1
|
Seong HJ, Kim H, Ko YJ, Yao Z, Baek SB, Kim NJ, Jang YS. Enhancing polyethylene degradation: a novel bioprocess approach using Acinetobacter nosocomialis pseudo-resting cells. Appl Microbiol Biotechnol 2024; 108:86. [PMID: 38189951 DOI: 10.1007/s00253-023-12930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024]
Abstract
Despite the discovery of several bacteria capable of interacting with polymers, the activity of the natural bacterial isolates is limited. Furthermore, there is a lack of knowledge regarding the development of bioprocesses for polyethylene (PE) degradation. Here, we report a bioprocess using pseudo-resting cells for efficient degradation of PE. The bacterial strain Acinetobacter nosocomialis was isolated from PE-containing landfills and characterized using low-density PE (LDPE) surface oxidation when incubated with LDPE. We optimized culture conditions to generate catalytic pseudo-resting cells of A. nosocomialis that are capable of degrading LDPE films in a bioreactor. After 28 days of bioreactor operation using pseudo-resting cells of A. nosocomialis, we observed the formation of holes on the PE film (39 holes per 217 cm2, a maximum diameter of 1440 μm). This study highlights the potential of bacteria as biocatalysts for the development of PE degradation processes. KEY POINTS: • New bioprocess has been proposed to degrade polyethylene (PE). • Process with pseudo-resting cells results in the formation of holes in PE film. • We demonstrated PE degradation using A. nosocomialis as a biocatalyst.
Collapse
Affiliation(s)
- Hyeon Jeong Seong
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyejin Kim
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Young-Joon Ko
- Department of Agricultural Biology, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 54875, Republic of Korea
| | - Zhuang Yao
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song-Bum Baek
- Transportation and Environment Bureau, Jinju City Hall, Jinju, 52789, Republic of Korea
| | - Nam-Jung Kim
- Department of Agricultural Biology, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 54875, Republic of Korea.
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
2
|
Monika P, Chandraprabha MN, Hari Krishna R, Vittal M, Likhitha C, Pooja N, Chaudhary V, C M. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnol Genet Eng Rev 2024; 40:3379-3407. [PMID: 36117472 DOI: 10.1080/02648725.2022.2122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 12/07/2022]
Abstract
Manufacturing new materials at the nanoscale level is a field that is rapidly expanding with widespread application in advanced science and MMT is effectively used for the technology. Nanoparticles (NP), the building blocks of nanotechnology, exhibit improved properties than the larger counterparts and can be prepared from a variety of metals, including silver, copper, gold, zinc, and others. Phytonanotechnology is gaining major attention as various clinical researches have focused on the excellent properties (physicochemical and biological) of nanoscale phytochemicals and its applications in biological systems. In recent developments, pomegranate (Punica granatum L.) has gained major attention due to the phenolic compounds like apigenin, caffeic acid, chlorogenic acid, cyanidin, ellagic acid, gallic acid, granatin A, granatin B, pelargonidin, punicalagin, punicalin and quercetin found in its peel. Pomegranate Peel Extract (PPE) that aid the synthesis of PPE mediated nanoparticles (PPE-MNPs) like PPE-MAuNPs, PPE-MAgNPs, PPE-MZnONPs, PPE-MCuNPs, PPE-MPtNPs and PPE-MFeNPs has yielded plethora of beneficial properties in both plants and humans. In the current review, we discuss in detail the recent advances in synthesis and characterization of various nanoparticles from PPE. Moreover, the multitude biological properties of PPE-MNPs make up the long list of clinical uses. In addition, we discuss the pharmacokinetics, current advantages, and limitations of PPE-MNPs which can further help in development of more efficient therapeutics. Despite some of the challenges, PPE-MNPs hold a lot of potential for drug delivery and are always a better choice. The convergence of science and engineering has created new hopes, in which phytomedicines will have more efficacy, bioavailability, and less toxicity.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - R Hari Krishna
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Maanya Vittal
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - C Likhitha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - N Pooja
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Manjunatha C
- Department of Chemistry, RV College of Engineering, Bangalore, India
- Centre for Nanomaterials and Devices, RV College of Engineering, Bangalore, India
| |
Collapse
|
3
|
Adhavan R, Selvam K, Prakash P, Manimegalai P, Kirubakaran D, Shivakumar MS. Bioefficacy of Zinc oxide nanoparticle synthesis and their Biological, Environmental applications from Eranthemum roseum. Toxicol Rep 2024; 13:101758. [PMID: 39484638 PMCID: PMC11526060 DOI: 10.1016/j.toxrep.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Synthesis of metal oxide nanoparticles using medicinal plants increasing rapidly due to its eco-friendly to environment. In this study Zinc oxide nanoparticle is synthesized using the leaf extract of plant E. roseum. Synthesized NPs was characterized using UV- Vis Spectroscopy analysis where the peak observed at 374 nm with band gap of 2.5 eV, FTIR and XRD analysis validate pure hexagonal structure, Spherical shape of NPs was confirmed by SEM with EDX analysis and main compounds are zinc 75 % and oxygen 22 %. Transmission Electron Microscopy Analysis confirms the oval shaped ZnO NPs Biological activity of E. roseum ZnO NPs such as antioxidant assay DPPH, ABTS, hydroxyl radical activity shows good inhibition against free radicals. The In-vitro Hypoglycemic effects has maximum inhibition of 96 % on α- amylase activity and 87 % on α- Glycosidase activity. Anti-inflammatory activity recorded 93 % maximum inhibition at Albumin denaturation assay and 75 % at Membrane stabilization assay. E. roseum ZnO NPs shows 67.79 % on HepG2 Anti-proliferative cells line. AO/EtBr staining assays confirms the apoptosis effect. Larvicidal activity shows highest mortality of 98.44 % on species C. quinquefasciatus. Photocatalytic dyedegradation of Methylene blue dye shows 65 % of dye degradation.
