1
|
Wang J, Tang X, Liu F, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Sources, metabolism, health benefits and future development of saponins from plants. Food Res Int 2024; 197:115226. [PMID: 39593311 DOI: 10.1016/j.foodres.2024.115226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Saponins are a class of glycoside compounds whose aglycones are triterpenoids or spirostanes, widely exist in a variety of Chinese herbs. Saponins are one of the important active components of medicinal plants and have a wide range of bioactivities. In order to promote the better development and utilization of saponins, the process of digestion, absorption and metabolism of saponins in vivo was reviewed in this paper. At the same time, the main bioactivities of common saponins and their potential mechanisms for alleviating diseases were summarized. Finally, the potential of saponins as functional food has been pointed out, and microbial transformation can make saponins better play this potential in the future.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Fei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
2
|
Abdella FI, Toumi A, Boudriga S, Alanazi TY, Alshamari AK, Alrashdi AA, Hamden K. Antiobesity and antidiabetes effects of Cyperus rotundus rhizomes presenting protein tyrosine phosphatase, dipeptidyl peptidase 4, metabolic enzymes, stress oxidant and inflammation inhibitory potential. Heliyon 2024; 10:e27598. [PMID: 38486768 PMCID: PMC10937842 DOI: 10.1016/j.heliyon.2024.e27598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Diabetes is a significant global health concern that increases the vulnerability to various chronic illnesses. In view of this issue, the current research aimed to examine the effects of administering an extract derived from the tubers of Cyperus rotundus L (CrE) on obesity, type 1 diabetes, and liver-kidney toxicity. Through the utilization of HPLC-DAD analysis, it was discovered that the extract contained several components, including quercetin (47.8%), luteolin glucoside (17%), luteolin (7.56%), apigenin-7-glucoside (6.29%), naringinin (4.52%), and seven others. In vitro experiments they have demonstrated that CrE effectively inhibited key digestive enzymes associated with obesity and type 2 diabetes, such as DPP-4, PTP1B, lipase, and α-amylase, as evidenced by their respective IC50 values are about 23, 51,83, and 67 μg/ml respectively. Furthermore, when diabetic rats were administered CrE, the activity of pancreatic enzymes linked to inflammation, namely 5-lipoxygenase (5-LO), hyaluronidase (HAase), and myeloperoxidase (MPO), was significantly suppressed by 48, 41, 75, and 47%, respectively. Moreover, CrE exhibited protective effects on pancreatic β-cells by inhibiting the formation of thiobarbituric acid reactive substances (TBARS) by 65% and the induction of superoxide Dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities by 62, 108, and 112% respectively as compared to diabetic untreated rat. Additionally, CrE significantly inhibited the activities of intestinal, pancreatic, and serum lipase and α-amylase activities. In diabetic rats, CrE administration suppressed glycogen phosphorylase (GP) stimulated glycogen synthase (GS) activities by 45 and 30%; and this increased liver glycogen content by 45%. Furthermore, CrE modulated key hepatic enzymes involved in carbohydrate metabolism, including hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), glucose-6-phosphatase (G6P), and fructose-1,6-bisphosphatase (FBP). Notably, the average food and water intake (AFI and AWI) of diabetic rats treated with CrE was reduced by 15 and 16% respectively as compared to those without any treatment. Therefore, this study demonstrated the effectiveness of Cyperus rotundus tubers in preventing and treating obesity and diabetes.
Collapse
Affiliation(s)
- Faiza I.A. Abdella
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Tahani Y.A. Alanazi
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | | | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
3
|
Hamzaoui S, Salah BB, Bouguerra S, Hamden K, Alghamdi OA, Miled N, Kossentini M. Design, synthesis and biological evaluation of new 1,ω-Bis-(5-alkyl-3-tosyl-1,3,4,2-triazaphospholino)alkanes as in vitro α-amylase and lipase inhibitors. Int J Biol Macromol 2023; 253:127195. [PMID: 37793521 DOI: 10.1016/j.ijbiomac.2023.127195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
A series of new 1,ω-bis-(5-alkyl-3-tosyl-1,3,4,2-triazaphospholino)alkanes 2 and 3 were obtained in excellent yields by the condensation of 1,ω-bis-(1-tosylamidrazone)alkanes 1 with two equivalent molars of Lawesson's Reagent (LR) and trisdimethylaminophosphine, respectively. All synthesized compounds were characterized by various spectroscopic techniques including IR, 1H NMR, 13C NMR and 31P NMR and elemental analysis. The newly synthesized compounds were evaluated against key enzymes related to diabetes and obesity such as α-amylase and lipase. This study showed that the compounds 3a and 2b are an excellent inhibitor of α-amylase (with IC50 = 18.8 mM) and lipase (with IC50 = 19 mM) respectively, as compared with standard, orlistat (IC50 = 22 mM). Among this series, compounds 3a and 2b with the CH3 or C2H5 group at position 6 were identified as the most potent inhibitors against α-amylase, and lipase enzymes. The remaining compounds were found to be moderately active. Further, molecular docking simulation studies were done to identify the interactions and binding mode of synthesized analogs at binding site of α-amylase and lipase enzymes.
