Affiliation(s)
- Jonathan
L. Gal
- Department of Microbiology
and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602, United States
| | - Steven M. Johnson
- Department of Microbiology
and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
4
|
Hagglund CR, Duranceau SJ. Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater. MEMBRANES 2024; 14:164. [PMID: 39195416 DOI: 10.3390/membranes14080164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
A two-stage pilot plant study has been completed that evaluated the performance of a reverse osmosis (RO) membrane process for the treatment of feedwater that consisted of a blend of a nanofiltration (NF) concentrate and brackish groundwater. Membrane performance was assessed by monitoring the process operation, collecting water quality data, and documenting the blended feedwater's impact on fouling due to microbiological or organic means, plugging, and scaling, or their combination. Fluorescence and biological activity reaction tests were used to identify the types of organics and microorganisms present in the blended feedwater. Additionally, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to analyze suspended matter that collected on the surfaces of cartridge filters used in the pilot's pretreatment system. SEM and EDS were also used to evaluate solids collected on the surfaces of 0.45 µm silver filter pads after filtering known volumes of NF concentrate and RO feedwater blends. Water quality analyses confirmed that the blended feedwater contained little to no dissolved oxygen, and a significant amount of particulate matter was absent from the blended feedwater as defined by silt density index and turbidity measurements. However, water quality results suggested that the presence of sulfate, sulfide, iron, anaerobic bacteria, and humic acid organics likely contributed to the formation of pyrite observed on some of the membrane surfaces autopsied at the conclusion of pilot operations. It was determined that first-stage membrane productivity was impacted by the location of cartridge filter pretreatment; however, second-stage productivity was maintained with no observed flux decline during the entire pilot operation's timeline. Study results indicated that the operation of an RO process treating a blend of an NF concentrate and brackish groundwater could maintain a sustainable and productive operation that provided a practical minimum liquid discharge process operation for the NF concentrate, while the dilution of RO feedwater salinity would lower overall production costs.
Collapse
Affiliation(s)
- Christopher R Hagglund
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2450, USA
| | - Steven J Duranceau
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2450, USA
| |
Collapse
|
5
|
da Silva MBF, Teixeira CMLL. Cyanobacterial and microalgae polymers: antiviral activity and applications. Braz J Microbiol 2024:10.1007/s42770-024-01452-5. [PMID: 39008244 DOI: 10.1007/s42770-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
At the end of 2019, the world witnessed the beginning of the COVID-19 pandemic. As an aggressive viral infection, the entire world remained attentive to new discoveries about the SARS-CoV-2 virus and its effects in the human body. The search for new antivirals capable of preventing and/or controlling the infection became one of the main goals of research during this time. New biocompounds from marine sources, especially microalgae and cyanobacteria, with pharmacological benefits, such as anticoagulant, anti-inflammatory and antiviral attracted particular interest. Polysaccharides (PS) and extracellular polymeric substances (EPS), especially those containing sulfated groups in their structure, have potential antiviral activity against several types of viruses including HIV-1, herpes simplex virus type 1, and SARS-CoV-2. We review the main characteristics of PS and EPS with antiviral activity, the mechanisms of action, and the different extraction methodologies from microalgae and cyanobacteria biomass.
Collapse
Affiliation(s)
- Mariana Barbalho Farias da Silva
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
6
|
Suyamud B, Lohwacharin J, Ngamratanapaiboon S. Effect of dissolved organic matter on bacterial regrowth and response after ultraviolet disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171864. [PMID: 38521274 DOI: 10.1016/j.scitotenv.2024.171864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The effect of dissolved organic matter (DOM) on bacterial regrowth in water after disinfection using ultraviolet (UV) light emitting diodes (UVLEDs) is still unclear. Herein, the regrowth and responses of Vibrio parahaemolyticus and Bacillus cereus were investigated after being exposed to UVLEDs at combined wavelengths (265 and 280 nm) in a phosphate-buffered saline consisting of Suwannee River natural organic matter (SRNOM) and Suwannee River fulvic acid (SRFA). Low-molecular-weight (MW) organic compounds, which may form into intermediary photoproducts, and indicate bacterial repair metabolism, were characterized through non-target screening using orbitrap mass spectrometry. This study demonstrates the ability of the UVLEDs-inactivated cells to regrow. After UV exposure, a considerable upregulation of RecA was observed in two strains. With increasing the incubation time, the expression levels of RecA in V. parahaemolyticus increased, which may be attributed to the dark repair mechanism. Coexisting anionic DOM affects both the disinfection and bacterial regrowth processes. The time required for bacterial regrowth after UV exposure reflects the time needed for the individual cells to reactivate, and it differs in the presence or absence of DOM. In the presence of DOM, the cells were less damaged and required less time to grow. The UVLEDs exposure results in the occurrence of low-MW organic compounds, including carnitine or acryl-carnitine with N-acetylmuramic acid, which are associated with bacterial repair metabolism. Overall, the results of this study expand the understanding of the effects of water matrices on bacterial health risks. This can aid in the development of more effective strategies for water disinfection.
Collapse
Affiliation(s)
- Bongkotrat Suyamud
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Surachai Ngamratanapaiboon
- Division of Pharmacology, Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
7
|
Wang X, Li Y, Zhang X, Chen X, Wang X, Yu D, Ge B. The extracellular polymeric substances (EPS) accumulation of Spirulina platensis responding to Cadmium (Cd 2+) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134244. [PMID: 38598879 DOI: 10.1016/j.jhazmat.2024.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.
Collapse
Affiliation(s)
- Xiufeng Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuhui Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaojing Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
8
|
Gómez-Bachar L, Vilcovsky M, González-Seligra P, Famá L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int J Biol Macromol 2024; 268:131464. [PMID: 38702248 DOI: 10.1016/j.ijbiomac.2024.131464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 05/06/2024]
Abstract
Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.
Collapse
Affiliation(s)
- Luca Gómez-Bachar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Maia Vilcovsky
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Paula González-Seligra
- Instituto de Ingenierías y Nuevas Tecnologías, Universidad Nacional del Oeste, San Antonio de Padua, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lucía Famá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
10
|
Bhakat S, Mondal A, Mandal S, Rath J. Role of exopolysaccharides of Anabaena sp. in desiccation tolerance and biodeterioration of ancient terracotta monuments of Bishnupur. Arch Microbiol 2024; 206:105. [PMID: 38363385 DOI: 10.1007/s00203-024-03841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Colonization of the cyanobacteria in the Bishnupur terracotta temples, one of the heritage sites of West Bengal, India is in an alarming state of deterioration now. Among the cyanobacteria Anabaena sp. (VBCCA 052002) has been isolated from most of the crust samples of terracotta monuments of Bishnupur. The identification was done using micromorphological characters and confirmed by 16S rRNA gene sequencing. The isolated strain produces enormous exopolysaccharides, which are extracted, hydrolyzed, and analyzed by HPLC. We have studied desiccation tolerance in this cyanobacterium and found biosynthesis of trehalose with an increase in durations of desiccation. The in vitro experiment shows that Chlorophyll-a and carotenoid content increase with fourteen days of desiccation, and cellular carbohydrates increase continuously. However, cellular protein decreases with desiccation. To gain insights into the survival strategies and biodeterioration mechanisms of Anabaena sp. in the desiccated conditions of the Bishnupur monuments, the present study focuses on the physiological aspects of the cyanobacteria under controlled in vitro conditions. Our study indicates that in desiccation conditions, trehalose biosynthesis takes place in Anabaena sp. As a result of the excessive sugar and polysaccharide produced, it adheres to the surface of the terracotta structure. The continuous contraction and expansion of these polysaccharides contribute to the biodeterioration of these monuments.
Collapse
Affiliation(s)
- Shailen Bhakat
- Department of Botany, Sambhu Nath College, Labpur, Birbhum, West Bengal, 731303, India
| | - Arka Mondal
- Department of Botany, Visva-Bharati (Central University), Santiniketan, West Bengal, 731235, India
| | - Sikha Mandal
- Department of Botany, Sree Chaitanya College, Habra, West Bengal, 743268, India.