Collapse
|
4
|
Ouahabi S, Daoudi NE, Loukili EH, Asmae H, Merzouki M, Bnouham M, Challioui A, Hammouti B, Fauconnier ML, Rhazi L, Ayerdi Gotor A, Depeint F, Ramdani M. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Mar Drugs 2024; 22:240. [PMID: 38921551 PMCID: PMC11204821 DOI: 10.3390/md22060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
In this research, the chemical compositions of various extracts obtained from Ulva lactuca, a type of green seaweed collected from the Nador lagoon in the northern region of Morocco, were compared. Their antioxidant and anti-diabetic properties were also studied. Using GC-MS technology, the fatty acid content of the samples was analyzed, revealing that palmitic acid, eicosenoic acid, and linoleic acid were the most abundant unsaturated fatty acids present in all samples. The HPLC analysis indicated that sinapic acid, naringin, rutin, quercetin, cinnamic acid, salicylic acid, apigenin, flavone, and flavanone were the most prevalent phenolic compounds. The aqueous extract obtained by maceration showed high levels of polyphenols and flavonoids, with values of 379.67 ± 0.09 mg GAE/g and 212.11 ± 0.11 mg QE/g, respectively. This extract also exhibited an impressive ability to scavenge DPPH radicals, as indicated by its IC50 value of 0.095 ± 0.12 mg/mL. Additionally, the methanolic extract obtained using the Soxhlet method demonstrated antioxidant properties by preventing β-carotene discoloration, with an IC50 of 0.087 ± 0.14 mg/mL. Results from in-vitro studies showed that extracts from U. lactuca were able to significantly inhibit the enzymatic activity of α-amylase and α-glucosidase. Among the various extracts, methanolic extract (S) has been identified as the most potent inhibitor, exhibiting a statistically similar effect to that of acarbose. Furthermore, molecular docking models were used to evaluate the interaction between the primary phytochemicals found in these extracts and the human pancreatic α-amylase and α-glucosidase enzymes. These findings suggest that U. lactuca extracts contain bioactive substances that are capable of reducing enzyme activity more effectively than the commercially available drug, acarbose.
Collapse
Affiliation(s)
- Safae Ouahabi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (N.E.D.); (M.B.)
- Higher Institute of Nursing Professions and Health Techniques, Oujda 60000, Morocco
| | - El Hassania Loukili
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes (UEMF), Fes 30000, Morocco; (E.H.L.); (B.H.)
| | - Hbika Asmae
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Mohammed Merzouki
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (N.E.D.); (M.B.)
| | - Allal Challioui
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| | - Belkheir Hammouti
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes (UEMF), Fes 30000, Morocco; (E.H.L.); (B.H.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech. 2, Passage des Déportés, B-5030 Gembloux, Belgium;
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Alicia Ayerdi Gotor
- Institut Polytechnique UniLaSalle, AGHYLE, UP 2018.C101, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Flore Depeint
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Mohammed Ramdani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (S.O.); (H.A.); (M.M.); (A.C.); (M.R.)
| |
Collapse
|
5
|
Chatterjee S, Ramamurthy J. Evaluation of Antimicrobial and Cytotoxic Activity of Nanoformulated Chamomile and Green Tea-Based Mouthwash: An In Vitro Study. Cureus 2024; 16:e57470. [PMID: 38699127 PMCID: PMC11063969 DOI: 10.7759/cureus.57470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Nanotechnology plays a significant role in the biomedical and dental fields, offering numerous benefits to humans. Particularly, nanoparticles synthesised through green methods involving herbal formulations present promising advantages. Zinc oxide nanoparticles (ZnONPs) demonstrate strong antibacterial properties. Utilising treatments incorporating chamomile tea and green tea may potentially reduce toxicity while enhancing antibacterial effectiveness against oral infections. This study aimed to develop a mouthwash containing ZnONPs, followed by an evaluation of both its cytotoxicity and antibacterial effectiveness. Materials and methods This study was conducted at Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India. In the synthesis of ZnONPs, a formulation consisting of chamomile tea and green tea was employed. Subsequently, these synthesised nanoparticles were used in the preparation of mouthwash. An antimicrobial test of the produced ZnONPs was carried out using the agar well diffusion technique for oral pathogens. For analysis of cytotoxicity, brine shrimps were used in an assay, and comparisons were made with a commercially available mouthwash. Results The antimicrobial properties were assessed, and the formulated mouthwash demonstrated a zone of inhibition of Staphylococcus aureus (20 mm), Enterococcus faecalis (11 mm), Streptococcus mutans (15 mm) and Candida albicans (13 mm), when the agar well diffusion assay was carried out. Furthermore, the formulated mouthwash exhibited lower cytotoxicity compared to the commercially available mouthwash when cytotoxicity was checked in brine shrimps. Conclusion In our study, the ZnONP synthesis with chamomile tea and green tea showed notable antibacterial and antifungal effects. In addition, lower toxicity was observed compared to the commercially available mouthwash. These findings suggest that mouthwash formulated with green-synthesis ZnONPs could serve as a viable alternative to synthetic mouthwash options. As a result, it is suggested that ZnONPs could be employed in mouthwash formulations at concentrations of 40 µL.
