1
|
Amorim de Souza Lima T, Raissa Ribeiro M, Carneiro de Brito M, Mitiko Kawamoto E. Impaired exploration induced by type 1 diabetes is related to locomotor activity rather than a reduction in motivation. Neuroscience 2024; 560:1-10. [PMID: 39293729 DOI: 10.1016/j.neuroscience.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Type 1 diabetes mellitus (T1D) is associated with cognitive impairments in humans. A well-established animal model of T1D is induced through the administration of streptozotocin (STZ), a glucose analog that induces pancreatic β-cell death, resulting in hyperglycemia and cognitive impairment linked to neuroinflammation and oxidative stress. Tumor necrosis factor (TNF)-α, a key inflammatory mediator, is elevated in the central nervous system (CNS) of diabetic animals. In this study, we utilized TNFR1 knockout mice to investigate the role of TNFR1 signaling in short-term T1D-related cognitive impairment. Our findings showed that diabetic animals did not develop cognitive damage within the first 2 weeks of T1D but exhibited reduced exploration in all behavioral tests. Our findings suggest that this reduction in exploration was attributable to motor impairment, as there was no reduction in motivated novelty-seeking behavior. Additionally, deletion of TNFR1 signaling attenuated gait speed impairment in diabetic mice, but did not affect other motor-related or exploratory behaviors.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/complications
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/psychology
- Mice, Knockout
- Motivation/physiology
- Exploratory Behavior/physiology
- Male
- Mice
- Locomotion/physiology
- Mice, Inbred C57BL
- Cognitive Dysfunction/physiopathology
- Cognitive Dysfunction/etiology
- Streptozocin
Collapse
Affiliation(s)
- Thiago Amorim de Souza Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Martina Raissa Ribeiro
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Malcon Carneiro de Brito
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Zimmer C, Hanson HE, Garrison M, Reese D, Dor R, Søraker JS, Ho Thu P, Sheldon EL, Martin LB. Immune gene expression and epigenetic potential affect the consumption of risky food by female house sparrows. Brain Behav Immun 2024; 119:6-13. [PMID: 38552921 DOI: 10.1016/j.bbi.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 06/11/2024] Open
Abstract
When organisms move into new areas, they are likely to encounter novel food resources. Even if they are nutritious, these foods can also be risky, as they might be contaminated by parasites. The behavioural immune system of animals could help them avoid the negative effects of contaminated resources, but our understanding of behavioural immunity is limited, particularly whether and how behavioural immunity interacts with physiological immunity. Here, we asked about the potential for interplay between these two traits, specifically how the propensity of an individual house sparrow (Passer domesticus) to take foraging risks was related to its ability to regulate a key facet of its immune response to bacterial pathogens. Previously, we found that sparrows at expanding geographic range edges were more exploratory and less risk-averse to novel foods; in those same populations, birds tended to over-express Toll-like receptor 4 (TLR4), a pattern-recognition receptor that distinguishes cell-wall components of Gram-negative bacteria, making it the major sensor of potentially lethal gut microbial infections including salmonellosis. When we investigated how birds would respond to a typical diet (i.e., mixed seeds) spiked with domesticated chicken faeces, birds that expressed more TLR4 or had higher epigenetic potential for TLR4 (more CpG dinucleotides in the putative gene promoter) ate more food, spiked or not. Females expressing abundant TLR4 were also willing to take more foraging risks and ate more spiked food. In males, TLR4 expression was not associated with risk-taking. Altogether, our results indicate that behaviour and immunity covary among individual house sparrows, particularly in females where those birds that maintain more immune surveillance also are more disposed to take foraging risks.