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati (Central University), Santiniketan, West Bengal, 731235, India
| |
Collapse
|
11
|
Maghrawy HH, El Kareem HA, Gomaa OM. Enhanced exopolysaccharide production in gamma irradiated Bacillus subtilis: A biofilm-mediated strategy for ZnO nanoparticles removal. Int J Biol Macromol 2024; 258:128884. [PMID: 38141708 DOI: 10.1016/j.ijbiomac.2023.128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Biofilm-mediated strategy was studied for ZnO nanoparticle removal from aqueous media. Bacillus subtilis isolated from the soil rhizosphere was selected based on its high viscosity (133 Pa/s) of the cultivated culture and biofilm formation. The bacterium was exposed to gamma-irradiation to enhance EPS production along with its cultivation in EPS-producing media. The results show an increase in viscosity that reached 160 Pa/s at 2 kGy. EPS production increased from 4.45 to 7.95 mg/mL and the protein/carbohydrate ratio increased from 3 to 4.4 which reflects the stickiness of EPS. Thermal Gravimetric Analysis (TGA) showed 2 phase weight loss for gamma irradiated EPS and defined protein peaks when characterized using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF). Native and gamma-irradiated Bacillus subtilis cells with their enhanced EPS were grown as a biofilm on sterile waste gauze fabric, Scanning Electron Microscopy (SEM) showed an increased biofilm attachment in gamma-irradiated samples. The latter was used for the removal of ZnO NP from aqueous media. Energy dispersive X-ray (EDX) mapping confirms that ZnO NPs were entrapped within the carbon and oxygen elements forming the biofilm with net intensities of 14.04, 1713, and 1190, respectively. The results confirm that biofilm-mediated strategy is effective in nanoparticles removal.
Collapse
Affiliation(s)
- Heba Hamed Maghrawy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hussein Abd El Kareem
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
12
|
Tranquilan-Aranilla C, Flores J, Gallardo AK, Abrera G, Pares F. Radiation processing of bacterial cellulose-monolaurin wound dressing: Physicochemical effects, functional analysis, and sterilization. J Biomater Appl 2024; 38:721-732. [PMID: 38031885 DOI: 10.1177/08853282231219276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A commercial bacterial cellulose-monolaurin wound dressing was investigated for changes in the chemical structure, mechanical strength, thermal degradation, morphology, and functional swelling properties after exposure to gamma and electron beam radiations at doses 15-50 kGy. Radiation-induced oxidation occurred as seen in the FT-IR peaks at 1720-1750 cm-1. Degradation of the cellulosic network was observed in tensile strength reduction and shift in degradation temperature to lower values. The SEM cross-section images of the irradiated dressings revealed a less dense nanostructure network compared to the non-irradiated samples while the XRD diffractograms indicated a change in lattice direction/plane. Despite these changes, irradiation caused no significant effect on the functional properties especially at 15-25 kGy doses where most biomedical devices are sterilized. All irradiated wound dressings exhibited physical integrity, increased exudate absorption, and water vapor transmission rate - properties beneficial to wound-healing functionality. The pre-selected sterilization dose of 15 kGy for each ionizing radiation was successfully verified and substantiated following ISO 11137-2:2016, hence ionizing radiation is a suitable sterilization modality for the product.
Collapse
Affiliation(s)
| | - Jeric Flores
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
- Department of Science and Technology, Science Education Institute, Taguig, Philippines
| | - Alvin Kier Gallardo
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
| | - Gina Abrera
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
| | - Franklin Pares
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
| |
Collapse
|
13
|
Miguel SP, D’Angelo C, Ribeiro MP, Simões R, Coutinho P. Chemical Composition of Macroalgae Polysaccharides from Galician and Portugal Coasts: Seasonal Variations and Biological Properties. Mar Drugs 2023; 21:589. [PMID: 37999413 PMCID: PMC10672017 DOI: 10.3390/md21110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Crude polysaccharides extracted from the Codium sp. and Osmundea sp. macroalgae collected in different seasons (winter, spring and summer) from the Galician and North Portugal coasts were characterised, aiming to support their biomedical application to wound healing. An increase in polysaccharides' sulphate content was registered from winter to summer, and higher values were obtained for Osmundea sp. In turn, the monosaccharide composition constantly changed with a decrease in glucose in Osmundea sp. from spring to winter. For Codium sp., a higher increase was noticed regarding glucose content in the Galician and Portugal coasts. Galactose was the major monosaccharide in all the samples, remaining stable in all seasons and collection sites. These results corroborate the sulphate content and antioxidant activity, since the Osmundea sp.-derived polysaccharides collected in summer exhibited higher scavenging radical ability. The biocompatibility and wound scratch assays revealed that the Osmundea sp. polysaccharide extracted from the Portugal coast in summer possessed more potential for promoting fibroblast migration. This study on seasonal variations of polysaccharides, sulphate content, monosaccharide composition and, consequently, biological properties provides practical guidance for determining the optimal season for algae harvest to standardise preparations of polysaccharides for the biomedical field.
Collapse
Affiliation(s)
- Sónia P. Miguel
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Caíque D’Angelo
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rogério Simões
- FibEnTech, Fiber Materials and Envornmental Technologies, University of Beira Interior, R. Marques Avila e Bolama, 6201-001 Covilhã, Portugal;
| | - Paula Coutinho
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
14
|
Zhi M, Zhao Y, Zeng X, Maddela NR, Xiao Y, Chen Y, Prasad R, Zhou Z. Filamentous cyanobacteria and hydrophobic protein in extracellular polymeric substances facilitate algae-bacteria aggregation during partial nitrification. Int J Biol Macromol 2023; 251:126379. [PMID: 37595699 DOI: 10.1016/j.ijbiomac.2023.126379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In algae-bacteria symbiotic wastewater treatment, the excellent settling performance of algae-bacteria aggregates is critical for biomass separation and recovery. Here, the composition of extracellular polymeric substances (EPS), microbial profiles, and functional genes of algae-bacteria aggregates were investigated at different solid retention times (SRTs) (10, 20, and 40 d) during partial nitrification in photo sequencing bioreactors (PSBRs). Results showed that SRTs greatly influenced the nitrogen transformation and the formation and morphological structure of algae-bacteria aggregates. The highest nitrite accumulation, the largest particle size (~1.54 mm) and the best settling performance were observed for the algae-bacteria aggregates in the PSBR with an SRT of 10 d, where the abundant occurrence of filamentous cyanobacteria with the highest ratio of chlorophyll a/b and the lowest EPS amount with the highest protein-to-polysaccharide ratio were observed. In particular, the EPS at 10 d of SRT contained a higher amount of protein-related hydrophobic groups and a lower ratio of α-helix/(β-sheet + random coil), indicating a looser protein structure, which might facilitate the formation and stabilization of algae-bacteria aggregates. Moreover, algal-bacterial aggregation greatly depended on the composition and evolution of filamentous cyanobacteria (unclassified _o__Oscillatoriales and Phormidium accounted for 56.29 % of the identified algae at SRT 10 d). The metagenomic analysis further revealed that functional genes related to amino acid metabolism (e.g., genes of phenylalanine, tyrosine, and tryptophan biosynthesis) were expressed at high levels within 10 d of SRT. Overall, this study demonstrates the influence of EPS structures and filamentous cyanobacteria on algae-bacteria aggregation and reveals the biological mechanisms driving photogranule structure and function.
Collapse
Affiliation(s)
- Mei Zhi
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Yiying Zhao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinyu Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India.
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| |
Collapse
|
15
|
Cock IE, Cheesman MJ. A Review of the Antimicrobial Properties of Cyanobacterial Natural Products. Molecules 2023; 28:7127. [PMID: 37894609 PMCID: PMC10608859 DOI: 10.3390/molecules28207127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The development of multiple-drug-resistant pathogens has prompted medical research toward the development of new and effective antimicrobial therapies. Much research into novel antibiotics has focused on bacterial and fungal compounds, and on chemical modification of existing compounds to increase their efficacy or reactivate their antimicrobial properties. In contrast, cyanobacteria have been relatively overlooked for antibiotic discovery, and much more work is required. This may be because some cyanobacterial species produce environmental toxins, leading to concerns about the safety of cyanobacterial compounds in therapy. Despite this, several cyanobacterial-derived compounds have been identified with noteworthy inhibitory activity against bacterial, fungal and protozoal growth, as well as viral replication. Additionally, many of these compounds have relatively low toxicity and are therefore relevant targets for drug development. Of particular note, several linear and heterocyclic peptides and depsipeptides with potent activity and good safety indexes have been identified and are undergoing development as antimicrobial chemotherapies. However, substantial further studies are required to identify and screen the myriad other cyanobacterial-derived compounds to evaluate their therapeutic potential. This study reviews the known phytochemistry of cyanobacteria, and where relevant, the effects of those compounds against bacterial, fungal, protozoal and viral pathogens, with the aim of highlighting gaps in the literature and focusing future studies in this field.