Collapse
Affiliation(s)
- Salwa Hamzaoui
- Laboratory of Medicinal and Environnemental Chemistry, Higher Institute of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia
| | - Bochra Ben Salah
- Laboratory of Medicinal and Environnemental Chemistry, Higher Institute of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia.
| | - Soumaya Bouguerra
- Laboratory of Electrochimistry and Environmental, Higher Institute of Ingenirous of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia
| | - Othman A Alghamdi
- University of Jeddah, College of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - Nabil Miled
- University of Jeddah, College of Science, Department of Biological Sciences, Jeddah, Saudi Arabia; Functional Genomics and Plant Physiology Unit, Higher Institute of Biotechnology of Sfax, 3038 Sfax, Tunisia
| | - Mohamed Kossentini
- Laboratory of Medicinal and Environnemental Chemistry, Higher Institute of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia
| |
Collapse
|
4
|
Hamed KA, El-Fiky SA, Gawish AM, Khalil WKB, Mohamed HRH. Alleviation of nicotine-induced reproductive disorder, clastogenicity, and histopathological alterations by fenugreek saponin bulk and nanoparticles in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47488-47501. [PMID: 35182342 PMCID: PMC9232449 DOI: 10.1007/s11356-022-19123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Nicotine is the most abundant ingredient in cigarette smoking and has serious side effects on the lung, heart, reproductive system, and many other human organs. Saponins extracted from many plants exhibit multiple biological actions such as anti-cancer effects. Therefore, the possible protective effect of fenugreek saponin (FS) and nanofenugreek saponin (NFS) against nicotine-induced toxicity in male rats was investigated in this study. Animals were divided into a control group and the nicotine (1.5 mg/kg/day), FS (25, 50, and 100 mg/kg/day), or/and NFS (20, 40, and 80 mg/kg/day) administered groups. Micronucleus assay, histopathological, and sperm abnormality examinations as well as measurement of the acetylcholinesterase (AChE) gene expression were conducted. Our findings revealed that nicotine treatment induced significant increases in the incidence of micronucleus, sperm abnormalities, and expression levels of AChE in addition to inducing histopathological changes in rat testis. On the other hand, administration of FS or NFS with nicotine significantly decreased the incidence of micronuclei and the percentage of sperm abnormalities as well as the expression levels of AChE gene. Moreover, nicotine-induced histological alterations were reduced by given FS or NFS with nicotine. In conclusion, nicotine-induced sperm abnormalities, chromosomal damage, and histological injuries were mitigated by administration of FS or NFS with nicotine, and thus, FS and NFS could be used as ameliorating agents against nicotine toxicity.
Collapse
Affiliation(s)
- Karima A Hamed
- Department of Cell Biology, National Research Centre, 33 El-Bohous StDokki, P.O. 12622, Giza, 12622, Egypt
| | - Samia A El-Fiky
- Department of Cell Biology, National Research Centre, 33 El-Bohous StDokki, P.O. 12622, Giza, 12622, Egypt
| | - Azza M Gawish
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, 33 El-Bohous StDokki, P.O. 12622, Giza, 12622, Egypt
| | - Hanan R H Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Jaradat N, Hawash M, Dass G. Phytochemical analysis, in-vitro anti-proliferative, anti-oxidant, anti-diabetic, and anti-obesity activities of Rumex rothschildianus Aarons. extracts. BMC Complement Med Ther 2021; 21:107. [PMID: 33789649 PMCID: PMC8011103 DOI: 10.1186/s12906-021-03282-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Rumex rothschildianus is the sole member of a unique section of the genus Rumex, in the family Polygonaceae. This species is a very rare small dioecious annual, endemic to Palestine that is traditionally used as food and for the treatment of various diseases. Therefore, the current investigation aimed to screen the chemical constituents, antioxidants, anti-α-amylase, anti-α-glucosidase, antilipase, and cytotoxic effects of four solvents fractions of R. rothschildianus leaves. Methods Dried powder of R. rothschildianus leaves was extracted in four solvents with different polarities. Several qualitative and quantitative phytochemical tests were performed to determine the components of the extracts. The colorimetric analysis was used for the quantitative determination of phenols, flavonoids, and tannins. In-vitro assays were performed