Collapse
Affiliation(s)
- Cedric Zimmer
- Global Health and Interdisciplinary Disease Research Center, University of South Florida 33612, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France.
| | - Haley E Hanson
- Global Health and Interdisciplinary Disease Research Center, University of South Florida 33612, USA
| | - Marisa Garrison
- Global Health and Interdisciplinary Disease Research Center, University of South Florida 33612, USA
| | - Darrys Reese
- Global Health and Interdisciplinary Disease Research Center, University of South Florida 33612, USA
| | - Roi Dor
- Department of Natural Life Sciences, The Open University of Israel, Ra'Anana, Israel
| | - Jørgen S Søraker
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology Høgskoleringen 5, NO-7491 Trondheim, Norway; Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Phuong Ho Thu
- Vietnam National University of Forestry, Hanoi 100000, Viet Nam
| | - Elizabeth L Sheldon
- Global Health and Interdisciplinary Disease Research Center, University of South Florida 33612, USA
| | - Lynn B Martin
- Global Health and Interdisciplinary Disease Research Center, University of South Florida 33612, USA
| |
Collapse
|
3
|
Dai QD, Wu KS, Xu LP, Zhang Y, Lin N, Jiang Y, Shao CY, Su LD. Toll-Like Receptor 4 Deficiency Ameliorates Propofol-Induced Impairments of Cognitive Function and Synaptic Plasticity in Young Mice. Mol Neurobiol 2024; 61:519-532. [PMID: 37644280 DOI: 10.1007/s12035-023-03606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Propofol is one of the most used intravenous anesthetic agents, which is widely used in clinical anesthesia induction and maintenance of pediatric patients. Exposure of the developing brain to propofol has been reported to lead to adverse brain changes, which in turn can induce persistent behavioral abnormalities in adulthood. However, the mechanisms by which propofol exposure in the developing brain induces cognitive impairment remain unclear. Here we report that repeated propofol exposure during the second postnatal week impairs spatial learning and memory in young mice. The reduced excitatory synaptic function and synaptogenesis in hippocampal CA1 neurons underlie this cognitive impairment. Propofol exposure specifically activates Toll-like receptor 4 (TLR4)-myeloid differentiation primary response protein 88 (MyD88)-NF-κB signaling pathway. TLR4 deficiency recues propofol exposure-induced synaptic function and cognitive deficits in young mice. Thus, we provide evidence that the activation of the TLR4-mediated pathway by propofol exposure may serve as a crucial trigger for the cognitive impairment in young adulthood caused by repeated exposure to propofol in the developing brain.
Collapse
Affiliation(s)
- Qiao-Ding Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Kang-Song Wu
- Neuroscience Care Unit (Key Laboratory of Multiple Organ Failure, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Rd 88#, Hangzhou, 310009, China
| | - Li-Ping Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Na Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Yao Jiang
- Neuroscience Care Unit (Key Laboratory of Multiple Organ Failure, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Rd 88#, Hangzhou, 310009, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, 310009, China
| | - Chong-Yu Shao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li-Da Su
- Neuroscience Care Unit (Key Laboratory of Multiple Organ Failure, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Rd 88#, Hangzhou, 310009, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Infection, Learning, and Memory: Focus on Immune Activation and Aversive Conditioning. Neurosci Biobehav Rev 2022; 142:104898. [PMID: 36183862 DOI: 10.1016/j.neubiorev.2022.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Here we review the effects of immune activation primarily via lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, on hippocampal and non-hippocampal-dependent learning and memory. Rodent studies have found that LPS alters both the acquisition and consolidation of aversive learning and memory, such as those evoking evolutionarily adaptive responses like fear and disgust. The inhibitory effects of LPS on the acquisition and consolidation of contextual fear memory are discussed. LPS-induced alterations in the acquisition of taste and place-related conditioned disgust memory within bottle preference tasks and taste reactivity tests (taste-related), in addition to conditioned context avoidance tasks and the anticipatory nausea paradigm (place-related), are highlighted. Further, conditioned disgust memory consolidation may also be influenced by LPS-induced effects. Growing evidence suggests a central role of immune activation, especially pro-inflammatory cytokine activity, in eliciting the effects described here. Understanding how infection-induced immune activation alters learning and memory is increasingly important as bacterial and viral infections are found to present a risk of learning and memory impairment.