Collapse
Affiliation(s)
- Shubhangini Chatterjee
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jaiganesh Ramamurthy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Shanmugam R, Govindharaj S, Arunkumar P, Sai Sanjana G, Manigandan P. Preparation of a Herbal Mouthwash With Lemongrass and Mint-Mediated Zinc Oxide Nanoparticles and Evaluation of Its Antimicrobial and Cytotoxic Properties. Cureus 2024; 16:e53671. [PMID: 38455834 PMCID: PMC10918288 DOI: 10.7759/cureus.53671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Nanotechnology holds considerable importance in biomedical and dental applications. Nanoparticles synthesized using green synthesis methods with herbal formulations offer various benefits to humans. Zinc oxide nanoparticles (ZnONPs), being semiconductors, exhibit potent antibacterial properties. Notably, treatments utilizing lemongrass and mint ensure potentially lower toxicity and antibacterial qualities for oral infections. The goal of the study is to prepare a mouthwash mediated by ZnONPs and assess its cytotoxic potential and antibacterial efficacy. Materials and methods A lemongrass and mint formulation was used in the synthesis of ZnONPs, and the mouthwash was prepared using the synthesized nanoparticles. The produced ZnONPs were tested for their antimicrobial activity using agar well diffusion technique against oral pathogens, and the ZnONPs-mediated mouthwash was evaluated for its cytotoxic effect using the brine shrimp lethality assay and compared to commercial mouthwash. Results The green-synthesized ZnONPs were initially confirmed using a UV-visible spectrophotometer and exhibited a maximum peak at 362 nm. The antimicrobial activity was tested for the synthesized ZnONPs against oral pathogens, which showed a maximum zone of inhibition of 22 mm in Enterococcus faecalis and 23 mm in Candida albicans, as estimated by the agar well diffusion technique. Additionally, ZnONPs-based herbal mouthwash demonstrated lower cytotoxicity than the commercial mouthwash in the brine shrimp lethality assay. Conclusion In the current study, lemongrass and mint-mediated ZnONPs demonstrated an effective antibacterial activity against E. faecalis and antifungal activity against C. albicans. Furthermore, the cytotoxic effect tested using the brine shrimp lethality assay for ZnONPs-mediated mouthwash demonstrated lower toxicity as compared to the commercial mouthwash. This suggests that the green-synthesized ZnONPs-based mouthwash could be used as an alternative to synthetic mouthwash.
Collapse
Affiliation(s)
- Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sulochana Govindharaj
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Padmapriya Arunkumar
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ganji Sai Sanjana
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pradeep Manigandan
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Andishmand H, Yousefi M, Jafari N, Azadmard-Damirchi S, Homayouni-Rad A, Torbati M, Hamishehkar H. Designing and fabrication of colloidal nano-phytosomes with gamma-oryzanol and phosphatidylcholine for encapsulation and delivery of polyphenol-rich extract from pomegranate peel. Int J Biol Macromol 2024; 256:128501. [PMID: 38040148 DOI: 10.1016/j.ijbiomac.2023.128501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Nano-carriers are well-known delivery systems to encapsulate different bioactive compounds and extracts. Such nano-systems are used in various food and drug areas to protect active ingredients, increase bioavailability, control the release, and deliver bioactive substances. This study aimed to design and fabricate a stable colloidal nano-delivery system to better preserve the antioxidant properties of pomegranate peel extract (PPE) and protect its sustained release in a gastrointestinal model. To achieve this goal, a nano-phytosomal system was fabricated with plant-based, cost-effective, and food-grade compounds, i.e., phosphatidylcholine (PC) and gamma-oryzanol (GO) for encapsulation of PPE. To fabricate the nano-phytosomes, thin film hydration/sonication method was used. The parameters of particle size, zeta potential, polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) were investigated to evaluate the efficiency of the produced nano-system. In summary, the size, zeta potential, PDI, LC, and EE of homogenous spherical PC-GO-PPE nano-phytosomes (NPs) in the ratio of 8:2:2 % w/w were achieved as 60.61 ± 0.81 nm, -32.24 ± 0.84 mV, 0.19 ± 0.01, 19.13 ± 0.30 %, and 95.66 ± 1.52 %, respectively. Also, the structure of NPs was approved by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The optimized NPs were stable during one month of storage at 4 °C, and changes in the size of particles and PPE retention rate were insignificant (p > 0.05). The nano-encapsulation of PPE significantly decreased the loss of its antioxidant activity during one month of storage at 4 °C. The optimized NPs exhibited prolonged and sustained release of PPE in a gastrointestinal model, so that after 2 h in simulated gastric fluid (SGF) and 4 h in simulated intestinal fluid (SIF), 22.66 ± 2.51 % and 69.33 ± 4.50 % of initially loaded PPE was released, respectively. Optimized NPs had considerable cytotoxicity against the Michigan Cancer Foundation-7 cell line (MCF7) (IC50 = 103 μg/ml), but not against Human Foreskin Fibroblast cell line (HFF-2) (IC50 = 453 μg/ml). In conclusion, spherical PC-GO-PPE NPs were identified as a promising delivery system to efficiently encapsulate PPE, as well as protect and preserve its bioactivity, including antioxidant and cytotoxicity against cancer cell line.