to evaluate the extracts for antioxidant, anti-α-amylase, anti-α-glucosidase, and antilipase inhibitory activities, as well as cytotoxicity by MTS assay against cervical carcinoma cells line (HeLa) and breast cancer cell line (MCF7). Results The acetone fraction of R. rothschildianus leaves showed the most significant antioxidant activity, due to having the highest content of flavonoids and phenolics, with an IC50 value of 6.3 ± 0.4 μg/ml, compared to 3.1 ± 0.9 μg/ml for Trolox, and regarding lipase inhibition activity the acetone fraction showed the most potent activity with an IC50 value of 26.3 ± 0.6 μg/ml, in comparison with orlistat positive control IC50 12.3 μg/ml. The same extract was the most potent inhibitor of α-amylase and α-glucosidase, with IC50 values of 19.1 ± 0.7 μg/ml and 54.9 ± 0.3 μg/ml, respectively, compared to 28.8, 37.1 ± 0.3 μg/ml of acarbose, respectively. The hexane fraction showed 99.9% inhibition of HeLa cells and 97.4% inhibition for MCF7 cells. Conclusion The acetone fraction of R. rothschildianus leaves might provide a source of bioactive compounds for the treatment of oxidative stress. Similarly, the hexane fraction indicates the promising antitumor potential of R. rothschildianus. Clearly, these initial indications need further purification of potentially active compounds, and ultimately, in-vivo studies to determine their effectiveness.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Gada Dass
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
6
|
Tedeschi LO, Muir JP, Naumann HD, Norris AB, Ramírez-Restrepo CA, Mertens-Talcott SU. Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production. Front Vet Sci 2021; 8:628445. [PMID: 33748210 PMCID: PMC7973208 DOI: 10.3389/fvets.2021.628445] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
This review provides an update of ecologically relevant phytochemicals for ruminant production, focusing on their contribution to advancing nutrition. Phytochemicals embody a broad spectrum of chemical components that influence resource competence and biological advantage in determining plant species' distribution and density in different ecosystems. These natural compounds also often act as plant defensive chemicals against predatorial microbes, insects, and herbivores. They may modulate or exacerbate microbial transactions in the gastrointestinal tract and physiological responses in ruminant microbiomes. To harness their production-enhancing characteristics, phytochemicals have been actively researched as feed additives to manipulate ruminal fermentation and establish other phytochemoprophylactic (prevent animal diseases) and phytochemotherapeutic (treat animal diseases) roles. However, phytochemical-host interactions, the exact mechanism of action, and their effects require more profound elucidation to provide definitive recommendations for ruminant production. The majority of phytochemicals of nutritional and pharmacological interest are typically classified as flavonoids (9%), terpenoids (55%), and alkaloids (36%). Within flavonoids, polyphenolics (e.g., hydrolyzable and condensed tannins) have many benefits to ruminants, including reducing methane (CH4) emission, gastrointestinal nematode parasitism, and ruminal proteolysis. Within terpenoids, saponins and essential oils also mitigate CH4 emission, but triterpenoid saponins have rich biochemical structures with many clinical benefits in humans. The anti-methanogenic property in ruminants is variable because of the simultaneous targeting of several physiological pathways. This may explain saponin-containing forages' relative safety for long-term use and describe associated molecular interactions on all ruminant metabolism phases. Alkaloids are N-containing compounds with vast pharmacological properties currently used to treat humans, but their phytochemical usage as feed additives in ruminants has yet to be exploited as they may act as ghost compounds alongside other phytochemicals of known importance. We discussed strategic recommendations for phytochemicals to support sustainable ruminant production, such as replacements for antibiotics and anthelmintics. Topics that merit further examination are discussed and include the role of fresh forages vis-à-vis processed feeds in confined ruminant operations. Applications and benefits of phytochemicals to humankind are yet to be fully understood or utilized. Scientific explorations have provided promising results, pending thorough vetting before primetime use, such that academic and commercial interests in the technology are fully adopted.