Collapse
|
5
|
Diet-induced inflammation in the anterior paraventricular thalamus induces compulsive sucrose-seeking. Nat Neurosci 2022; 25:1009-1013. [PMID: 35915173 DOI: 10.1038/s41593-022-01129-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Overconsumption of palatable food may initiate neuroadaptive responses in brain reward circuitry that may contribute to eating disorders. Here we report that high-fat diet (HFD) consumption impedes threat-cue-induced suppression of sucrose-seeking in mice. This compulsive sucrose-seeking was due to enhanced cue-triggered neuronal activity in the anterior paraventricular thalamus (aPVT) resulting from HFD-induced microglia activation. Thus, metabolic inflammation in the aPVT produces an adaptive response to threat cues, leading to compulsive food-seeking.
Collapse
|
6
|
Li W, Lu L, Zhu D, Liu J, Shi Y, Zeng H, Yu X, Guo J, Wei B, Cai Y, Sun M. Gestational exposure to fluoride impairs cognition in C57 BL/6 J male offspring mice via the p-Creb1-BDNF-TrkB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113682. [PMID: 35643027 DOI: 10.1016/j.ecoenv.2022.113682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fluoride exposure has a detrimental effect on neurodevelopment, while the underlying processes remain unknown. The goal of this study was to investigate how fluoride impacts synaptogenesis, with a focus on the phosphorylation of Creb1 (p-Creb1)-brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) pathway. We generated a sodium fluoride (NaF) model using C57 BL/6 J mice exposed to 100 mg/L NaF from gestation day 1 (GD1) to GD20. It was identified that NaF treatment impaired the learning and memory abilities of the male offspring, reduced dendritic spine density, lowered postsynaptic density protein-95 (PSD95) and synaptophysin (SYN) expression in the male offspring's hippocampus, indicating that synaptic dysfunction may contribute to the cognitive impairment in the NaF model. In addition, in vivo experiment demonstrated that the protein abundance of BDNF and the ratio of p-Creb1 to Creb1 were increased in the hippocampus of NaF offspring, while the level of TrkB was reduced. Similarly, PC12 cells treated with NaF also showed increased expression of BDNF and decreased levels of TrkB. Notably, fluoride treatment increased p-Creb1 in vitro, while inhibiting p-Creb1 by 66615 significantly alleviated the effects of NaF exposure, indicating that p-Creb1 exerts a regulatory function in the BDNF-TrkB pathway. Altogether, these results demonstrated prenatal fluoride exposure triggered neurotoxicity in the male offspring hippocampus was linked to synaptogenesis damage caused by activating p-Creb1, which disrupted the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Weisheng Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Dan Zhu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jun Guo
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
7
|
Zhang F, Zhu X, Yu P, Sheng T, Wang Y, Ye Y. Crocin ameliorates depressive-like behaviors induced by chronic restraint stress via the NAMPT-NAD+-SIRT1 pathway in mice. Neurochem Int 2022; 157:105343. [DOI: 10.1016/j.neuint.2022.105343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/16/2022] [Accepted: 04/15/2022] [Indexed: 12/22/2022]
|
8
|
Liu Y, Deng SL, Li LX, Zhou ZX, Lv Q, Wang ZY, Wang F, Chen JG. A circuit from dorsal hippocampal CA3 to parvafox nucleus mediates chronic social defeat stress-induced deficits in preference for social novelty. SCIENCE ADVANCES 2022; 8:eabe8828. [PMID: 35196094 PMCID: PMC8865774 DOI: 10.1126/sciadv.abe8828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The preference for social novelty is crucial to the social life of humans and rodents. However, the neural mechanisms underlying social novelty preference are poorly understood. Here, we found that chronic social defeat stress (CSDS) reduced the preference for social novelty in mice by impairing the response of CaMKIIα+ neurons in the CA3 region of dorsal hippocampus (dCA3) during approach to an unfamiliar mouse. The deficits of social novelty preference in CSDS-treated mice were reversed by activating the output from dCA3 to the GABAergic neurons in the lateral septum (LS). The activation of GABAergic projection from LS recruited a circuit that inhibited the Foxb1+ neurons in the parvafox nucleus (PFN), which drove social avoidance by projecting to the lateral periaqueductal gray (lPAG). These results suggest that a previously unidentified circuit of dCA3CaMKIIα+→LSGABA+→PFNFoxb1+→lPAG mediates the deficits of social novelty preference induced by CSDS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Si-Long Deng
