1
|
Provost JJ, Parente AD, Slade KM, Wiese TJ. Exploring the uncharted territory of the potential protein-protein interactions of cytosolic malate dehydrogenase. Essays Biochem 2024; 68:83-97. [PMID: 38868916 DOI: 10.1042/ebc20230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
In this review, we examine the protein-protein interactions of cytosolic malate dehydrogenase (MDH), an under-studied area in cellular metabolism. We provide a comprehensive overview of MDH involvement in metabolism, especially its interactions with metabolic partners and dynamics of changing metabolism. We present an analysis of the biophysical nature of these interactions and the current methods used to study them. Our review includes an assessment of computational docking studies, which offer initial hypotheses about potential MDH interaction partners. Furthermore, we provide a summary of the sparse yet insightful experimental evidence available, establishing a foundation for future research. By integrating biophysical analysis and methodological advancements, this paper aims to illuminate the intricate network of interactions involving cytosolic MDH and their metabolic implications. This work not only contributes to our understanding of MDH's role in metabolism but also highlights the potential impact of these interactions in metabolic disorders.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| | - Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY 14456, U.S.A
| | - Thomas J Wiese
- Department of Chemistry, Tabor College, 400 South Jefferson, Hillsboro, KS 67063, U.S.A
| |
Collapse
|
2
|
Xu B, Zhang W, Zhao E, Hong J, Chen X, Wei Z, Li X. Unveiling malic acid biorefinery: Comprehensive insights into feedstocks, microbial strains, and metabolic pathways. BIORESOURCE TECHNOLOGY 2024; 394:130265. [PMID: 38160850 DOI: 10.1016/j.biortech.2023.130265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The over-reliance on fossil fuels and resultant environmental issues necessitate sustainable alternatives. Microbial fermentation of biomass for malic acid production offers a viable, eco-friendly solution, enhancing resource efficiency and minimizing ecological damage. This review covers three core aspects of malic acid biorefining: feedstocks, microbial strains, and metabolic pathways. It emphasizes the significance of utilizing biomass sugars, including the co-fermentation of different sugar types to improve feedstock efficiency. The review discusses microbial strains for malic acid fermentation, addressing challenges related to by-products from biomass breakdown and strategies for overcoming them. It delves into the crucial pathways and enzymes for malic acid production, outlining methods to optimize its metabolism, focusing on enzyme regulation, energy balance, and yield enhancement. These insights contribute to advancing the field of consolidated bioprocessing in malic acid biorefining.
Collapse
Affiliation(s)
- Boyang Xu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China
| | - Wangwei Zhang
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China
| | - Eryong Zhao
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei City 230026, Anhui Province, PR China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei City 230031, Anhui Province, PR China
| | - Zhaojun Wei
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan City 750030, Ningxia Hui Autonomous Region, PR China.
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China.
| |
Collapse
|
3
|
Liu N, Dong W, Yang H, Li JH, Chiu TY. Application of artificial scaffold systems in microbial metabolic engineering. Front Bioeng Biotechnol 2023; 11:1328141. [PMID: 38188488 PMCID: PMC10771841 DOI: 10.3389/fbioe.2023.1328141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
In nature, metabolic pathways are often organized into complex structures such as multienzyme complexes, enzyme molecular scaffolds, or reaction microcompartments. These structures help facilitate multi-step metabolic reactions. However, engineered metabolic pathways in microbial cell factories do not possess inherent metabolic regulatory mechanisms, which can result in metabolic imbalance. Taking inspiration from nature, scientists have successfully developed synthetic scaffolds to enhance the performance of engineered metabolic pathways in microbial cell factories. By recruiting enzymes, synthetic scaffolds facilitate the formation of multi-enzyme complexes, leading to the modulation of enzyme spatial distribution, increased enzyme activity, and a reduction in the loss of intermediate products and the toxicity associated with harmful intermediates within cells. In recent years, scaffolds based on proteins, nucleic acids, and various organelles have been developed and employed to facilitate multiple metabolic pathways. Despite varying degrees of success, synthetic scaffolds still encounter numerous challenges. The objective of this review is to provide a comprehensive introduction to these synthetic scaffolds and discuss their latest research advancements and challenges.
Collapse
Affiliation(s)
- Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Wei Dong
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Huanming Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Jing-Hua Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Tsan-Yu Chiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| |
Collapse
|
4
|
Polyethylene-biodegrading Microbes and Their Future Directions. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Sun BY, Wang FQ, Zhao J, Tao XY, Liu M, Wei DZ. Engineering Escherichia coli for l-homoserine production. J Basic Microbiol 2023; 63:168-178. [PMID: 36284486 DOI: 10.1002/jobm.202200488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 02/03/2023]
Abstract
l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
Collapse
Affiliation(s)
- Bing-Yao Sun
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xin-Yi Tao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Min Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bioplastics are polymers made from sustainable bio-based feedstocks. While the potential of producing bio-based monomers in microbes has been investigated for decades, their economic feasibility is still unsatisfactory compared with petroleum-derived methods. To improve the overall synthetic efficiency of microbial cell factories, three main strategies were summarized in this review: firstly, implementing approaches to improve the microbial utilization ability of cheap and abundant substrates; secondly, developing methods at enzymes, pathway, and cellular levels to enhance microbial production performance; thirdly, building technologies to enhance microbial pH, osmotic, and metabolites stress tolerance. Moreover, the challenges of, and some perspectives on, exploiting microorganisms as efficient cell factories for producing bio-based monomers are also discussed.