Collapse
Affiliation(s)
- Ian E. Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD 4111, Australia
| | - Matthew J. Cheesman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
16
|
Kong C, Chen S, Wang X, Hu C, Li B, Fu R, Zhang J. Hemoadhican, a Tissue Adhesion Hemostatic Material Independent of Blood Coagulation. Adv Healthc Mater 2023; 12:e2300705. [PMID: 37029455 DOI: 10.1002/adhm.202300705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Uncontrolled hemorrhage is a leading cause of death, emphasizing the need for novel hemostatic agents. Here, a novel hemostatic polysaccharide hemoadhican (HD) is screened out by analyzing the rheological properties of screened material mixed blood sludges, which is prepared by mixing polysaccharide granules and whole blood to mimic the coagulation in vitro. HD is produced by a bacterial isolate Paenibacillus sp.1229, and the repeating units of HD are →)-α-L-Rhap-(1→3)-β-D-Glcp-(1→4)[4,6-ethylidene-α-D-Galp-(1→4)-α-D-Glcp-(1→3)]-α-D-Manp-(1→. Compared to chitosan and celox, HD achieves more effective hemostasis in animal models with mouse and rat femoral arteries, rat carotid arteries, and rabbit femoral arteries. Especially, HD maintains an excellent hemostatic capability in animals with heparin-induced hemorrhage diathesis. In vitro experiments show HD granules can quickly absorb a small amount of blood component to create a hemophobic blood sludge resistant to high pressure. The blood sludge firmly adheres to damaged tissue and efficiently repels blood. In vitro experiments show that HD does not actively trigger blood coagulation cascade and is independent of blood conditions including heparin treatment. In addition, HD moisturizes wounds and accelerates wound healing, exhibiting excellent biodegradability, and hemocompatibility. The results indicate that HD is a promising hemostatic material for treating traumatic hemorrhages and uncontrollable surgical bleeding.
Collapse
Affiliation(s)
- Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Bing Li
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing, 211899, China
| | - Renjie Fu
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing, 211899, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| |
Collapse
|
17
|
Vinoth M, Sivasankari S, Ahamed AKK, Alsamhary KI, Al-enazi NM, Abdel-Raouf N, Alharbi RM, Govindarajan RK, Ravi G, Alarjani KM, Sholkamy EN. Bio-Characterization and Liquid Chromatography-Mass Spectrometry Analysis of Exopolysaccharides in Biofilm-Producing Cyanobacteria Isolated from Soil Crust: Exploring the Potential of Microalgal Biomolecules. BIOLOGY 2023; 12:1065. [PMID: 37626952 PMCID: PMC10452129 DOI: 10.3390/biology12081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Exopolysaccharide-producing cyanobacterial strains in biological soil crusts are described, in addition to their chemical properties and antioxidant and flocculation activities. The EPSs from Pudukkottai blackish biological soil crusts (PBBSCs) showed significant amounts of total soluble proteins (0.1687 mg/mL) and carbohydrates (0.8056 mg/mL) compared with the Ariyalur blackish biological soil crusts (ABBSCs). LC-MS analysis of the cyanobacterial polysaccharides revealed the presence of natural sugars such as ribose and glucose/mannose, and uronic acids. The FTIR spectrum showed specific peak for OH and -NH stretching, C-H stretching, and carboxylic acids as the dominant groups in EPS. The in vitro DPPH assay of EPSs from PBBSCs showed 74.3% scavenging activity. Furthermore, the reducing power was determined to be 0.59 ata 500 mg/mL concentration, respectively. The extracted EPSs from the biological soil crust flocculated Kaolin clay suspension maximum at 500 mg/mL. Consequently, the cyanobacterial strain and exopolysaccharide characterization from the sacred forest's biological soil crust were analyzed for their bioactive potential, bio-crust diversity, and distribution.
Collapse
Affiliation(s)
- Mani Vinoth
- PG and Research Department of Botany, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India (A.K.K.A.)
| | | | - Abdul Kareem Khaleel Ahamed
- PG and Research Department of Botany, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India (A.K.K.A.)
| | - Khawla Ibrahim Alsamhary
- Departmen of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (K.I.A.); (N.M.A.-e.); (N.A.-R.)
| | - Nouf Mohammed Al-enazi
- Departmen of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (K.I.A.); (N.M.A.-e.); (N.A.-R.)
| | - Neveen Abdel-Raouf
- Departmen of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (K.I.A.); (N.M.A.-e.); (N.A.-R.)
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Salah Salem Street, Beni-Suef 62511, Egypt
| | - Reem Mohammed Alharbi
- Biology Department, Science College, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | | | - Gangalla Ravi
- Department of Microbiology, Kakatiya University, Warangal 506009, Telangana, India;
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam N. Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Golubeva A, Roychoudhury P, Dąbek P, Pałczyńska J, Pryshchepa O, Piszczek P, Pomastowski P, Gloc M, Dobrucka R, Feliczak-Guzik A, Nowak I, Kurzydłowski KJ, Buszewski B, Witkowski A. A novel effective bio-originated methylene blue adsorbent: the porous biosilica from three marine diatom strains of Nanofrustulum spp. (Bacillariophyta). Sci Rep 2023; 13:9168. [PMID: 37280270 PMCID: PMC10244400 DOI: 10.1038/s41598-023-36408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
In the present paper, for the first time the ability of the porous biosilica originated from three marine diatom strains of 'Nanofrustulum spp.' viz. N. wachnickianum (SZCZCH193), N. shiloi (SZCZM1342), N. cf. shiloi (SZCZP1809), to eliminate MB from aqueous solutions was investigated. The highest biomass was achieved under silicate enrichment for N. wachnickianum and N. shiloi (0.98 g L-1 DW and 0.93 g L-1 DW respectively), and under 15 °C for N. cf. shiloi (2.2 g L-1 DW). The siliceous skeletons of the strains were purified with hydrogen peroxide and characterized by SEM, EDS, the N2 adsorption/desorption, XRD, TGA, and ATR-FTIR. The porous biosilica (20 mg DW) obtained from the strains i.e. SZCZCH193, SZCZM1342, SZCZP1809, showed efficiency in 77.6%, 96.8%, and 98.1% of 14 mg L-1 MB removal under pH 7 for 180 min, and the maximum adsorption capacity was calculated as 8.39, 19.02, and 15.17 mg g-1, respectively. Additionally, it was possible to increase the MB removal efficiency in alkaline (pH = 11) conditions up to 99.08% for SZCZP1809 after 120 min. Modelling revealed that the adsorption of MB follows Pseudo-first order, Bangham's pore diffusion and Sips isotherm models.
Collapse
Affiliation(s)
- Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland.
| | - Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| | - Jagoda Pałczyńska
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875, Poznan, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Krzysztof J Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45 c, 15-351, Bialystok, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
- Prof. Jan Czochralski Kuyavian-Pomeranian Research and Development Centre, Krasińskiego 4, 87-100, Toruń, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| |
Collapse
|
19
|
Golubeva A, Roychoudhury P, Dąbek P, Pryshchepa O, Pomastowski P, Pałczyńska J, Piszczek P, Gloc M, Dobrucka R, Feliczak-Guzik A, Nowak I, Buszewski B, Witkowski A. Removal of the Basic and Diazo Dyes from Aqueous Solution by the Frustules of Halamphora cf. salinicola (Bacillariophyta). Mar Drugs 2023; 21:md21050312. [PMID: 37233506 DOI: 10.3390/md21050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola, grown under laboratory conditions, has been identified. The porous architecture and negative surface charge under a pH of 7, provided by the various functional groups via Si-O, N-H, and O-H on these surfaces, revealed by SEM, the N2 adsorption/desorption isotherm, Zeta-potential measurement, and ATR-FTIR, respectively, made the frustules an efficient mean of removal of the diazo and basic dyes from the aqueous solutions, 74.9%, 94.02%, and 99.81% against Congo Red (CR), Crystal Violet (CV), and Malachite Green (MG), respectively. The maximum adsorption capacities were calculated from isotherms, as follows: 13.04 mg g-1, 41.97 mg g-1, and 33.19 mg g-1 against CR, CV, and MG, respectively. Kinetic and isotherm models showed a higher correlation to Pore diffusion and Sips models for CR, and Pseudo-Second Order and Freundlich models for CV and MG. Therefore, the cleaned frustules of the thermal spring-originated diatom strain Halamphora cf. salinicola could be used as a novel adsorbent of a biological origin against anionic and basic dyes.