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang-Xia Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Xiang Zhou
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Lv
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong-Yuan Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| |
Collapse
|
9
|
A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state. Cell Res 2022; 32:139-156. [PMID: 34848869 PMCID: PMC8807621 DOI: 10.1038/s41422-021-00588-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dopamine (DA) level in the nucleus accumbens (NAc) is critical for reward and aversion encoding. DA released from the ventral mesencephalon (VM) DAergic neurons increases the excitability of VM-projecting D1-dopamine receptor-expressing medium spiny neurons (D1-MSNs) in the NAc to enhance DA release and augment rewards. However, how such a DA positive feedback loop is regulated to maintain DA homeostasis and reward-aversion balance remains elusive. Here we report that the ventral pallidum (VP) projection of NAc D1-MSNs (D1NAc-VP) is inhibited by rewarding stimuli and activated by aversive stimuli. In contrast to the VM projection of D1-MSN (D1NAc-VM), activation of D1NAc-VP projection induces aversion, but not reward. D1NAc-VP MSNs are distinct from the D1NAc-VM MSNs, which exhibit conventional functions of D1-MSNs. Activation of D1NAc-VP projection stimulates VM GABAergic transmission, inhibits VM DAergic neurons, and reduces DA release into the NAc. Thus, D1NAc-VP and D1NAc-VM MSNs cooperatively control NAc dopamine balance and reward-aversion states.
Collapse
|
10
|
Connolly MG, Potter OV, Sexton AR, Kohman RA. Effects of Toll-like receptor 4 inhibition on spatial memory and cell proliferation in male and female adult and aged mice. Brain Behav Immun 2021; 97:383-393. [PMID: 34343615 PMCID: PMC8453097 DOI: 10.1016/j.bbi.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) participate in the response to infection, stress, and injury by initiating an innate immune response. In addition, these receptors are expressed in many neural cell types and under physiological conditions are implicated in modulating cognitive function and neural plasticity in the adult and aged brain. Knockout of the Toll-like receptor 4 (TLR4) subtype enhances spatial memory and adult hippocampal neurogenesis through increasing proliferation and neuronal differentiation. Currently unknown is whether pharmacological inhibition of TLR4 produces similar enhancements in cognitive function and cell proliferation. The present study evaluated water maze performance, cytokine expression, and cell proliferation in the hippocampus of young and aged male and female C57BL6/J mice following treatment with the TLR4 antagonist, TAK-242. Further, alterations in the response to an acute stressor were evaluated in TAK-242-treated mice. Results showed that TAK-242 selectively enhanced spatial learning and memory in young females. Additionally, TAK-242 treatment reduced thigmotaxis in the water maze and lowered corticosterone levels following acute stress in females. TAK-242 decreased hippocampal interleukin (IL)-1β expression but had no effect on IL-6 or tumor necrosis factor-α (TNFα). Aged mice showed decreased cell proliferation compared to young mice, but TAK-242 administration had minimal effects on estimated Ki67 positive cell numbers. Findings indicate that pharmacological inhibition of TLR4 improves cognitive function in young females likely through attenuating stress reactivity.