Collapse
|
7
|
Wu N, Zhang J, Chen Y, Xu Q, Song P, Li Y, Li K, Liu H. Recent advances in microbial production of L-malic acid. Appl Microbiol Biotechnol 2022; 106:7973-7992. [PMID: 36370160 DOI: 10.1007/s00253-022-12260-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Over the last few decades, increasing concerns regarding fossil fuel depletion and excessive CO2 emissions have led to extensive fundamental studies and industrial trials regarding microbial chemical production. As an additive or precursor, L-malic acid has been shown to exhibit distinctive properties in the food, pharmaceutical, and daily chemical industries. L-malic acid is currently mainly fabricated through a fumarate hydratase-based biocatalytic conversion route, wherein petroleum-derived fumaric acid serves as a substrate. In this review, for the first time, we comprehensively describe the methods of malic acid strain transformation, raw material utilization, malic acid separation, etc., especially recent progress and remaining challenges for industrial applications. First, we summarize the various pathways involved in L-malic acid biosynthesis using different microorganisms. We also discuss several strain engineering strategies for improving the titer, yield, and productivity of L-malic acid. We illustrate the currently available alternatives for reducing production costs and the existing strategies for optimizing the fermentation process. Finally, we summarize the present challenges and future perspectives regarding the development of microbial L-malic acid production. KEY POINTS: • A range of wild-type, mutant, laboratory-evolved, and metabolically engineered strains which could produce L-malic acid were comprehensively described. • Alternative raw materials for reducing production costs and the existing strategies for optimizing the fermentation were sufficiently summarized. • The present challenges and future perspectives regarding the development of microbial L-malic acid production were elaboratively discussed.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
8
|
Wei M, Li G, Xie H, Yang W, Xu H, Han S, Wang J, Meng Y, Xu Q, Li Y, Chen N, Zhang C. Sustainable production of 4-hydroxyisoleucine with minimised carbon loss by simultaneously utilising glucose and xylose in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 354:127196. [PMID: 35460845 DOI: 10.1016/j.biortech.2022.127196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
4-Hydroxyisoleucine is a promising drug for diabetes therapy; however, microbial production of 4-hydroxyisoleucine is not economically efficient because of the carbon loss in the form of CO2. This study aims to achieve de novo synthesis of 4-hydroxyisoleucine with minimised carbon loss in engineered Escherichia coli. Initially, an L-isoleucine-producing strain, ILE-5, was established, and the 4-hydroxyisoleucine synthesis pathway was introduced. The flux toward α-ketoglutarate was enhanced by reinforcing the anaplerotic pathway and disrupting competitive pathways. Subsequently, the metabolic flux for 4-hydroxyisoleucine synthesis was redistributed by dynamically modulating the α-ketoglutarate dehydrogenase complex activity, achieving a 4-hydroxyisoleucine production of 16.53 g/L. Finally, carbon loss was minimised by employing the Weimberg pathway, resulting in a 24.5% decrease in sugar consumption and a 31.6% yield increase. The 4-hydroxyisoleucine production by strain IEOH-11 reached 29.16 g/L in a 5-L fermenter. The 4-hydroxyisoleucine yield (0.29 mol/mol sugar) and productivity (0.91 g/(L⋅h)) were higher than those previously reported.
Collapse
Affiliation(s)
- Minhua Wei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guirong Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haixiao Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenjun Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoran Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shibao Han
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junzhe Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Meng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Khosravi-nejad F, Khavari-nejad RA, Moradi F, Najafi F. Cytokinin and abscisic acid alleviate drought stress through changing organic acids profile, ion immolation, and fatty acid profile to improve yield of wheat ( Triticum aestivum L .) cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1119-1129. [PMID: 35722511 PMCID: PMC9203616 DOI: 10.1007/s12298-022-01173-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 05/03/2023]
Abstract
There is an increasing interest for plant hormones to modulate the harmful effects of drought on crops. The present study was conducted to assess the effect of foliar-applied cytokin (CK) and abscisic acid (ABA) on yield, organic acids, minerals, and fatty acid profile of wheat (Triticum aestivum L.) cultivars (MV17 and Pishgam) in response to drought stress. The results showed drought significantly decreased grain yield and biomass, but they were enhanced by CK and ABA application. Acetic acid increased under drought stress conditions, and the remarkable increase (~ twofold) in succinic acid content was observed with ABA application under drought stress in MV17 cultivar. In general, drought stress decreased malic acid, pyruvic acid, and citric acid, but CK enhanced them. The leaf accumulations of potassium (K+), calcium (Ca2+), magnesium (Mg2+), iron (Fe2+), and zinc (Zn2+) decreased by drought, where its reduction in MV17 was greater than Pishgam. However, an increased sodium (Na+) content was observed in plants experiencing drought with non-foliar application of ABA and CK. The plant growth hormones especially CK increased K+, Ca2+, Mg2+, Fe2+, and Zn2+, but decreased Na+. Fatty acid profile showed increased polyunsaturated fatty acids and monounsaturated fatty acids upon the drought stress. According to heat map, organic acids represented the maximum variations but fatty acids showed the minimum change during the treatments. The present study recommended foliar-applied CK to alleviate drought stress on wheat yield.