Collapse
Affiliation(s)
- Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - James P. Muir
- Texas A&M AgriLife Research, Stephenville, TX, United States
| | - Harley D. Naumann
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Aaron B. Norris
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, United States
| | | | | |
Collapse
|
7
|
Pereira AS, Banegas-Luna AJ, Peña-García J, Pérez-Sánchez H, Apostolides Z. Evaluation of the Anti-Diabetic Activity of Some Common Herbs and Spices: Providing New Insights with Inverse Virtual Screening. Molecules 2019; 24:E4030. [PMID: 31703341 PMCID: PMC6891552 DOI: 10.3390/molecules24224030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Culinary herbs and spices are widely used as a traditional medicine in the treatment of diabetes and its complications, and there are several scientific studies in the literature supporting the use of these medicinal plants. However, there is often a lack of knowledge on the bioactive compounds of these herbs and spices and their mechanisms of action. The aim of this study was to use inverse virtual screening to provide insights into the bioactive compounds of common herbs and spices, and their potential molecular mechanisms of action in the treatment of diabetes. In this study, a library of over 2300 compounds derived from 30 common herbs and spices were screened in silico with the DIA-DB web server against 18 known diabetes drug targets. Over 900 compounds from the herbs and spices library were observed to have potential anti-diabetic activity and liquorice, hops, fennel, rosemary, and fenugreek were observed to be particularly enriched with potential anti-diabetic compounds. A large percentage of the compounds were observed to be potential polypharmacological agents regulating three or more anti-diabetic drug targets and included compounds such as achillin B from yarrow, asparasaponin I from fenugreek, bisdemethoxycurcumin from turmeric, carlinoside from lemongrass, cinnamtannin B1 from cinnamon, crocin from saffron and glabridin from liquorice. The major targets identified for the herbs and spices compounds were dipeptidyl peptidase-4 (DPP4), intestinal maltase-glucoamylase (MGAM), liver receptor homolog-1 (NR5A2), pancreatic alpha-amylase (AM2A), peroxisome proliferator-activated receptor alpha (PPARA), protein tyrosine phosphatase non-receptor type 9 (PTPN9), and retinol binding protein-4 (RBP4) with over 250 compounds observed to be potential inhibitors of these particular protein targets. Only bay leaves, liquorice and thyme were found to contain compounds that could potentially regulate all 18 protein targets followed by black pepper, cumin, dill, hops and marjoram with 17 protein targets. In most cases more than one compound within a given plant could potentially regulate a particular protein target. It was observed that through this multi-compound-multi target regulation of these specific protein targets that the major anti-diabetic effects of reduced hyperglycemia and hyperlipidemia of the herbs and spices could be explained. The results of this study, taken together with the known scientific literature, indicated that the anti-diabetic potential of common culinary herbs and spices was the result of the collective action of more than one bioactive compound regulating and restoring several dysregulated and interconnected diabetic biological processes.
Collapse
Affiliation(s)
- Andreia S.P. Pereira
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria Hillcrest 0083, South Africa;
| | - Antonio J. Banegas-Luna
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Jorge Peña-García
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria Hillcrest 0083, South Africa;
| |
Collapse
|
8
|
Hasan MS, Uddin MG, Shoibe M, Mahmud AA, Banik S. Evaluation of anxiolytic and hypoglycemic potential of Cissus adnata Roxb. in animal model. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 17:/j/jcim.ahead-of-print/jcim-2018-0130/jcim-2018-0130.xml. [PMID: 31647780 DOI: 10.1515/jcim-2018-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/06/2019] [Indexed: 11/15/2022]
Abstract
Background This study was designed to evaluate the anxiolytic and hypoglycemic potential of methanolic extract of Cissus adnata Roxb. is a crucial medicinal plant used in many disorders belongs to Vitaceae family. Methods Elevated plus maze (EPM) test and hole board test was applied for the anxiolytic activity with the Swiss albino mice. The hypoglycemic activity was measured by the glucose tolerance test in mice model. The capacity to produce the desired effect of the plant extract (200 and 400 mg/kg) was compared with the anxiolytic drug of standard diazepam (1 mg/kg i.p.) and anti-diabetic drug glibenclamide (10 mg/kg i.p.), respectively. Results The phytochemical screening of Cissus adnata extract exposed the presence of carbohydrate, phenol, flavonoid, saponins, cardiac glycoside, tannin, and gum. The anxiolytic effect was detected in both experiments which significantly raised the number of head dips and the time spent in the open arm of the EPM (p<0.05) as the dose enlarged. Hypoglycemic study of the extracts shows better effect by reducing blood glucose level. Conclusions The better anxiolytic and hypoglycemic activities in the present study are due to the existence of various phytochemical constituents like saponins, flavonoids, terpenoids, phenols, and tannins in this methanolic extract.
Collapse
Affiliation(s)
- Mohammed Shamim Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Giash Uddin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.,Department of Pharmacy, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Shoibe
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4203, Bangladesh
| | - Abdullah Al Mahmud
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Sujan Banik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
9
|
Evaluation of Pancreatic and Extra Pancreatic Effects of Branched Amino Acids. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background and aims: Leucine, Isoleucine, and Valine collectively known as Branched-chain amino acids (BCAAs), can be closely associated with metabolic dysregulates and with insulin resistance. We aimed to explore the role of BCAAs as potential treatment option for diabetes.
Material and method: Bioassay the effect of BCAAs on MIN6 cell line on insulin secretion and pancreatic beta cells expansion, then were checked for inhibitory potential of pancreatic amylase, glucosidase and lipase as alternative approach for diabetes treatment.