Collapse
Affiliation(s)
- Meghan G. Connolly
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Opal V. Potter
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Ashley R. Sexton
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Rachel A. Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| |
Collapse
|
11
|
Chen J, Ma XL, Zhao H, Wang XY, Xu MX, Wang H, Yang TQ, Peng C, Liu SS, Huang M, Zhou YD, Shen Y. Increasing astrogenesis in the developing hippocampus induces autistic-like behavior in mice via enhancing inhibitory synaptic transmission. Glia 2021; 70:106-122. [PMID: 34498776 PMCID: PMC9291003 DOI: 10.1002/glia.24091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized primarily by impaired social communication and rigid, repetitive, and stereotyped behaviors. Many studies implicate abnormal synapse development and the resultant abnormalities in synaptic excitatory–inhibitory (E/I) balance may underlie many features of the disease, suggesting aberrant neuronal connections and networks are prone to occur in the developing autistic brain. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function during a critical developmental period may also contribute to the pathogenesis of ASD. Here, we report that increasing hippocampal astrogenesis during development induces autistic‐like behavior in mice and a concurrent decreased E/I ratio in the hippocampus that results from enhanced GABAergic transmission in CA1 pyramidal neurons. Suppressing the aberrantly elevated GABAergic synaptic transmission in hippocampal CA1 area rescues autistic‐like behavior and restores the E/I balance. Thus, we provide direct evidence for a developmental role of astrocytes in driving the behavioral phenotypes of ASD, and our results support that targeting the altered GABAergic neurotransmission may represent a promising therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhao
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min-Xin Xu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Qi Yang
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Peng
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Pharmacology, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, Hangzhou, China
| |
Collapse
|
12
|
Quave CB, Nieto SJ, Haile CN, Kosten TA. Immune receptor toll-like receptor 4 contributes to stress-induced affective responses in a sex-specific manner. Brain Behav Immun Health 2021; 14:100248. [PMID: 34589759 PMCID: PMC8474610 DOI: 10.1016/j.bbih.2021.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 11/27/2022] Open
Abstract
Stress activates innate immune Toll-like receptors (TLRs) and enhances susceptibility to depression, a condition that is more prevalent in females. The TLR4 receptor type is involved in inflammatory responses and its expression levels associate with depressive symptoms and their successful treatment. Yet, little preclinical research has examined the role of TLR4 in stress-induced affective responses to determine if these are sex-specific. One group per genotype of male and female Tlr4 knockout (KO) and wild type (WT) rats were exposed to predator odor in a place conditioning apparatus with others exposed to saline. Affective behaviors evaluated included distance traveled and center time in an open-field apparatus, sucrose preference and fluid intake in a two-bottle test, and conditioned place aversion to the odor-paired compartment. Predator odor exposed rats showed conditioned place aversion to the odor-paired compartment, demonstrating predator odor was aversive. Such exposure led to anhedonia (decreased sucrose preference) across genotypes and sex. Predator odor exposure decreased distance traveled, an effect that was greater in KO rats, especially in females. Tlr4 deletion also resulted in sex-specific effects on anxiety-like behavior. Compared to WTs, female KO rats showed lower center time after predator odor exposure whereas genotype did not affect this response in male rats. Across litters, fewer male KO and heterozygous rats and more WT rats were born whereas female rats showed the typical genotype distribution. Results suggest predator odor alters affective behaviors, consistent with the preclinical literature, and deletion of Tlr4 enhances some stress-induced affective responses, often in a sex-specific manner.