Collapse
Affiliation(s)
- Hashem Andishmand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Nahideh Jafari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Atwi-Ghaddar S, Destandau E, Lesellier E. Integrated Supercritical Fluid Extraction and Pre-Formulation Process of Punica granatum L. Pericarp Polar Compounds. Molecules 2023; 28:8110. [PMID: 38138602 PMCID: PMC10745611 DOI: 10.3390/molecules28248110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a widely used fruit in the dietary supplement industry due to its richness in bioactive compounds. In this study, an experimental design was applied to optimize supercritical fluid extraction (SFE) of polar compounds of interest (ellagic acid and punicalagins), known for antioxidant and skin care properties from pomegranate's pericarp. The effects of temperature, modifier percentage, and water additive percentage added in the modifier were explored through a Box-Behnken design, followed by a study of the extraction kinetics. The results indicated that 40 °C, 20% EtOH:H2O 80:20 v:v, with an extraction duration of 60 min allowed for the highest recovery of the above-mentioned molecules (19.59 mg/g). Due to solubilization issues encountered by the extract, a screening of cosmetic solvents was carried out to solubilize SFE pomegranate extracts and a composition of Gly:H2O 80:20 v:v was selected. Furthermore, an integrated SFE pre-formulation process of pomegranate pericarp extract (PPE) was elaborated. This allowed for the recovery of the extracts in cosmetic solvent, avoiding a full evaporation. Finally, the stability of the pre-formulated extracts was evaluated and showed high stability for over 3 months at 5 °C.
Collapse
Affiliation(s)
| | | | - Eric Lesellier
- Institute of Organic and Analytical Chemistry (ICOA), University of Orléans, CNRS UMR 7311, 45100 Orléans, France; (S.A.-G.); (E.D.)
| |
Collapse
|
9
|
El-Fakharany EM, El-Maradny YA, Ashry M, Abdel-Wahhab KG, Shabana ME, El-Gendi H. Green synthesis, characterization, anti-SARS-CoV-2 entry, and replication of lactoferrin-coated zinc nanoparticles with halting lung fibrosis induced in adult male albino rats. Sci Rep 2023; 13:15921. [DOI: https:/doi.org/10.1038/s41598-023-42702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
AbstractThe ethanolic extract of Coleus forskohlii Briq leaves was employed in the green synthesis of zinc nanoparticles (Zn-NPs) by an immediate, one-step, and cost-effective method in the present study. Zn-NPs were coated with purified bovine lactoferrin (LF) and characterized through different instrumental analysis. The biosynthesized Zn-NPs were white in color revealing oval to spherical-shaped particles with an average size of 77 ± 5.50 nm, whereas LF-coated Zn-NPs (LF-Zn-NPs) revealed a larger particles size of up to 98 ± 6.40 nm. The biosynthesized Zn-NPs and LF-Zn-NPs revealed negatively charged surfaces with zeta-potentials of – 20.25 ± 0.35 and – 44.3 ± 3.25 mV, respectively. Interestingly, the LF-Zn-NPs showed potent in vitro retardation for SARS-CoV-2 entry to host cells by binding to the ACE2-receptor and spike protein receptor binding domain at IC50 values of 59.66 and μg/mL, respectively. Additionally, the results indicated the ability of LF-Zn-NPs to inhibit SARS-CoV-2 replication by interfering with RNA-dependent RNA polymerase “RdRp” activity at IC50 of 49.23 μg/mL. In vivo, the LF-Zn-NPs displayed a protective and therapeutic activity against induced pulmonary fibrosis in Bleomycin-treated male albino rats owing to its anti-inflammatory, antioxidant, and significant reduction in CRP, LDH, ferritin, and D-dimer levels. The obtained findings offer a promising route for biosynthesized Zn-NPs and LF-Zn-NPs as promising candidates against COVID-19.
Collapse
|
10
|
El-Fakharany EM, El-Maradny YA, Ashry M, Abdel-Wahhab KG, Shabana ME, El-Gendi H. Green synthesis, characterization, anti-SARS-CoV-2 entry, and replication of lactoferrin-coated zinc nanoparticles with halting lung fibrosis induced in adult male albino rats. Sci Rep 2023; 13:15921. [PMID: 37741872 PMCID: PMC10518009 DOI: 10.1038/s41598-023-42702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
The ethanolic extract of Coleus forskohlii Briq leaves was employed in the green synthesis of zinc nanoparticles (Zn-NPs) by an immediate, one-step, and cost-effective method in the present study. Zn-NPs were coated with purified bovine lactoferrin (LF) and characterized through different instrumental analysis. The biosynthesized Zn-NPs were white in color revealing oval to spherical-shaped particles with an average size of 77 ± 5.50 nm, whereas LF-coated Zn-NPs (LF-Zn-NPs) revealed a larger particles size of up to 98 ± 6.40 nm. The biosynthesized Zn-NPs and LF-Zn-NPs revealed negatively charged surfaces with zeta-potentials of - 20.25 ± 0.35 and - 44.3 ± 3.25 mV, respectively. Interestingly, the LF-Zn-NPs showed potent in vitro retardation for SARS-CoV-2 entry to host cells by binding to the ACE2-receptor and spike protein receptor binding domain at IC50 values of 59.66 and μg/mL, respectively. Additionally, the results indicated the ability of LF-Zn-NPs to inhibit SARS-CoV-2 replication by interfering with RNA-dependent RNA polymerase "RdRp" activity at IC50 of 49.23 μg/mL. In vivo, the LF-Zn-NPs displayed a protective and therapeutic activity against induced pulmonary fibrosis in Bleomycin-treated male albino rats owing to its anti-inflammatory, antioxidant, and significant reduction in CRP, LDH, ferritin, and D-dimer levels. The obtained findings offer a promising route for biosynthesized Zn-NPs and LF-Zn-NPs as promising candidates against COVID-19.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein, 51718, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | | | | | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
11
|