Collapse
Affiliation(s)
- Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jagoda Pałczyńska
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznan, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
- Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego 4, 87-100 Toruń, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| |
Collapse
|
20
|
Ouzakar S, Skali Senhaji N, Saidi MZ, El Hadri M, El Baaboua A, El Harsal A, Abrini J. Antibacterial and antifungal activity of zinc oxide nanoparticles produced by Phaeodactylum tricornutum culture supernatants and their potential application to extend the shelf life of sweet cherry (Prunus avium L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
21
|
Tziourrou P, Vakros J, Karapanagioti HK. Diffuse reflectance spectroscopy (DRS) and infrared (IR) measurements for studying biofilm formation on common plastic litter polymer (LDPE and PET) surfaces in three different laboratory aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67499-67512. [PMID: 37115440 PMCID: PMC10203007 DOI: 10.1007/s11356-023-27163-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023]
Abstract
Different species of microorganisms colonize the plastic surfaces and form biofilms depending on the aquatic environment. In the current investigation, characteristics of the plastic surface after exposure to three different aquatic environments based on visualization using scanning electron microscopy (SEM) and spectroscopic (diffuse reflectance (DR) and infrared (IR)) techniques were examined in laboratory bioreactors with time. For both materials, there were no differences observed in the ultraviolet (UV) region among the reactors and several peaks were observed with fluctuating intensities and without any trends. For light density polyethylene (LDPE), peaks indicating the presence of biofilm could be observed in the visible region for activated sludge bioreactor, and for polyethylene terephthalate (PET), freshwater algae biofilm was also visible. PET in freshwater bioreactor is the most densely populated sample both under the optical microscope and SEM. Based on the DR spectra, different visible peaks for LDPE and PET were observed but, in both cases, the visible region peaks (~ 450 and 670 nm) correspond to the peaks found in the water samples of the bioreactors. The difference on these surfaces could not be identified with IR but the fluctuations observed in the UV wavelength region were also detectable using indices obtained from the IR spectra such as keto, ester, and vinyl. For instance, the virgin PET sample shows higher values in all the indices than the virgin LDPE sample [(virgin LDPE: ester Index (I) = 0.051, keto I = 0.039, vinyl I = 0.067), (virgin PET: ester I = 3.5, keto I = 19, vinyl I = 0.18)]. This suggests that virgin PET surface is hydrophilic as expected. At the same time, for all the LDPE samples, all the indices demonstrated higher values (especially for R2) than the virgin LDPE. On the other hand, ester and keto indices for PET samples demonstrated lower values than virgin PET. In addition, DRS technique was able to identify the formation of the biofilm both on wet and dry samples. Both DRS and IR can describe changes in the hydrophobicity during the initial formation of biofilm but DRS can better describe the fluctuations of biofilm in the visible spectra region.
Collapse
Affiliation(s)
- Pavlos Tziourrou
- Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - John Vakros
- School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus
| | | |
Collapse
|
22
|
M'sakni NH, Alsufyani T. Part B: Improvement of the Optical Properties of Cellulose Nanocrystals Reinforced Thermoplastic Starch Bio-Composite Films by Ex Situ Incorporation of Green Silver Nanoparticles from Chaetomorpha linum. Polymers (Basel) 2023; 15:polym15092148. [PMID: 37177295 PMCID: PMC10180543 DOI: 10.3390/polym15092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The study was used in the context of realigning novel low-cost materials for their better and improved optical properties. Emphasis was placed on the bio-nanocomposite approach for producing cellulose/starch/silver nanoparticle films. These polymeric films were produced using the solution casting technique followed by the thermal evaporation process. The structural model of the bio-composite films (CS:CL-CNC7:3-50%) was developed from our previous study. Subsequently, in order to improve the optical properties of bio-composite films, bio-nanocomposites were prepared by incorporating silver nanoparticles (AgNPs) ex situ at various concentrations (5-50% w/w). Characterization was conducted using UV-Visible (UV-Vis), Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) to understand the structure-property relationships. The FTIR analysis indicated a reduction in the number of waves associated with the OH functional groups by adding AgNPs due to the formation of new hydrogen bonds between the bio-composite matrix and the CL-WE-AgNPs. Based on mathematical equations, the optical bandgap energy, the energy of Urbach, the edge of absorption (Ed), and the carbon clusters (N) were estimated for CS:CL-CNC and CS:CL-CNC-AgNPs (5-50%) nanocomposite films. Furthermore, the optical bandgap values were shifted to the lower photon energy from 3.12 to 2.58 eV by increasing the AgNPs content, which indicates the semi-conductor effect on the composite system. The decrease in Urbach's energy is the result of a decrease in the disorder of the biopolymer matrix and/or attributed to an increase in crystalline size. In addition, the cluster carbon number increased from 121.56 to 177.75, respectively, from bio-composite to bio-nanocomposite with 50% AgNPs. This is due to the presence of a strong H-binding interaction between the bio-composite matrix and the AgNPs molecules. The results revealed that the incorporation of 20% AgNPs into the CS:CL-CNC7:3-50% bio-composite film could be the best candidate composition for all optical properties. It can be used for potential applications in the area of food packaging as well as successfully on opto-electronic devices.
Collapse
Affiliation(s)
- Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Science, Monastir University, Monastir 5019, Tunisia
| | - Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
23
|
Banerjee A, Gautam R, Mudliar S, Bhaskar T, Ghosh D. Water footprint and wastewater quality assessment of yeast single cell oil production: Gate to gate approach for industrial water sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161127. [PMID: 36587680 DOI: 10.1016/j.scitotenv.2022.161127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Effective water resource utilization and sustainability for industrial operations is a growing concern. With increased industrial water demand, abstraction and water quality changes are rising. In India, distilleries generate more than 40.4 billion litres of effluent daily within the fermentation industry. Water, a public good with market and opportunity costs, needs effective mapping and management. Emerging distillery processes such as yeast lipid fermentation, if developed along with water sustainability, could aid in advancing water resource management. In the scope of this idea, the present study focuses on assessing the water footprint and water quality mapping for Rhodotorula mucilaginosa IIPL32 lipid production using crude glycerol, a by-product of the biodiesel industry. The assessment was based on primary data generated during the 500 L plant scale operation. The process's blue water footprint was assessed by applying a chain-summation approach, and the grey water requirement was determined by measuring water quality parameters for the effluent streams. The process's net blue and grey water footprint were estimated to be 3.87 and 23.66 m3 water/kg of lipid, respectively. Water quality index ratings were identified for all the respective water streams within the processing system, and human risk factors were estimated. The results suggested proper treatment of the spent broth, whereas the secondary effluent stream from cleaning operations could be reutilized within the system. Quality mapping also suggested that the effluent's high organic and mineral load can be processed for water and material recovery, which may significantly reduce the process's grey water and pollution load.
Collapse
Affiliation(s)
- Ayan Banerjee
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248001, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 210002, Uttar Pradesh, India
| | - Rahul Gautam
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248001, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 210002, Uttar Pradesh, India
| | - Sandeep Mudliar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 210002, Uttar Pradesh, India; Plant Cell Biotechnology (PCBT) Department, Mysore 570 020, Karnataka, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248001, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 210002, Uttar Pradesh, India
| | - Debashish Ghosh
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248001, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 210002, Uttar Pradesh, India.
| |
Collapse
|
24
|
Alsufyani T, M'sakni NH. Part A: Biodegradable Bio-Composite Film Reinforced with Cellulose Nanocrystals from Chaetomorpha linum into Thermoplastic Starch Matrices. Polymers (Basel) 2023; 15:polym15061542. [PMID: 36987321 PMCID: PMC10058665 DOI: 10.3390/polym15061542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, macroalgae and microalgae have played a significant role in the production of organic matter, fiber, and minerals on Earth. They contribute to both technical and medicinal applications as well as being a healthy and nutritious food for humans and animals. The theme of this work concerns the development and exploitation of Chaetomorpha linum (C. linum) biomass, through the elaboration of a new starch-based composite film reinforced by cellulose nanocrystals (CL-CNC) derived from C. linum. The first step involves the chemical extraction of CL-CNC from dry C. linum algae biomass. To achieve this, three types of cyclic treatment were adopted: alkalinization (sodium hydroxide) followed by bleaching (sodium hypochlorite) and acid hydrolysis (hydrochloric acid). We then studied the optimization of the development of bio-composite films based on corn starch (CS) reinforced by CL-CNC. These polymeric films were produced using the solution-casting technique followed by the thermal evaporation process. Structure and interactions were modified by using different amounts of glycerol plasticizers (20% and 50%) and different CS:CNC ratios (7:3 and 8:2). These materials were characterized by UV visible (UV/Vis), Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM) spectroscopy to understand structure-property relationships. The result revealed that the best matrix composition is 7:3 (CS: CL-CNC) with 50% glycerol, which reflects that the reinforcing effect of CL-CNC was greater in bio-composites prepared with a 50% plasticizer, revealing the formation of hydrogen bonds between CL-CNC and CS.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Science, Monastir University, Monastir 5019, Tunisia
| |
Collapse
|
25
|
Verdú I, Amariei G, Rueda-Varela C, González-Pleiter M, Leganés F, Rosal R, Fernández-Piñas F. Biofilm formation strongly influences the vector transport of triclosan-loaded polyethylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160231. [PMID: 36402321 DOI: 10.1016/j.scitotenv.2022.160231] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study aimed at evaluating the influence of biofilm in the role of microplastics (MPs) as vectors of pollutants and their impact on Daphnia magna. To do this, virgin polyethylene MPs, (PE-MPs, 40-48 μm) were exposed for four weeks to wastewater (WW) from influent and effluent to promote biofouling. Then, the exposed PE-MPs were put in contact with triclosan. Finally, the toxicity of TCS-loaded and non-TCS loaded PE-MPs were tested on the survival of D. magna adults for 21 days. Results from metabarcoding analyses indicated that exposure to TCS induced shifts in the bacterial community, selecting potential TCS-degrading bacteria. Results also showed that PE-MPs were ingested by daphnids. The most toxic virgin PE-MPs were those biofouled in the WW effluent. The toxicity of TCS-loaded PE-MPs biofouled in the WW effluent was even higher, reporting mortality in all tested concentrations. These results indicate that biofouling of MPs may modulate the adsorption and subsequent desorption of co-occurring pollutants, hence affecting their potential toxicity towards aquatic organisms. Future studies on realistic environmental plastic impact should include the characterization of biofilms growing on plastic. Since inevitably plastic biofouling occurs over time in nature, it should be taken into account as it may modulate the sorption of co-occurring pollutants.