Collapse
Affiliation(s)
- Fariba Khosravi-nejad
- Department of Biology, Faculty of Bioscience, North Tehran Branch, Islamic Azad University, P. O. Box 14515-775, Tehran, Iran
| | | | - Foad Moradi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, AREEO, Karaj, Iran
| | - Farzaneh Najafi
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
10
|
Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0788-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Zhang Y, Wei M, Zhao G, Zhang W, Li Y, Lin B, Li Y, Xu Q, Chen N, Zhang C. High-level production of l-homoserine using a non-induced, non-auxotrophic Escherichia coli chassis through metabolic engineering. BIORESOURCE TECHNOLOGY 2021; 327:124814. [PMID: 33592493 DOI: 10.1016/j.biortech.2021.124814] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
l-Homoserine is a valuable non-proteinogenic amino acid used in the synthesis of various important compounds. Microbial fermentation has potential value for producing l-homoserine on a large scale, but suffers from a low yield and the need for expensive additives. In this study, a non-induced, non-auxotrophic, plasmid-free Escherichia coli chassis for the high-efficiency production of l-homoserine was constructed. Initially, the l-homoserine degradation pathway was dynamically attenuated. Subsequently, systems metabolic engineering strategies were employed, including reinforcing the synthetic flux, improving NADPH generation, and elevating l-homoserine efflux. The constructed strain HOM-14, produced 60.1 g/L l-homoserine without additional supplements or inducers, which achieved the highest fermentative production efficiency of l-homoserine till date. Moreover, common byproducts, such as acetate, did not accumulate. The strategies presented here can be applied in the further engineering of chassis for the scale-up production of l-homoserine and derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Minhua Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenjie Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingzi Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Beibei Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Geraldi A, Khairunnisa F, Farah N, Bui LM, Rahman Z. Synthetic Scaffold Systems for Increasing the Efficiency of Metabolic Pathways in Microorganisms. BIOLOGY 2021; 10:216. [PMID: 33799683 PMCID: PMC7998396 DOI: 10.3390/biology10030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Microbes have been the preferred hosts for producing high-value chemicals from cheap raw materials. However, metabolic flux imbalance, the presence of competing pathways, and toxic intermediates often lead to low production efficiency. The spatial organization of the substrates, intermediates, and enzymes is critical to ensuring efficient metabolic activity by microorganisms. One of the most common approaches for bringing the key components of biosynthetic pathways together is through molecular scaffolds, which involves the clustering of pathway enzymes on engineered molecules via different interacting mechanisms. In particular, synthetic scaffold systems have been applied to improve the efficiency of various heterologous and synthetic pathways in Escherichia coli and Saccharomyces cerevisiae, with varying degrees of success. Herein, we review the recent developments and applications of protein-based and nucleic acid-based scaffold systems and discuss current challenges and future directions in the use of such approaches.
Collapse
Affiliation(s)
- Almando Geraldi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
- Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Fatiha Khairunnisa
- Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nadya Farah
- Department of Biology, Faculty of Mathematics and Life Sciences, Indonesia Defense University, Bogor 16810, Indonesia;
| | - Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University (NTTU), Ho Chi Minh City 700000, Vietnam;
| | - Ziaur Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| |
Collapse
|
13
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
14
|
Bio-specific immobilization of enzymes on electrospun PHB nanofibers. Enzyme Microb Technol 2021; 145:109749. [PMID: 33750539 DOI: 10.1016/j.enzmictec.2021.109749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022]
Abstract
Enzyme immobilization provides substantial advantages in terms of improving the efficiency of enzymatic process as well as enhancing the reusability of enzymes. Phasins (PhaPs) are naturally occurring polyhydroxyalkanoate (PHA)-binding proteins, and thus can potentially be used as a fusion partner for oriented immobilization of enzymes onto PHA supports. However, presently available granular PHA supports have low surface-area-to-volume ratio and limited configurational flexibility of enzymatic reactions. In this study, we explored the use of electrospun polyhydroxybutyrate (PHB) nanofibers as an alternative support for high density immobilization of a PhaP-fused lipase. As envisioned, the electrospun PHB nanofibers could anchor 120-fold more enzyme than PHB granules of the same weight. Furthermore, the enzymes immobilized onto the PHB nanofibers exhibited markedly higher stability and activity compared to when immobilized on conventional immobilization supports. Our approach combines the advantageous features of nanofibrous material and specificity of biomolecular interaction for the efficient use of enzymes, which can be widely adopted in the development of various enzymatic processes.
Collapse
|