Results: BCAAs significantly enhance insulin secretion parallel to L-alanine efficacy. Furthermore, BCAAs obtain a dose dependent β-cell proliferation similar to glucagon-like peptide-1. Moreover, these acids could restore the secretory function of MIN6 β-cell despite stressful gluco-lipo-toxicity; separately or combined. Moreover, BCAAs exerted a dose dependent dual inhibition of amylase, glucosidase and lipase.
Conclusions: Our current findings suggest that BCAAs supplementation may have a potential therapeutic effect against diabetes as insulin releasing agent and as specific inhibitors for both-amylase/α-amyloglucoside and lipase
Collapse
|
10
|
Serum metabonomics study on antidiabetic effects of fenugreek flavonoids in streptozotocin-induced rats. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:466-472. [PMID: 30008302 DOI: 10.1016/j.jchromb.2018.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
Fenugreek is a well-known medicinal plant used for treatment of diabetes. In this study, the antidiabetic effect of fenugreek flavonoids was investigated by metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Fenugreek flavonoids were purified using polyamide resin and D101 macroporous adsorption resin, characterized by UPLC-Q-TOF-MS, and administered to streptozotocin (STZ)-induced diabetic rats for 28 days. Pharmacological study results indicated that fenugreek flavonoids exerted a strong antidiabetic effect characterized by significant reduction of fasting blood glucose (P < 0.01), increase in serum insulin level (P < 0.01) and liver glycogen content (P < 0.01), attenuation of weight loss, and improvement of pancreatic islet and kidney conditions. The antidiabetic effect of fenugreek flavonoids was further analyzed by metabonomics. Serum samples of health and diabetic rats treated or not with fenugreek flavonoids were evaluated by UPLC-Q-TOF-MS, followed by principal component analysis (PCA) and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA). The PCA model revealed significant differences among the animal groups, and OPLS-DA identified fenugreek flavonoids-induced changes of 11 potential biomarkers involved in lipid metabolism (docosahexaenoic acid, arachidonic acid, sphinganine, sphingosine‑1‑phosphate, and lysophosphatidylcholines 20:4, 18:2, 16:0, and 20:2), amino acid metabolism (hippuric acid and tryptophan), and kidney function-related metabolism (2‑phenylethanol glucuronide). Our study demonstrates that flavonoids are bioactive components of fenugreek with potent antidiabetic activity, which exert their therapeutic effects by multiple mechanisms, including reducing insulin resistance, improving gluconeogenesis, and protecting islet cells and kidneys from damage.
Collapse
|
11
|
Analysis and identification of chemical constituents of fenugreek by UPLC-IT-MS
n
and UPLC-Q-TOF-MS. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7136-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Ouzir M, El Bairi K, Amzazi S. Toxicological properties of fenugreek (Trigonella foenum graecum). Food Chem Toxicol 2016; 96:145-54. [PMID: 27498339 DOI: 10.1016/j.fct.2016.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
Fenugreek (Trigonella foenum graecum), used as traditional medicine and natural additive food, has been shown to exert significant antiatherogenic, antidiabetic, antianorexic, antioxidant, anticarcinogenic, antihyperlipidemic, galactogogue and anti-inflammatory effects in several human and animal models. Besides, several medicinal pharmaceutical and nutraceutical properties, fenugreek have toxic effects as well. The aim of this review is discuss the cumulative evidence, which suggests that consumption of fenugreek induced some serious toxicological side effects. In this review, many teratogenic effects of fenugreek, from congenital malformations to death, were reported in human, rodent, rabbit, and chick. Moreover, results obtained in rats, mice and rabbits show a testicular toxicity and anti-fertility effects in male associated with oxidative stress and DNA damage, as well as anti-fertility, antiimplantation and abortifacient activity in females related to saponin compound of fenugreek which suggest that fenugreek is not recommended for use during pregnancy. Indeed, the consumption of fenugreek should be avoided for persons having peanut and chickpeas allergy because of possible cross-reactivity as well as chronic asthma. Accumulating evidence suggest also that fenugreek may have neurodevelopmental, neurobehavioral and neuropathological side effects. It is suggested that future studies would be conducted to identify molecular and cellular mechanisms underlying the fenugreek toxicological properties.