Collapse
Affiliation(s)
- Irene Verdú
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Cristina Rueda-Varela
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain.
| |
Collapse
|
26
|
Cuellar-Bermudez SP, Bleus D, Mees MA, Struyf T, Lama S, Vandamme D, Adriaensens P, Scherrers R, Thielemans W, Van den Ende W, Wattiez R, Muylaert K. Isolation, purification, and metal-induced gelation of released polysaccharides from spent culture medium of Arthrospira. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
27
|
Barakat KM, Ismail MM, Abou El Hassayeb HE, El Sersy NA, Elshobary ME. Chemical characterization and biological activities of ulvan extracted from Ulva fasciata (Chlorophyta). RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractUlvan is a sulfated heteropolysaccharide present in the cell wall of Ulva species with a unique structure and biological potential used in various fields. Chemical characterization was carried out to determine the structure of ulvan from Ulva fasciata Delile collected from Eastern Harbor, Alexandria coast, Egypt. Ulva contains 31.5% carbohydrate with a total ulvan content of 43.66% of total carbohydrate (13.75 g/100 g DW) and sulfate content of 20.45% of ulvan. FTIR spectrum presented signals of the sulfate ester (C–O–S) and sulfate groups (S=O), typical for ulvan. GC–MS revealed that ulvan was mainly composed of rhamnose and fucose. 1H-NMR spectra of ulvan showed identical behavior of monosaccharides nature with peaks characteristic of sulfated polysaccharides at 3.2–5.3 ppm region. Scanning electron micrographs (SEM) demonstrated amorphous architecture, and the sulfated nature of polysaccharides was emphasized by EDX analysis. The extracted ulvan showed significant antimicrobial activity against human and fish pathogens as well as antifouling bacteria with minimum inhibitory concentrations (MIC) of 8 µg/mL. The extracted ulvan exhibited potent antioxidant activity with a scavenging effect of 84.93% for 2,2-diphenyl-1-picrylhydrazy free radical (DPPH). Moreover, it showed anti-arthritic properties for the first time with a maximum inhibition of 86.04% with IC50 of 43.21%, indicating their potential value for the health and food industry.
Collapse
|
28
|
Masood S, Gulnar L, Chandio AD, Arshad H, Rehman W, Atique A. Preparation and optical characterization of poly (vinyl alcohol) and starch (native and modified) blend films. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232314807. [PMID: 36499132 PMCID: PMC9737215 DOI: 10.3390/ijms232314807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Wild mushrooms have gained great importance for being a source of biologically active compounds. In this work, we evaluate the anticancer and antioxidant activity of a water-soluble crude polysaccharide extract isolated from the fruiting bodies of the Ganoderma aff. australe (GACP). This mushroom was collected in San Mateo (Boyacá, Colombia) and identified based on macroscopic and microscopic characterization. GACP was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, high-performance liquid chromatography-diode array detector, and nuclear magnetic resonance. The antiradical and antioxidant activity were evaluated by different methods and its anticancer activity was verified in the osteosarcoma MG-63 human cell line. Chemical and spectroscopic analysis indicated that GACP consisted of β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and α-D-Glcp-(1→ residues. The results of the biological activity showed that GACP exhibited high antioxidant activity in the different methods and models studied. Moreover, the results showed that GACP impaired cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and cell proliferation (clonogenic assay) in a dose-response manner on MG-63 cells. The findings of this work promote the use of mushroom-derived compounds as anticancer and antioxidant agents for potential use in the pharmaceutical and food industries.
Collapse
|
30
|
Lentinula edodes, a Novel Source of Polysaccharides with Antioxidant Power. Antioxidants (Basel) 2022; 11:antiox11091770. [PMID: 36139844 PMCID: PMC9495869 DOI: 10.3390/antiox11091770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The fruiting bodies of edible mushrooms represent an important source of biologically active polysaccharides. In this study, Lentinula edodes crude polysaccharides (LECP) were extracted in hot water, and their antioxidant and antiradical activities were investigated. The antioxidant activity of LECP was investigated against reactive species such as 1,1’-diphenyl-2-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, hydroxyl and superoxide anion radicals, reducing power with EC50 values of 0.51, 0.52, 2.19, 3.59 and 1.73 mg/mL, respectively. Likewise, LECP inhibited the lipid peroxidation induced in methyl linoleate through the formation of conjugated diene hydroperoxide and malondialdehyde. The main sugar composition of LECP includes mannose, galactose, glucose, fucose and glucuronic acid. Characterization by Fourier transform infrared spectroscopy and nuclear magnetic resonance determined that LECP was made up of α and β glycosidic bonds with a backbone of α-D-Glc, →6)-β-D-Glcp-(1→, →6)-α-D-Galp-(1→ and β-D-Manp-(1→ residues. The results showed that LECP can scavenge all reactive species tested in a concentration-dependent manner and with a protective effect in the initial and final stages of lipid peroxidation. The natural antioxidant activity of the LECP that was investigated strengthens the high medicinal and nutritional value of this mushroom.
Collapse
|
31
|
Depolymerized Fractions of Sulfated Galactans Extracted from Gracilaria fisheri and Their Antibacterial Activity against Vibrio parahaemolyticus and Vibrio harveyi. Mar Drugs 2022; 20:md20080469. [PMID: 35892937 PMCID: PMC9394303 DOI: 10.3390/md20080469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Various seaweed sulfated polysaccharides have been explored for antimicrobial application. This study aimed to evaluate the antibacterial activity of the native Gracilaria fisheri sulfated galactans (NSG) and depolymerized fractions against the marine pathogenic bacteria Vibrio parahaemolyticus and Vibrio harveyi. NSG was hydrolyzed in different concentrations of H2O2 to generate sulfated galactans degraded fractions (SGF). The molecular weight, structural characteristics, and physicochemical parameters of both NSG and SGF were determined. The results revealed that the high molecular weight NSG (228.33 kDa) was significantly degraded to SGFs of 115.76, 3.79, and 3.19 kDa by hydrolysis with 0.4, 2, and 10% H2O2, respectively. The Fourier transformed spectroscopy (FTIR) and 1H− and 13C−Nuclear magnetic resonance (NMR) analyses demonstrated that the polysaccharide chain structure of SGFs was not affected by H2O2 degradation, but alterations were detected at the peak positions of some functional groups. In vitro study showed that SGFs significantly exerted a stronger antibacterial activity against V. parahaemolyticus and V. harveyi than NSG, which might be due to the low molecular weight and higher sulfation properties of SGF. SGF disrupted the bacterial cell membrane, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for the exploitation and utilization of low-molecular-weight sulfated galactans from G. fisheri to prevent and control the shrimp pathogens.
Collapse
|
32
|
Multiple Photolyases Protect the Marine Cyanobacterium Synechococcus from Ultraviolet Radiation. mBio 2022; 13:e0151122. [PMID: 35856560 PMCID: PMC9426592 DOI: 10.1128/mbio.01511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine cyanobacteria depend on light for photosynthesis, restricting their growth to the photic zone. The upper part of this layer is exposed to strong UV radiation (UVR), a DNA mutagen that can harm these microorganisms. To thrive in UVR-rich waters, marine cyanobacteria employ photoprotection strategies that are still not well defined. Among these are photolyases, light-activated enzymes that repair DNA dimers generated by UVR. Our analysis of genomes of 81 strains of Synechococcus, Cyanobium, and Prochlorococcus isolated from the world’s oceans shows that they possess up to five genes encoding different members of the photolyase/cryptochrome family, including a photolyase with a novel domain arrangement encoded by either one or two separate genes. We disrupted the putative photolyase-encoding genes in Synechococcus sp. strain RS9916 and discovered that each gene contributes to the overall capacity of this organism to survive UVR. Additionally, each conferred increased survival after UVR exposure when transformed into Escherichia coli lacking its photolyase and SOS response. Our results provide the first evidence that this large set of photolyases endows Synechococcus with UVR resistance that is far superior to that of E. coli, but that, unlike for E. coli, these photolyases provide Synechococcus with the vast majority of its UVR tolerance.