Ouahabi S, Loukili EH, Daoudi NE, Chebaibi M, Ramdani M, Rahhou I, Bnouham M, Fauconnier ML, Hammouti B, Rhazi L, Ayerdi Gotor A, Dépeint F, Ramdani M. Study of the Phytochemical Composition, Antioxidant Properties, and In Vitro Anti-Diabetic Efficacy of Gracilaria bursa-pastoris Extracts. Mar Drugs 2023; 21:372. [PMID: 37504903 PMCID: PMC10381155 DOI: 10.3390/md21070372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, a comparison was made of the chemical makeup of different extracts obtained from Gracilaria bursa-pastoris, a type of red seaweed that was gathered from the Nador lagoon situated in the northern part of Morocco. Additionally, their anti-diabetic and antioxidant properties were investigated. The application of GC-MS technology to analyze the fatty acid content of the samples revealed that linoleic acid and eicosenoic acid were the most abundant unsaturated fatty acids across all samples, with palmitic acid and oleic acid following in frequency. The HPLC analysis indicated that ascorbic and kojic acids were the most prevalent phenolic compounds, while apigenin was the most common flavonoid molecule. The aqueous extract exhibited significant levels of polyphenols and flavonoids, registering values of 381.31 ± 0.33 mg GAE/g and 201.80 ± 0.21 mg QE/g, respectively. Furthermore, this particular extract demonstrated a remarkable ability to scavenge DPPH radicals, as evidenced by its IC50 value of 0.17 ± 0.67 mg/mL. In addition, the methanolic extract was found to possess antioxidant properties, as evidenced by its ability to prevent β-carotene discoloration, with an IC50 ranging from 0.062 ± 0.02 mg/mL to 0.070 ± 0.06 mg/mL. In vitro study showed that all extracts significantly inhibited the enzymatic activity of α-amylase and α-glucosidase. Finally, molecular docking models were applied to assess the interaction between the primary phytochemicals identified in G. bursa-pastoris extracts and the human pancreatic α-amylase and α-glucosidase enzymes. The findings suggest that these extracts contain bioactive substances capable of reducing enzyme activity more effectively than the commercially available drug acarbose.
Collapse
Affiliation(s)
- Safae Ouahabi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - El Hassania Loukili
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Mohamed Ramdani
- Biochemistry and Biotechnology Laboratory, Faculty of Sciences, Mohamed First University, B.P. 717, Oujda 60000, Morocco
| | - Ilyesse Rahhou
- Higher Institute of Nursing Professions and Health Techniques (ISPITSO), Oujda 63303, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech. 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Belkheir Hammouti
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
- CREHEIO Centre de Recherche de l'Ecole des Hautes Etudes d'Ingénierie, Oujda 60000, Morocco
- Université Euro-Méditerranéenne de Fès, Fez BP 51, Morocco
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Alicia Ayerdi Gotor
- Institut Polytechnique UniLaSalle, AGHYLE, UP 2018.C101, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Flore Dépeint
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Mohammed Ramdani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| |
Collapse
|
12
|
Al-Askar AA, Aseel DG, El-Gendi H, Sobhy S, Samy MA, Hamdy E, El-Messeiry S, Behiry SI, Elbeaino T, Abdelkhalek A. Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate ( Punica granatum L.) Peel Extract against Tobacco Mosaic Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112103. [PMID: 37299082 DOI: 10.3390/plants12112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3-3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.
Collapse
Affiliation(s)
- Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt
| | - Sherien Sobhy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Marwa A Samy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Esraa Hamdy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari, Via Ceglie 9, 70010 Valenzano Bari, Italy
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| |
Collapse
|
13
|
Wu Y, Xia C, Zhang L, Thanh NC, Al Obaid S, Alfarraj S, Jhanani GK. Organic gelatin-coated ZnNPs for the production of biodegradable biopolymer films. ENVIRONMENTAL RESEARCH 2023; 231:116059. [PMID: 37149019 DOI: 10.1016/j.envres.2023.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Petroleum-based polymers have raised significant environmental concerns. It is critical to create compostable, good biocompatibility, and nontoxic polymers to replace petroleum-based polymers. Thus, this research was performed to extract the gelatin from fish waste cartilage and coated it over the surface of spherical shaped pre-synthesized ZnNPs along with a suitable plasticizer to produce the biodegradable film. The presence of gelatin on the surface of ZnNPs was first confirmed using UV-visible spectrophotometers, as well as the characteristic functional groups involved in the coating were investigated using Fourier-Transform Infrared Spectroscopy (FTIR). The morphological appearance of gelatin coated ZnNPs was ranged from 41.43 to 52.31 nm, the shape was found as platonic to pentagonal shape, and the fabricated film was observed through Scanning Electron Microscope (SEM). The thickness, density, and tensile strength of fabricated film were found to be 0.04-0.10 mm, 0.10-0.27 g/cm3, and 31.7 kPa. These results imply that the fish waste cartilage gelatin coated ZnNPs-based nanocomposite can be used for film preparation as well as a wrapper for food and pharmaceutical packaging.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials, Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials, Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research, Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| |
Collapse
|
14
|
Halarnekar D, Ayyanar M, Gangapriya P, Kalaskar M, Redasani V, Gurav N, Nadaf S, Saoji S, Rarokar N, Gurav S. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int J Biol Macromol 2023; 242:124764. [PMID: 37148929 DOI: 10.1016/j.ijbiomac.2023.124764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
The present research work aimed at synthesizing chitosan-coated Zinc oxide nanocomposites (NS-CS/ZnONCs) by a bio-inspired method using an aqueous extract of Nigella sativa (NS) seeds and employing a quality-by-design approach (Box-Behnken design). The biosynthesized NS-CS/ZnONCs were physicochemically characterized and subjected to their in-vitro and in-vivo therapeutic potential. The zeta potential value of -11.2 mV and -12.6 mV indicated the stability of NS-mediated synthesized zinc oxide nanoparticles (NS-ZnONPs) and NS-CS/ZnONCs, respectively. The particle size of NS-ZnONPs and NS-CS/ZnONCs were 288.1 nm and 130.2 nm, respectively, with PDI of 0.198 and 0.158. NS-ZnONPs and NS-CS/ZnONCs showed superior radical scavenging abilities, excellent α-amylase, and α-glucosidase inhibitory activities. Also, NS-ZnONPs and NS-CS/ZnONCs demonstrated effective antibacterial activity against selected pathogens. Furthermore, NS-ZnONPs and NS-CS/ZnONCs demonstrated significant (p < 0.001) wound closure with 93.00 ± 0.43 % and 95.67 ± 0.43 % on the 15th day of treatment at the dose of 14 mg/wound, compared to 93.42 ± 0.58 % of standard. Collagen turnover was represented by hydroxyproline, which was shown to be significantly (p < 0.001) higher in the NS-ZnONPs (60.70 ± 1.44 mg/g of tissue) and NS-CS/ZnONCs (66.10 ± 1.23 mg/g of tissue) treatment groups than in the control group (47.7 ± 0.81 mg/g of tissue). Thus the NS-ZnONPs and NS-CS/ZnONCs could effectively develop promising drugs to inhibit pathogens and chronic tissue repair.