Collapse
Affiliation(s)
- Mounir Ouzir
- Laboratory of Biochemistry and Immunology, Faculty of Sciences, University Mohammed V in Rabat, Morocco.
| | - Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Faculty of Medicine and Pharmacy of Oujda, University Mohamed First, Oujda, Morocco
| | - Saaïd Amzazi
- Laboratory of Biochemistry and Immunology, Faculty of Sciences, University Mohammed V in Rabat, Morocco
| |
Collapse
|
13
|
Khlifi S, Jemaa HB, Hmad HB, Abaza H, Karmous I, Abid A, Benzarti A, Elati J, Aouidet A. Antioxidant, Antidiabetic and Antihyperlipidemic Effects of Trigonella foenum-graecum Seeds. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.394.400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Stability properties of different fenugreek galactomannans in emulsions prepared by high-shear and ultrasonic method. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
He Y, Wang X, Suo Y, Ding C, Wang H. Efficient Protocol for Isolation of Rhaponticin and Rhapontigenin with Consecutive Sample Injection from Fenugreek (Trigonella foenum-graecum L.) by HSCCC. J Chromatogr Sci 2015; 54:479-85. [PMID: 26598549 DOI: 10.1093/chromsci/bmv169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 11/14/2022]
Abstract
High efficiency and less solvent consumption are the essential requirements of high-speed countercurrent chromatography (HSCCC), especially for the large-scale preparation. In this study, an efficient HSCCC strategy with consecutive sample injection was successfully developed to rapidly separate and purify rhaponticin and rhapontigenin from the seeds of the Chinese medicinal herb fenugreek (Trigonella foenum-graecum L.). The effective separation was achieved using n-hexane-ethyl acetate-methanol-water (1:4:2:6, v/v/v/v) as the two-phase solvent system, in which the mobile phase was eluted at an optimized flow rate of 2.2 mL/min and a revolution speed of 850 rpm. After consecutively loading four identical fenugreek samples, each containing 120 mg, HSCCC separation yielded 146.4 mg of rhaponticin and 174.8 mg of rhapontigenin with purities of 98.6 and 99.1%, respectively, as determined by high-performance liquid chromatography at 320 nm. Their chemical structures were identified using UV spectroscopy, (1)H-NMR and (13)C-NMR. The HSCCC method with consecutive sample injection allowed faster separation and produced less solvent waste, suggesting that it is an efficient way to rapidly separate and purify natural products on a large scale.
Collapse
Affiliation(s)
- Yanfeng He
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China College of Pharmacy, Qinghai Nationalities University, Xining, P. R. China University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Chenxu Ding
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| |
Collapse
|
16
|
Abdel Motaal A, El-Askary H, Crockett S, Kunert O, Sakr B, Shaker S, Grigore A, Albulescu R, Bauer R. Aldose reductase inhibition of a saponin-rich fraction and new furostanol saponin derivatives from Balanites aegyptiaca. PHYTOMEDICINE 2015. [PMID: 26220630 DOI: 10.1016/j.phymed.2015.05.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Balanites aegyptiaca Del. (Zygophyllaceae) fruits are used to treat hyperglycemia in Egyptian folk medicine and are sold by herbalists in the Egyptian open market for this purpose. Nevertheless, the fruits have not yet been incorporated into pharmaceutical dosage forms. The identity of the bioactive compounds and their possible mechanisms of action were not well understood until now. PURPOSE Aldose reductase inhibitors are considered vital therapeutic and preventive agents to address complications caused by hyperglycemia. The present study was carried out to identify the primary compounds responsible for the aldose reductase inhibitory activity of Balanites aegyptiaca fruits. STUDY DESIGN The 70% ethanolic extract of Balanites aegyptiaca fruit mesocarp and its fractions were screened for inhibition of the aldose reductase enzyme. Bio-guided fractionation of the active butanol fraction was performed and the primary compounds present in the saponin-rich fraction (D), which were responsible for the inhibitory activity, were characterized. HPLC chromatographic profiles were established for the different fractions, using the isolated compounds as biomarkers. METHODS Aldose reductase inhibition was tested in vitro on rat liver homogenate. The butanol fraction of the 70% ethanolic extract was fractionated using vacuum liquid chromatography (VLC, RP-18 column). The most active sub-fraction D, which was eluted with 75% methanol, was subjected to preparative HPLC to isolate the bioactive compounds. RESULTS The butanol fraction displayed inhibitory activity against the aldose reductase enzyme (IC50 = 55.0 ± 6 µg/ml). Sub-fraction D exhibited the highest inhibitory activity (IC50 = 12.8 ± 1 µg/ml). Five new steroidal saponin derivatives were isolated from this fraction. The isolated compounds were identified as compound 1a/b, a 7:3 mixture of the 25R:25S epimers of 26-O-β-D-glucopyranosyl-furost-5-ene-3,22,26-triol 3-O-[α-L-rhamnopyranosyl-(1→3)- β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; compound 2, 26-O-β-D-glucopyranosyl-(25R)-furost-5-ene-3,22,26-triol 3-O-[ β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; compound 3, 26-O-β-D-glucopyranosyl-(25R)-furost-5,20-diene-3,26-diol 3-O-[α-L-rhamnopyranosyl-(1→3)- β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; compound 4, 26-O-β-D-glucopyranosyl-(25R)-furost-5,20-diene-3,26-diol 3-O-[ β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; and compound 5, which is the 25S epimer of compound 4, by using various spectroscopic methods [MS,1D and 2D NMR (HSQC, HMBC, DQF-COSY, HSQC-TOCSY)]. Compounds 1a/b, 2, 3, 4, 5 exhibited highly significant aldose reductase inhibitory activities (IC50 values were 1.9 ± 0.2, 1.3 ± 0.5, 5.6 ± 0.2, 5.1 ± 0.4, 5.1 ± 0.6 µM, respectively) as compared to the activity of the reference standard quercetin (IC50 = 6.6 ± 0.3 µM). CONCLUSION The aldose reductase inhibitory activity of Balanites fruits is due to the steroidal saponins present. HPLC chromatographic profiles of the crude butanol fraction and its 4 sub-fractions showed that the most highly bioactive fraction D contained the highest amount of steroidal saponins (75%) as compared to the 21% present in the original butanol fraction. The isolated furostanol saponins proved to be highly active in an in vitro assay.