Collapse
|
33
|
Ben Hsouna A, Hfaiedh M, Ben Slima S, Romdhane W, Akacha BB, Bouterra MT, Dhifi W, Mnif W, Brini F, Ben Saad R, Ben Salah R. Antioxidant and hepatoprotective effects of novel heteropolysaccharide isolated from Lobularia maritima on CCl4-induced liver injury in rats. Food Sci Nutr 2022; 10:2271-2284. [PMID: 35844920 PMCID: PMC9281954 DOI: 10.1002/fsn3.2836] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the extraction and the characterization of a novel heteropolysaccharide from Tunisian halophyte Lobularia maritima (LmPS). We were also interested in its antioxidant, anti-inflammatory, and hepatoprotective effects on carbon tetrachloride (CCl4)-induced liver injury in rats. LmPS physicochemical properties were evaluated by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and UV absorption. According to TLC and HPLC results, LmPS was a heteropolysaccharide composed of glucose, galactose, and xylose. Its molecular weight was 130.62 kDa. This heteropolysaccharide was characterized by a significant antioxidant potential and was efficient against oxidative stress and CCL4-induced hepatotoxicity in rat Wistar models (n = 8) treated with a single dose of LmPS 250 mg/kg of body weight. This was evidenced by a significant increase in serum marker enzymes specially aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH). The cytokines released after stimulation of rats with LmPS showed high anti-inflammatory profiles with an increased rate of interleukine-10 (IL-10) with 0.03 pg/mL compared to animals treated only with CCl4. On the contrary, we noticed a decrease of the other cytokines (tumor necrosis factor α: TNF-α, interleukine-6: IL-6, transforming growth factor beta 1: TGF-β1) with average concentration values of <0.2, 0.1, and 0.04 pg/mL, respectively. Besides, histopathological examinations revealed that CCl4 causes acute liver damage, characterized by extensive hepatocellular necrosis, vacuolization, and inflammatory cell infiltration, as well as DNA fragmentation. LmPS administration at a dose of 250 mg/kg resulted in a significant hepatoprotection, evidenced by a reduction of CCl4-induced oxidative damage for all tested markers. These findings eagerly confirmed that LmPS was effective in the protection against CCl4-induced hepatotoxicity and genotoxicity. It, therefore, suggested a potential therapeutic use of this polysaccharide as an alternative medicine for patients with acute liver diseases.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Department of Life SciencesFaculty of Sciences of GafsaGafsaTunisia
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Mbarka Hfaiedh
- Research Unit of Active Biomolecules ValorisationHigher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| | - Sirine Ben Slima
- Laboratory of Microorganisms and Biomolecules (LMB)Center of Biotechnology of SfaxSfaxTunisia
| | - Walid Ben Romdhane
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Mohamed Taieb Bouterra
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Wissal Dhifi
- Laboratory of Biotechnology and Valorisation of Bio‐GeoRessourcesHigher Institute of Biotechnology of Sidi ThabetBiotechpole Sidi ThabetUniversity of ManoubaArianaTunisia
| | - Wissem Mnif
- Department of ChemistryFaculty of Sciences and Arts in BalgarnUniversity of BishaBishaSaudi Arabia
- ISBSTBVBGR‐LR11ES31Biotechpole Sidi ThabetUniversity of ManoubaArianaTunisia
| | - Faical Brini
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant ImprovementCentre of Biotechnology of SfaxSfaxTunisia
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules (LMB)Center of Biotechnology of SfaxSfaxTunisia
| |
Collapse
|
34
|
Soliemani O, Salimi F, Rezaei A. Characterization of exopolysaccharide produced by probiotic Enterococcus durans DU1 and evaluation of its anti-biofilm activity. Arch Microbiol 2022; 204:419. [PMID: 35739327 DOI: 10.1007/s00203-022-02965-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Exopolysaccharides (EPS) produced by lactic acid bacteria are complicated polymers with industrial applications. LAB were isolated, screened for EPS production, and their probiotic properties determined. The anti-biofilm activity of EPS was investigated. Safety of EPS-producing isolate was investigated and it was molecularly identified through 16S rRNA sequencing. Finally, anti-biofilm and emulsification activity of EPS was studied and it was characterized using FT-IR, TGA, 1H-NMR, DLS and HPLC. Thirteen LAB were isolated from dairy products. They showed probiotic characteristics like acid resistance (0-6.51 CFU ml-1) hydrophobicity (8-54.04%), autoaggregation (0% [t = 2 h]-99.8% [t = 24 h]) and coaggregation with food borne pathogens. Among them, Enterococcus durans DU1 had ability to produce EPS. EPS of Enterococcus durans DU1 showed antibiofilm activity against Y. enterocolitica (24.06-51.36%), S. aureus (12.33-49.6%), and B. cereus (11.66-27.16%). FT-IR showed this EPS had characteristic absorption peaks due to the presence of the pyran ring of sugars. 1H NMR showed that EPS has N-acetyl, methyl, and alkyl groups in its structure. The HPLC analysis showed that EPS is a heteropolysaccharide and consists of sucrose, glucose, and fructose. EPS showed significant thermal stability (20% weight loss) under 300 °C and zeta potential of - 18.1 mV. This EPS can be used in the food industry with no adverse effect on consumers.
Collapse
Affiliation(s)
- Omid Soliemani
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran.
| | - Arezou Rezaei
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| |
Collapse
|
35
|
Kubar AA, Ali A, Kumar S, Huo S, Ullah MW, Alabbosh KFS, Ikram M, Cheng J. Dynamic Foam Characteristics during Cultivation of Arthrospira platensis. Bioengineering (Basel) 2022; 9:bioengineering9060257. [PMID: 35735500 PMCID: PMC9220301 DOI: 10.3390/bioengineering9060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study is aimed at understanding the serious foaming problems during microalgal cultivation in industrial raceway ponds by studying the dynamic foam properties in Arthrospira platensis cultivation. A. platensis was cultivated in a 4 L bowl bioreactor for 4 days, during which the foam height above the algal solution increased from 0 to 30 mm with a bubble diameter of 1.8 mm, and biomass yield reached 1.5 g/L. The algal solution surface tension decreased from 55 to 45 mN/m, which favored the adsorption of microalgae on the bubble to generate more stable foams. This resulted in increased foam stability (FS) from 1 to 10 s, foam capacity (FC) from 0.3 to 1.2, foam expansion (FE) from 15 to 43, and foam maximum density (FMD) from 0.02 to 0.07. These results show a decrease in CO2 flow rate and operation temperature when using the Foamscan instrument, which minimized the foaming phenomenon in algal solutions to a significantly lower and acceptable level.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
| | - Amjad Ali
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Correspondence: (S.H.); (J.C.)
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | | | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
- Correspondence: (S.H.); (J.C.)
| |
Collapse
|
36
|
Laroche C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar Drugs 2022; 20:md20050336. [PMID: 35621987 PMCID: PMC9148076 DOI: 10.3390/md20050336] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic organisms that can produce/accumulate biomolecules with industrial interest. Among these molecules, EPSs are macromolecular polysaccharidic compounds that present biological activities and physico-chemical properties, allowing to consider their valorization in diverse commercial markets, such as cosmetic, therapeutic, nutraceutic, or hydrocolloids areas. The number of microalgae and cyanobacteria strains described to produce such EPSs has increased in recent years as, among the 256 producing strains gathered in this review, 86 were published in the last 10 years (~33%). Moreover, with the rise of research on microalgae EPSs, a variety of monosaccharides compositions have been discovered, highlighting the versatility of these organisms. If some production strategies can be applied to increase EPS production yields, it appears that case by case studies are needed to promote EPS synthesis by a strain, as many responses exist. This paper proposes an up-to-date state of the art of the diversity of microalgae and cyanobacteria EPS-producing strains, associated to the variability of compositions. The strategies for the production and extraction of the polymers are also discussed. Finally, an overview of the biological activities and physico-chemical properties allow one to consider their use on several commercial markets.