Collapse
Affiliation(s)
- Diksha Halarnekar
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403 001, India
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Peramaiyan Gangapriya
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Mohan Kalaskar
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Vivek Redasani
- Yashoda Technical Campus, Faculty of Pharmacy, Satara 415 011, India
| | - Nilambari Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa 403401, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagao 416 503, Maharashtra, India
| | - Suprit Saoji
- Formulations and Development Department, Slyaback Pharma, Telangana, India
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, R.T. M. University, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403 001, India.
| |
Collapse
|
15
|
Gil-Martínez L, Aznar-Ramos MJ, Del Carmen Razola-Diaz M, Mut-Salud N, Falcón-Piñeiro A, Baños A, Guillamón E, Gómez-Caravaca AM, Verardo V. Establishment of a Sonotrode Extraction Method and Evaluation of the Antioxidant, Antimicrobial and Anticancer Potential of an Optimized Vaccinium myrtillus L. Leaves Extract as Functional Ingredient. Foods 2023; 12:foods12081688. [PMID: 37107483 PMCID: PMC10137389 DOI: 10.3390/foods12081688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Vaccinium myrtillus L. (bilberry) leaves are an important by-product of berry production that may be used as a source of phenolic compounds which have a positive effect on human health. Therefore, an ultrasound-assisted extraction via sonotrode has been used for the first time to recover bioactive compounds from bilberry leaves. The extraction has been optimized using a Box-Behnken design. The influence of ethanol:water ratio (v/v), time of extraction (min) and amplitude (%) were evaluated considering total phenolic content (TPC) and antioxidant capacity (DPPH and FRAP assays) as dependent variables in a response surface methodology (RSM). Optimum values for the independent factors were 30:70 ethanol/water (v/v), 5 min of extraction and 55% amplitude. The empirical values of the independent variables using the optimized conditions were 217.03 ± 4.92 mg GAE/g d.w. (TPC), 271.13 ± 5.84 mg TE/g d.w. (DPPH) and 312.21 ± 9.30 mg TE/g d.w. (FRAP). The validity of the experimental design was confirmed using ANOVA and the optimal extract was characterized using HPLC-MS. A total of 53 compounds were tentatively identified, of which 22 were found in bilberry leaves for the first time. Among them, chlorogenic acid was the most abundant molecule, representing 53% of the total phenolic compounds identified. Additionally, the antimicrobial and anticancer activities of the optimum extract were tested. Gram-positive bacteria demonstrated high sensitivity to bilberry leaves extract in vitro, with MBC values of 6.25 mg/mL for Listeria monocytogenes, Listeria innocua and Enterococcus faecalis, and 0.8 mg/mL for Staphylococcus aureus and Bacillus cereus. Furthermore, bilberry leaves extract exerted in vitro antiproliferative activity against HT-29, T-84 and SW-837 colon tumor cells with IC50 values of 213.2 ± 2.5, 1140.3 ± 5.2 and 936.5 ± 4.6 μg/mL, respectively. Thus, this rapid ultrasound-assisted extraction method has demonstrated to be an efficient technique to obtain bilberry leaves extract with in vitro antioxidant, antimicrobial and anticancer capacities that may be useful for the food industry as natural preservative or even for the production of functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Lidia Gil-Martínez
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - María José Aznar-Ramos
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Maria Del Carmen Razola-Diaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Nuria Mut-Salud
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Ana Falcón-Piñeiro
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Alberto Baños
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Enrique Guillamón
- Department of Chemical Engineering, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology 'José Mataix', University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| |
Collapse
|
16
|
Protective Effects of Fermented Houttuynia cordata Against UVA and H2O2-Induced Oxidative Stress in Human Skin Keratinocytes. Appl Biochem Biotechnol 2022; 195:3027-3046. [PMID: 36495375 DOI: 10.1007/s12010-022-04241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
The biological activities of Houttuynia cordata (H. cordata) fermented with Aureobasidium pullulans (A. pullulans) was investigated for human skin keratinocyte-induced chemical and photo oxidations. In this research, H2O2/UVA-induced HaCaT cell lines were treated with H. cordata water/ethanol extracts (HCW/HCE) and fermented with A. pullulans water/ethanol extracts (HCFW/HCFE). A. pullulans fermented with H. cordata (HCFW) increased in 5.4-folds of total polyphenol (HCFW 46.89 mg GAE/extract g), and 2.3-folds in flavonoids (HCFW 53.80 mg GAE/extract g) compared with water extracts of H. cordata (HCW). Further, no significant cytotoxicity for HaCaT cells showed by all the extracts of H. cordata fermented with A. pullulans. HCFW extracts have significantly lowered inflammation factors such as COX-2 and Hsp70 proteins in oxidative stressed HaCaT cells induced by H2O2 and UVA treatments. All H. cordata extracts significantly downregulated gene expression involved in oxidative stress and inflammation factors, including IL-1β, IL-6, COX-2, TNF-α, NF-κB, and MMP-1 in the H2O2/UVA-treated HaCaT cells. However, keratin-1 gene expression in the UVA-treated HaCaT cells was increased in twofolds by HCFW extracts. Further, A. pullulans fermented H. cordata extracts (HCFW/HCFE) reduced the genes involved in oxidative stresses more effectively than those of H. cordata extract only. Overall, the polyphenol-rich extracts of H. cordata fermented with A. pullulans showed synergistic protective effects for human epidermal keratinocytes to prevent photoaging and intrinsic aging by anti-oxidation and anti-inflammatory functions.