Collapse
Affiliation(s)
- Amira Abdel Motaal
- Faculty of Pharmacy, Cairo University, Kasr-El-Ainy St., Cairo 11562, Egypt; Faculty of Pharmacy and Drug Technology, Heliopolis University, 2834 El Horreya, Cairo, Egypt.
| | - Hesham El-Askary
- Faculty of Pharmacy, Cairo University, Kasr-El-Ainy St., Cairo 11562, Egypt.
| | - Sara Crockett
- Institute of Pharmaceutical Sciences, University of Graz, A-8010 Graz, Austria.
| | - Olaf Kunert
- Institute of Pharmaceutical Chemistry and Pharmaceutical Technology, University of Graz, A-8010 Graz, Austria.
| | - Basma Sakr
- Faculty of Pharmacy and Drug Technology, Heliopolis University, 2834 El Horreya, Cairo, Egypt.
| | - Sherif Shaker
- Faculty of Pharmacy and Drug Technology, Heliopolis University, 2834 El Horreya, Cairo, Egypt.
| | - Alice Grigore
- National Institute for Chemical - Pharmaceutical Research and Development (ICCF), Bucharest, Romania.
| | - Radu Albulescu
- National Institute for Chemical - Pharmaceutical Research and Development (ICCF), Bucharest, Romania.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
17
|
Antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Uddin N, Hasan MR, Hossain MM, Sarker A, Hasan AHMN, Islam AFMM, Chowdhury MMH, Rana MS. In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pac J Trop Biomed 2014; 4:473-9. [PMID: 25182949 DOI: 10.12980/apjtb.4.2014c1173] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/12/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the therapeutic effects of methanol extract of Citrus macroptera Montr.fruit in α-amylase inhibitory activity (in vitro) and hypoglycemic activity in normal and glucose induced hyperglycemic rats (in vivo). METHODS Fruits of Citrus macroptera without rind was extracted with pure methanol following cold extraction and tested for presence of phytochemical constituents, α-amylase inhibitory activity, and hypoglycemic effect in normal rats and glucose induced hyperglycemic rats. RESULTS Presence of saponin, steroid and terpenoid were identified in the extract. The results showed that fruit extract had moderate α-amylase inhibitory activity [IC50 value=(3.638±0.190) mg/mL] as compared to acarbose. Moreover at 500 mg/kg and 1 000 mg/kg doses fruit extract significantly (P<0.05 and P<0.01 respectively) reduced fasting blood glucose level in normal rats as compared to glibenclamide (5 mg/kg). In oral glucose tolerance test, 500 mg/kg dose significantly reduced blood glucose level (P<0.05) at 2 h but 1 000 mg/kg dose significantly reduced blood glucose level at 2 h and 3 h (P<0.05 and P<0.01 respectively) whereas glibenclamide (5 mg/kg) significantly reduced glucose level at every hour after administration. Overall time effect is also considered extremely significant with F value=23.83 and P value=0.0001 in oral glucose tolerance test. CONCLUSION These findings suggest that the plant may be a potential source for the development of new oral hypoglycemic agent.