Collapse
Affiliation(s)
- Céline Laroche
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
37
|
Miguel SP, Loureiro J, Ribeiro MP, Coutinho P. Osmundea sp. macroalgal polysaccharide-based nanoparticles produced by flash nanocomplexation technique. Int J Biol Macromol 2022; 204:9-18. [PMID: 35122803 DOI: 10.1016/j.ijbiomac.2022.01.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/29/2022]
Abstract
The macroalgae-derived polysaccharides' biological potential has been explored due to their attractive intrinsic properties such as biocompatibility, biodegradability, and their ability to conjugate with other compounds. In particular, in the drug delivery systems field, the anionic macroalgae polysaccharides have been combined with cationic compounds through ionotropic gelation and/or bulk mixing. However, these techniques did not assure reproducibility, and the stability of nanoparticles is undesired. To overcome these limitations, herein, the polysaccharide extracted from Osmundea sp. was used to produce nanoparticles through the flash nanocomplexation technique. This approach rapidly mixed the negative charge of macroalgae polysaccharide with a positive chitosan charge on a millisecond timescale. Further, diclofenac (an anti-inflammatory drug) was also incorporated into complex nanoparticles. Overall, the gathered data showed that hydrodynamic diameter nanoparticles values lower than 100 nm, presenting a narrow size distribution and stability. Also, the diclofenac exhibited a targeted and sustained release profile in simulating inflammatory conditions. Likewise, the nanoparticles showed excellent biological properties, evidencing their suitability to be used to treat inflammatory skin diseases.
Collapse
Affiliation(s)
- Sónia P Miguel
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Jorge Loureiro
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| | - Maximiano P Ribeiro
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
38
|
Amariei G, Rosal R, Fernández-Piñas F, Koelmans AA. Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118622. [PMID: 34871644 DOI: 10.1016/j.envpol.2021.118622] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R2 = 0.868-0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.
Collapse
Affiliation(s)
- Georgiana Amariei
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, DD, Wageningen, the Netherlands; Department of Chemical Engineering, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain; Department of Biological and Chemical Engineering-Process and Materials Engineering, Aarhus University, Åbogade 40, DK-8200, Aarhus N., Denmark
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, DD, Wageningen, the Netherlands.
| |
Collapse
|
39
|
An S, Wang L, Zhou P, Luo Z, Feng R, Li X. Construction of Hohenbuehelia serotina polysaccharides-mucin nanoparticles and their sustain-release characteristics under simulated gastrointestinal digestion in vitro. Int J Biol Macromol 2021; 191:1-8. [PMID: 34537291 DOI: 10.1016/j.ijbiomac.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, Hohenbuehelia serotina polysaccharides-mucin nanoparticles (HSP-MC NPs) were fabricated based on hydrogen bonding and hydrophobicity effects for improving the bioavailability of HSP. The structural characteristics and morphology of HSP-MC NPs prepared by different conditions were respectively identified and observed. The results showed that HSP-MC NPs (HSP/MC, 1/1, w/w) presented the optimal physicochemical characteristics, with the encapsulation efficiency of 88.09 ± 0.01%, average particle size of 509.4 ± 9.76 nm and zeta potential of -20.6 ± 0.7 mV. Furthermore, HSP-MC NPs (HSP/MC, 1/1, w/w), belonged to non-crystalline substances, exhibited the excellent physicochemical stabilities against temperature, pH and ionic strength, and had the uniform spherical morphological characteristics. In addition, under simulated gastrointestinal digestion in vitro, HSP-MC NPs (HSP/MC, 1/1, w/w) showed the good sustained release performances, that might effectively improve the absorption rate of HSP. The present research is meaningful for designing the polysaccharides-loaded nano-delivery system based on natural non-toxic carrier that can be used in function food field.
Collapse
Affiliation(s)
- Siying An
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Nanobiotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
40
|
Abstract
Among photosynthetic microorganisms, Cyanobacteria and Microalgae species have been highly studied thank to their high value-added compounds for several industrial applications. Thus, their production is increasing in the last decade to produce raw material for cosmetics. In fact, the daily routine includes the use of cosmetics and sunscreens to protect against the environmental changes, mainly the increment of ultraviolet (UV) radiation rate with a consequent skin damage and premature aging due to this overexposure. As it is well discussed, chemical UV filters are extensively incorporated into sunscreens formulas; however, they can induce allergenic reactions as well. For these reasons, some pigments derived from microalgae, such as astaxanthin, lutein, β-carotene as well as other biocompounds are now well described in the literature as well as biotechnologically manufactured as natural ingredients to be incorporated into skin care products with multifunctional benefits even for sunscreen purposes. Hence, this investigation summarizes the recent studies about the main pigments from photosynthetic microorganisms' biomasses as well as their uses in dermocosmetics with novel attributes, such as anti-aging agents, makeups, skin lightening and whitening, among others.
Collapse
|
41
|
Alinovi M, Bancalari E, Martelli F, Cirlini M, Rinaldi M. Stabilization of
Arthrospira platensis
with high‐pressure processing and thermal treatments: Effect on physico‐chemical and microbiological quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Sedenho GC, Modenez I, Mendes GR, Crespilho FN. The role of extracellular polymeric substance matrix on Saccharomyces cerevisiae bioelectricity. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Tziourrou P, Kordella S, Ardali Y, Papatheodorou G, Karapanagioti HK. Microplastics formation based on degradation characteristics of beached plastic bags. MARINE POLLUTION BULLETIN 2021; 169:112470. [PMID: 34049063 DOI: 10.1016/j.marpolbul.2021.112470] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
Environmental pollution from plastic bags is a significant issue in the global environment. Plastic bags can be transferred by the wind and ocean currents everywhere in the three dimensions and be fragmented into small particles, termed film-shaped microplastics. The purpose of this study is to provide insights on the degradation of beached plastic bags. Monitoring and sampling were performed to determine plastic bag fragmentation and the possible mechanisms. On selected samples, various spectroscopic techniques and microscopy were used. Before the imposition of the "green" plastic bag fee in Greece, field monitoring suggested that the majority of the coastal plastic bags were fragmented whereas after the "green" fee, less fragmented bags were observed. Evidence of three degradation mechanisms were observed in this study. For oxodegradable plastic bags, degradation takes place for the starch additives and the polymer part stays in the environment as microplastic particles. For thin light density polyethylene plastic bags, mechanical fragmentation takes place in the environment creating microplastics before significant chemical alterations in functional groups were observed and once chemical alteration (oxidation) is observed, fragmentation (of HC or CC bonds) is also taking place. Thus, regulating thin plastic bags usage removes problems related to plastic bags but also to film-shaped microplastics.
Collapse
Affiliation(s)
- P Tziourrou
- Department of Chemistry, University of Patras, Patras, Greece
| | - S Kordella
- Laboratory of Marine Geology and Physical Oceanography, Department of Geology, University of Patras, Patras, Greece
| | - Y Ardali
- Department of Environmental Engineering, Ondokuz Mayis University, Samsun, Turkey
| | - G Papatheodorou
- Laboratory of Marine Geology and Physical Oceanography, Department of Geology, University of Patras, Patras, Greece
| | | |
Collapse
|
44
|
El-Naggar NEA, Hamouda RA, Abuelmagd MA, Abdelgalil SA. Bioprocess development for biosorption of cobalt ions and Congo red from aquatic mixture using Enteromorpha intestinalis biomass as sustainable biosorbent. Sci Rep 2021; 11:14953. [PMID: 34294748 PMCID: PMC8298401 DOI: 10.1038/s41598-021-94026-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Because of the increased amount of cobalt and Congo red dye effluents attributable to the industrial operations, the capacity of Enteromorpha intestinalis biomass as a sustainable source to achieve significant biosorption percent for both pollutants from dual solution was assessed. A fifty batch FCCCD experiments for biosorption of cobalt ions and Congo red dye were performed. The complete removal of Congo red dye was obtained at 36th run using an initial pH value of 10, 1.0 g/L of Enteromorpha intestinalis biomass, 100 and 200 mg/L of Congo red and cobalt for a 20-min incubation time. Meanwhile, a cobalt removal percent of 85.22 was obtained at 35th run using a neutral pH of 7.0, 3.0 g/L of algal biomass, 150 and 120 mg/L of Congo red, and cobalt for a 60-min incubation time. For further illustration and to interpret how the biosorption mechanism was performed, FTIR analysis was conducted to inspect the role of each active group in the biosorption process, it can be inferred that -OH, C-H, C=O, O-SO3- and C-O-C groups were mainly responsible for Co2+ adsorption of from aqueous dual solution. Also, scan electron microscope revealed the appearance of new shiny particles biosorbed on E. intestinalis surface after the biosorption process. EDS analysis proved the presence of Co2+ on the algal surface after the biosorption process.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, 21934, Alexandria, Egypt.