Collapse
|
17
|
Kang SG, Lee GB, Vinayagam R, Do GS, Oh SY, Yang SJ, Kwon JB, Singh M. Anti-Inflammatory, Antioxidative, and Nitric Oxide-Scavenging Activities of a Quercetin Nanosuspension with Polyethylene Glycol in LPS-Induced RAW 264.7 Macrophages. Molecules 2022; 27:7432. [PMID: 36364256 PMCID: PMC9659305 DOI: 10.3390/molecules27217432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Quercetin (Qu) is a dietary antioxidant and a member of flavonoids in the plant polyphenol family. Qu has a high ability to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) molecules; hence, exhibiting beneficial effects in preventing obesity, diabetes, cancer, cardiovascular diseases, and inflammation. However, quercetin has low bioavailability due to poor water solubility, low absorption, and rapid excretion from the body. To address these issues, the usage of Qu nanosuspensions can improve physical stability, solubility, and pharmacokinetics. Therefore, we developed a Qu and polyethylene glycol nanosuspension (Qu-PEG NS) and confirmed its interaction by Fourier transform infrared analysis. Qu-PEG NS did not show cytotoxicity to HaCaT and RAW 264.7 cells. Furthermore, Qu-PEG NS effectively reduced the nitrogen oxide (NO) production in lipopolysaccharide (LPS)-induced inflammatory RAW 264.7 cells. Additionally, Qu-PEG NS effectively lowered the levels of COX-2, NF-κB p65, and IL-1β in the LPS-induced inflammatory RAW 264.7 cells. Specifically, Qu-PEG NS exhibited anti-inflammatory properties by scavenging the ROS and RNS and mediated the inhibition of NF-κB signaling pathways. In addition, Qu-PEG NS had a high antioxidant effect and antibacterial activity against Escherichia coli and Bacillus cereus. Therefore, the developed novel nanosuspension showed comparable antioxidant, anti-inflammatory, and antibacterial functions and may also improve solubility and physical stability compared to raw quercetin.
Collapse
Affiliation(s)
- Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Gi Baek Lee
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Geum Sook Do
- Department of Biology, College of Natural Sciences, Kyungpook National University, Buk-gu, Daegu 41566, Korea
| | - Se Yong Oh
- Nova M Healthcare Co., Ltd., 16-53, Jisiksaneop 4-ro, Gyeongsan 38408, Korea
| | - Su Jin Yang
- Nova M Healthcare Co., Ltd., 16-53, Jisiksaneop 4-ro, Gyeongsan 38408, Korea
| | - Jun Bum Kwon
- Nova M Healthcare Co., Ltd., 16-53, Jisiksaneop 4-ro, Gyeongsan 38408, Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
18
|
Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173066. [PMID: 36080103 PMCID: PMC9459703 DOI: 10.3390/nano12173066] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.
Collapse
Affiliation(s)
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Felix Tettey
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aakash Gupta
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Shankar Jaisi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Devi Prasad Bhandari
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Ajay Kumar Shah
- Faculty of Health Sciences, School of Health and Allied Sciences, Pokhara University, Lekhnath 33700, Nepal
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence: (N.B.); (N.P.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
- Correspondence: (N.B.); (N.P.)
| |
Collapse
|
19
|
Kwak SH, Kim H, Lee S, Lim J, Pal K, Chung B, Kang DH, Kim D. Synthesis and biological characterization of low-calorie Schisandra chinensis syrup. Food Sci Biotechnol 2022; 31:857-865. [PMID: 35720467 PMCID: PMC9203617 DOI: 10.1007/s10068-022-01061-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Schisandra chinensis (Omija) is a well-known medicinal plant in East Asia. In this study, Omija oligosaccharide syrup was prepared from sucrose with Omija fruit extract using two glucansucrases of Leuconostoc mesenteroides B-512F/KM and L. mesenteroides B-1355CF10/KM. The degree of polymerization of Omija oligosaccharide syrup was ranged from 2 - 13 by MALDI-TOF-MS analysis. Compared to the Omija syrup, the Omija oligosaccharide syrup reduced 61% calories based on the enzymatic gravimetric method. It also reduced up to 96% insoluble glucan formation from sucrose by mutansucrase of Streptococcus mutans at 500 mg/mL. Additionally, it has 1.78-fold higher oxygen radical absorbance capacity value compared to Omija syrup. Using electronic tongue sensor system, Omija oligosaccharide syrup showed decreased sourness, astringency, and saltiness compared to Omija syrup. Thus, Omija oligosaccharides can be used as functional sweetener in nutraceutical industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01061-8.