Collapse
Affiliation(s)
- Nizam Uddin
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md Rakib Hasan
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md Monir Hossain
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Arjyabrata Sarker
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - A H M Nazmul Hasan
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - A F M Mahmudul Islam
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Mohd Motaher H Chowdhury
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md Sohel Rana
- Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
19
|
Experimental diabetes treated with trigonelline: effect on key enzymes related to diabetes and hypertension, β-cell and liver function. Mol Cell Biochem 2013; 381:85-94. [DOI: 10.1007/s11010-013-1690-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/16/2013] [Indexed: 12/11/2022]
|
20
|
BelHadj S, Hentati O, Elfeki A, Hamden K. Inhibitory activities of Ulva lactuca polysaccharides on digestive enzymes related to diabetes and obesity. Arch Physiol Biochem 2013; 119:81-7. [PMID: 23638862 DOI: 10.3109/13813455.2013.775159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to evaluate the effect of alga Ulva lactuca polysaccharides (ULPS) on key enzymes related to diabetes and obesity. This marine natural product, ULPS, exerted potential inhibition on key enzymes related to starch digestion and absorption in both plasma and small intestine mainly α-amylase by 53% and 34% and maltase by 97 and 164% respectively, leading to a significant decrease in blood glucose rate by 297%. Moreover, ULPS potentially inhibited key enzymes of lipid metabolism and absorption as lipase activity in both plasma and small intestine by 235 and 287% respectively, which led to a notable decrease of blood LDL-cholesterol and triglycerides levels, and in the counterpart an increase in HDL-cholesterol level in surviving diabetic rats. Additively, ULPS significantly protected the liver-kidney functions, by decreasing of aspartate transaminase (AST), alanine transaminase (ALT) and gamma-glytamyl transpeptidase (GGT) activities and creatinine, urea and albumin rates in plasma.
Collapse
Affiliation(s)
- Sahla BelHadj
- Laboratory of Animal Ecophysiology, University of Sfax, Faculty of Sciences of Sfax, PO Box 95, Sfax, Tunisia
| | | | | | | |
Collapse
|
21
|
Hamzaoui S, Hamden K, Ben Salem A, Mourer M, Regnouf-De-Vains JB, Kossentini M. Synthesis and Evaluation of 1,ω-Bis(1,2,3,5-thiatriazol-5-yl)alkanes asIn VitroandIn Vivoα-Amylase and Lipase Inhibitors. Arch Pharm (Weinheim) 2013; 346:321-9. [DOI: 10.1002/ardp.201200312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/24/2012] [Accepted: 01/18/2013] [Indexed: 11/07/2022]
|
22
|
Effect of influenza A virus non-structural protein 1(NS1) on a mouse model of diabetes mellitus induced by Streptozotocin. Biochem Biophys Res Commun 2012; 419:120-5. [DOI: 10.1016/j.bbrc.2012.01.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/30/2012] [Indexed: 11/22/2022]
|
23
|
Hamden K, Keskes H, Belhaj S, Mnafgui K, Feki A, Allouche N. Inhibitory potential of omega-3 fatty and fenugreek essential oil on key enzymes of carbohydrate-digestion and hypertension in diabetes rats. Lipids Health Dis 2011; 10:226. [PMID: 22142357 PMCID: PMC3240899 DOI: 10.1186/1476-511x-10-226] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
Background diabetes is a serious health problem and a source of risk for numerous severe complications such as obesity and hypertension. Treatment of diabetes and its related diseases can be achieved by inhibiting key digestives enzymes-related to starch digestion secreted by pancreas. Methods The formulation omega-3 with fenugreek terpenenes was administrated to surviving diabetic rats. The inhibitory effects of this oil on rat pancreas α-amylase and maltase and plasma angiotensin-converting enzyme (ACE) were determined. Results the findings revealed that administration of formulation omega-3 with fenugreek terpenenes (Om3/terp) considerably inhibited key enzymes-related to diabetes such as α-amylase activity by 46 and 52% and maltase activity by 37 and 35% respectively in pancreas and plasma. Moreover, the findings revealed that this supplement helped protect the β-Cells of the rats from death and damage. Interestingly, the formulation Om3/terp modulated key enzyme related to hypertension such as ACE by 37% in plasma and kidney. Moreover administration of fenugreek essential oil to surviving diabetic rats improved starch and glucose oral tolerance additively. Furthermore, the Om3/terp also decreased significantly the glucose, triglyceride (TG) and total-cholesterol (TC) and LDL-cholesterol (LDL-C) rates in the plasma and liver of diabetic rats and increased the HDL-Cholesterol (HDL-Ch) level, which helped maintain the homeostasis of blood lipid. Conclusion overall, the findings of the current study indicate that this formulation Om3/terp exhibit attractive properties and can, therefore, be considered for future application in the development of anti-diabetic, anti-hypertensive and hypolipidemic foods.
Collapse
Affiliation(s)
- Khaled Hamden
- Biotechnology High School of Sfax (ISBS), University of Sfax, P.O. Box 261, Sfax 3038, Tunisia.
| | | | | | | | | | | |
Collapse
|