| | - Ragaa A Hamouda
- Department of Biology, College of Sciences and Arts Khulais,, University of Jeddah, Jeddah, Saudi Arabia
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology, Research Institute, University of Sadat City, El Sadat City, Egypt
| | | | - Soad A Abdelgalil
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
45
|
Pais M, George SD, Rao P. Glycogen nanoparticles as a potential corrosion inhibitor. Int J Biol Macromol 2021; 182:2117-2129. [PMID: 34087305 DOI: 10.1016/j.ijbiomac.2021.05.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Biological macromolecules are proven to be potential green corrosion inhibitors because of their outstanding structural features and eco-friendliness. This study is aimed at enhancing their corrosion mitigation capabilities by converting them into nanoparticles. This is the first work where nanoparticles of biological macromolecules are exploited for corrosion mitigation studies. Glycogen nanoparticles (GLY-Np) were synthesized by microwave-mediated nanoprecipitation method and characterized by ATR-FTIR, XRD, UV-Visible Spectroscopy, FESEM analysis, EDX, TEM, and Zeta potential measurements. They are used as an eco-friendly inhibitor for corrosion control of zinc in sulfamic acid (NH2SO3H). The electrochemical study was a primary experimental tool employed for corrosion rate measurement. Conditions were optimized to obtain maximum inhibition efficiency by varying concentrations of inhibitor and temperature. Activation and thermodynamic parameters were evaluated and discussed in detail. A suitable adsorption isotherm was proposed to fit the experimental results. Adsorption of the inhibitor was confirmed by SEM, EDX, and AFM techniques. The inhibition efficiency of 92% was obtained for 0.02 gL-1 GLY-Np. Thus, GLY-Np turned out to be an effective green inhibition with economic benefits.
Collapse
Affiliation(s)
- Mikitha Pais
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha Rao
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
46
|
Removal of Cationic Organic Dye from Aqueous Solution by Chemical and Pyrolysis Activated Ulva lactuca. WATER 2021. [DOI: 10.3390/w13091154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ulva lactuca has been used to remove many toxic substances from industrial wastewater. In the present study we tried to optimize the efficiency of U. lactuca as an adsorbent of methylene blue (MB) in aqueous solution. U. lactuca was chemically treated with sulfuric acid (UL-H) and sodium hydroxide (UL-OH) and by a slow pyrolysis process (carbonization process) at high temperature T = 600 °C (UL-T) and compared to the nonactive Ulva (UL-NA) and the water insoluble substance (UL-WIS). Several spectroscopic analyses were carried out to detect the biosorption mechanisms of Ulva to remove MB in solution. The effects of different parameters on the adsorption process were studied, i.e., pH (2–10), mass concentration (1–10 g L−1), and contact time (0–120 min). The results showed that the best adsorption of MB by Ulva was at pH = 8, with 5 g L−1 of biomass at 75 min; the best adsorption capacity was 625.0 mg g−1 for UL-OH, which was able to remove more than 89% of MB compared to UL-T, whose removal rate did not exceed 5%. Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) indicated the presence of oxygenated functional groups with a highly porous surface. The kinetic studies confirmed that the majority of treatments follow the pseudo-second-order type. The mathematical models showed that Langmuir model is favorable to UL-OH, UL-WIS, and UL-NA. According to the experimental results, the primary treatment for U. lactuca is a promising environmentally friendly method and an economical strategy for removing MB from aqueous solution. This method can help address the growing demand for adsorbents used in environmental protection processes and the resultant increase in their price.
Collapse
|
47
|
Photocatalytic Bactericidal Performance of LaFeO3 under Solar Light: Kinetics, Spectroscopic and Mechanistic Evaluation. WATER 2021. [DOI: 10.3390/w13091135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lanthanum orthoferrites are a versatile class of catalysts. Here, the photocatalytic bactericidal performance of LaFeO3 (LF) to inactivate pathogenic microorganisms, i.e., Escherichia coli (E. coli), in water under simulated solar irradiation conditions was investigated. Various competing and contributing factors were covered to visualize the reaction medium consisting of E. coli K12 cells, organic sub-fractions formed by cell destruction, and LF surface. LF solar photocatalytic inactivation (SPCI) kinetics revealed the highest inactivation rate in ultrapure water as expected, followed by distilled water (DW), aqueous solution containing anions and cations (WM) and saline solution (SS). Characterization of the released organic matter was achieved by UV-vis and fluorescence spectroscopic techniques as well as organic carbon contents (DOC). Upon SPCI, significant amounts of K+ along with released protein contents were detected expressing cell wall destruction and lysis. Under the specified experimental conditions, in the presence of released intracellular organic and inorganic components via cell lysis, a significant count of E. coli was still present in SS, whereas almost all bacteria were removed in other matrices due to various challenging reasons. Based on the presented data, SPCI of E. coli using LF as a novel photocatalyst was successfully demonstrated as an alternative and promising method for disinfection purposes.
Collapse
|
48
|
Exopolysaccharide of Anoxybacillus pushchinoensis G11 has antitumor and antibiofilm activities. Arch Microbiol 2021; 203:2101-2118. [PMID: 33604750 DOI: 10.1007/s00203-021-02185-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
Exopolysaccharides (EPS/EPSs) possess several various applications in the food and pharmaceutical industries. This study was performed to investigate the biological (antibiofilm and antitumor), rheological (temperature, shear rate, and density) and chemical (solubility, carbohydrate and protein content, composition, molecular weight, functional group analysis, thermal analysis, X-ray diffraction pattern and scanning electron microscopy) properties of the EPS, which was purified from the locally isolated thermophilic bacterium Anoxybacillus pushchinoensis G11 (MN720646). EPS was found to have antibiofilm and antitumor [lung (A-549) and colon (Caco-2 and HT-29) cancer] activities. The viscosity of EPS showing Newtonian flow was temperature dependent. As chemical properties, the EPS was found to be a heteropolysaccharide containing arabinose (57%), fructose (26%), glucose (12%), and galactose (5%). EPS contained 93% carbohydrates and 1.08% protein. The molecular weight of EPS was determined as 75.5 kDa. The FTIR analysis confirmed the presence of sulfate ester (band at 1217 cm-1), an indication of the antitumor effect. The EPS was semi-crystalline. It could maintain 36% of its weight at 800 °C and crystallization and melting temperatures were 221 and 255.6 °C. This is the first report on the EPS production potential and the biological activity of A. pushchinoensis.
Collapse
|
49
|
Abstract
Toxic metal contamination has serious effects on human health. Crude oil that may contain toxic metals and oil spills can further contaminate the environment and lead to increased exposure. This being the case, we chose to study the bio-production of inexpensive, environmentally safe materials for remediation. Streptomyces sp. MOE6 is a Gram-positive, filamentous bacterium from soil that produces an extracellular polysaccharide (MOE6-EPS). A one-factor-at-a-time experiments showed that the maximum production of MOE6-EPS was achieved at 35 °C, pH 6, after nine days of incubation with soluble starch and yeast extract as carbon sources and the latter as the nitrogen source. We demonstrated that MOE6-EPS has the capacity to remove toxic metals such as Co(II), Cr(VI), Cu(II) and U(VI) and from solution either by chelation and/or reduction. Additionally, the bacterium was found to produce siderophores, which contribute to the removal of metals, specifically Fe(III). Additionally, purified MOE6-EPS showed emulsifying activities against various hydrophobic substances, including olive oil, corn oil, benzene, toluene and engine oil. These results indicate that EPS from Streptomyces sp. MOE6 may be useful to sequester toxic metals and oil in contaminated environments.
Collapse
|
50
|
Structure Analysis and Antioxidant Activity of a Novel Polysaccharide from Katan Seeds. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6349019. [PMID: 33511204 PMCID: PMC7822655 DOI: 10.1155/2021/6349019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/30/2020] [Accepted: 12/26/2020] [Indexed: 11/19/2022]
Abstract
In the present work, a novel water-soluble polysaccharide (LWSP) was purified from Katan seeds. Polysaccharide was structurally characterized by NMR spectroscopic analysis, thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR) analysis, X-ray diffraction (XRD), and UV absorption. TLC and HPLC showed that LWSP was a polysaccharide consisted mainly of glucose, mannose, xylose, and arabinose. The FTIR spectrum and UV absorption proved polysaccharide characteristic of LWSP. According to XRD, LWSP presented a semicrystalline behavior. The molecular weight was estimated as 64.56 kDa. Results obtained through 13C and 1H nuclear magnetic resonance (NMR) indicated that LWSP is consisted of four monosaccharide residues with α and β anomers. Physicochemical and antioxidant properties of LWSP were also investigated. Results revealed that LWSP exhibited interesting 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 4.48 mg/ml) and chelating activity (IC50 = 4.79 mg/ml), and it displayed moderate reductive capacities. Overall, the findings suggested that LWSP is a promising source of natural additives in various industries fields.
Collapse
|