Collapse
Affiliation(s)
- So-Hyung Kwak
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354 Republic of Korea
| | - Hayeong Kim
- grid.31501.360000 0004 0470 5905The Institute of Food Industrialization, Institutes of Green Bio Science &Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354 Republic of Korea
| | - Seonmin Lee
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354 Republic of Korea
| | - Juho Lim
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354 Republic of Korea
| | - Kunal Pal
- grid.444703.00000 0001 0744 7946Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008 India
| | - Byoungsang Chung
- Ottogi Sesame Mills Co., Ltd, Eumseong-gun, Chungcheongbuk-do 27623 Republic of Korea
| | - Dong-Hyun Kang
- grid.31501.360000 0004 0470 5905Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Doman Kim
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354 Republic of Korea
- grid.31501.360000 0004 0470 5905The Institute of Food Industrialization, Institutes of Green Bio Science &Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354 Republic of Korea
| |
Collapse
|
20
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
21
|
Facile Green Synthesis of Zinc Oxide Nanoparticles with Potential Synergistic Activity with Common Antifungal Agents against Multidrug-Resistant Candidal Strains. CRYSTALS 2022. [DOI: 10.3390/cryst12060774] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The high incidence of fungal resistance to antifungal drugs represents a global concern, contributing to high levels of morbidity and mortality, especially among immunocompromised patients. Moreover, conventional antifungal medications have poor therapeutic outcomes, as well as possible toxicities resulting from long-term administration. Accordingly, the aim of the present study was to investigate the antifungal effectiveness of biogenic zinc oxide nanoparticles (ZnO NPs) against multidrug-resistant candidal strains. Biogenic ZnO NPs were characterized using physicochemical methods, such as UV-vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X ray (EDX) spectroscopy, FTIR (Fourier transform infrared) spectroscopy and X-ray powder diffraction (XRD) analysis. UV spectral analysis revealed the formation of two absorption peaks at 367 and 506 nm, which preliminarily indicated the successful synthesis of ZnO NPs, whereas TEM analysis showed that ZnO NPs exhibited an average particle size of 22.84 nm. The EDX spectrum confirmed the successful synthesis of ZnO nanoparticles free of impurities. The FTIR spectrum of the biosynthesized ZnO NPs showed different absorption peaks at 3427.99, 1707.86, 1621.50, 1424.16, 1325.22, 1224.67, 1178.22, 1067.69, 861.22, 752.97 and 574.11 cm−1, corresponding to various functional groups. The average zeta potential value of the ZnO NPs was −7.45 mV. XRD analysis revealed the presence of six diffraction peaks at 2θ = 31.94, 34.66, 36.42, 56.42, 69.54 and 76.94°. The biogenic ZnO NPs (100µg/disk) exhibited potent antifungal activity against C. albicans, C. glabrata and C. tropicalis strains, with suppressive zone diameters of 24.18 ± 0.32, 20.17 ± 0.56 and 26.35 ± 0.16 mm, respectively. The minimal inhibitory concentration (MIC) of ZnO NPs against C. tropicalis strain was found to be 10 μg/mL, whereas the minimal fungicidal concentration (MFC) was found to be 20 μg/mL. Moreover, ZnO NPs revealed a potential synergistic efficiency with fluconazole, nystatin and clotrimazole antifungal drugs against C. albicans strain, whereas terbinafine, nystatin and itraconazole antifungal drugs showed a potential synergism with ZnO NPs against C. glabrata as a multidrug-resistant strain. In conclusion, pomegranate peel extract mediated green synthesis of ZnO NPs with potential physicochemical features and antimicrobial activity. The biosynthesized ZnO NPs could be utilized for formulation of novel drug combinations to boost the antifungal efficiency of commonly used antifungal agents.
Collapse
|
22
|
Elucidation of the Interactions of Reactive Oxygen Species and Antioxidants in Model Membranes Mimicking Cancer Cells and Normal Cells. MEMBRANES 2022; 12:membranes12030286. [PMID: 35323761 PMCID: PMC8949560 DOI: 10.3390/membranes12030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Photosensitizers (PSs) used in photodynamic therapy (PDT) have been developed to selectively destroy tumor cells. However, PSs recurrently reside on the extracellular matrix or affect normal cells in the vicinity, causing side effects. Additionally, the membrane stability of tumor cells and normal cells in the presence of reactive oxygen species (ROS) has not been studied, and the effects of ROS at the membrane level are unclear. In this work, we elucidate the stabilities of model membranes mimicking tumor cells and normal cells in the presence of ROS. The model membranes are constructed according to the degree of saturation in lipids and the bilayers are prepared either in symmetric or asymmetric form. Interestingly, membranes mimicking normal cells are the most vulnerable to ROS, while membranes mimicking tumor cells remain relatively stable. The instability of normal cell membranes may be one cause of the side effects of PDT. Moreover, we also show that ROS levels are controlled by antioxidants, helping to maintain an appropriate amount of ROS when PDT is applied.
Collapse
|