Collapse
Affiliation(s)
- Cana B. Quave
- Department of Psychology, University of Houston, United States
| | - Steven J. Nieto
- Department of Psychology, University of Houston, United States
| | - Colin N. Haile
- Department of Psychology, University of Houston, United States
| | | |
Collapse
|
13
|
Moya M, San Felipe D, Ballesta A, Alén F, Rodríguez de Fonseca F, García-Bueno B, Marco EM, Orio L. Cerebellar and cortical TLR4 activation and behavioral impairments in Wernicke-Korsakoff Syndrome: Pharmacological effects of oleoylethanolamide. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110190. [PMID: 33271211 DOI: 10.1016/j.pnpbp.2020.110190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
Wernicke-Korsakoff Syndrome (WKS) is a neuropsychiatric disorder whose etiology is a thiamine deficiency (TD), with alcoholism being the main underlying cause. Previous evidence suggests the presence of initial neuroinflammation and oxidative/nitrosative stress in the physiopathology, although the specific molecular mechanisms underlying TD-induced brain damage and behavioral disabilities are unknown. We explored the specific role of the innate immune receptor TLR4 in three murine models of WKS, based on the combination of a thiamine-deficient diet and pyrithiamine injections (0.25 mg/kg, i.p.) over time. The Symptomatic Model (SM) allowed us to describe the complete neurological/neurobehavioral symptomatology over 16 days of TD. Animals showed an upregulation of the TLR4 signaling pathway both in the frontal cortex (FC) and cerebellum and clear motor impairments related with cerebellar dysfunction. However, in the Pre-Symptomatic Model (PSM), 12 days of TD induced the TLR4 pathway upregulation in the FC, which correlated with disinhibited-like behavior, but not in the cerebellum, and no motor impairments. In addition, we tested the effects of the biolipid oleoylethanolamide (OEA, 10 mg/kg, i.p., once daily, starting before any symptom of the pathology is manifested) through the Glucose-Precipitated Model (GPM), which was generated by glucose loading (5 g/kg, i.v., last day) in thiamine-deficient animals to accelerate damage. Pretreatment with OEA prevented the TLR4-induced signature in the FC, as well as an underlying incipient memory disability and disinhibited-like behavior. This study suggests a key role for TLR4 in TD-induced neuroinflammation in the FC and cerebellum, and it reveals different vulnerability of these brain regions in WKS over time. Pre-treatment with OEA counteracts TD-induced TLR4-associated neuroinflammation and may serve as co-adjuvant therapy to prevent WKS-induced neurobehavioral alterations.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego San Felipe
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain
| | - Antonio Ballesta
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco Alén
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional de Málaga, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Spain
| | - Eva M Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
14
|
Zhu L, Huang Y, Hu Y, Tang Q, Zhong Y. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation. Korean J Pain 2021; 34:47-57. [PMID: 33380567 PMCID: PMC7783850 DOI: 10.3344/kjp.2021.34.1.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of pro- and anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.
Collapse
Affiliation(s)
- Lirong Zhu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangliang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuming Hu
- Department of Pathology, Vocational Technical School of Nanhai, Foshan, China
| | - Qian Tang
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Zhong
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Critical role of TLR4 in uncovering the increased rewarding effects of cocaine and ethanol induced by social defeat in male mice. Neuropharmacology 2020; 182:108368. [PMID: 33132187 DOI: 10.1016/j.neuropharm.2020.108368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Substance use disorders and social stress are currently associated with changes in the immune system response by which they induce a proinflammatory state in neurons and glial cells that eventually modulates the reward system. AIMS The aim of the present work was to assess the role of the immune TLR4 (Toll-like receptors 4) and its signaling response in the increased contextual reinforcing effects of cocaine and reinforcing effects of ethanol (EtOH) induced by social defeat (SD) stress. METHODS Adult male C57BL/6 J wild-type (WT) mice and mice deficient in TLR4 (TLR4-KO) were assigned to experimental groups according to stress condition (exploration or SD). Three weeks after the last SD, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg), while another set underwent EtOH 6% operant self-administration (SA). Several inflammatory molecules were analyzed in the hippocampus and the striatum. RESULTS SD induced higher vulnerability to the conditioned rewarding effects of cocaine only in defeated WT mice. Similarly, defeated WT mice exhibited higher 6% EtOH consumption, an effect that was not observed in the defeated TLR4-KO group. However, the motivation to obtain the drug was observed in both genotypes of defeated animals. Notably, a significant upregulation of the protein proinflammatory markers NFkBp-p65, IL-1β, IL-17 A and COX-2 were observed only in the defeated WT mice, but not in their defeated TLR4-KO counterparts. CONCLUSIONS These results suggest that TLR4 receptors mediate the neuroinflammatory response underlying the increase in the rewarding effects of cocaine and EtOH induced by social stress.
Collapse
|
16
|
Connolly MG, Yost OL, Potter OV, Giedraitis ME, Kohman RA. Toll-like receptor 4 differentially regulates adult hippocampal neurogenesis in an age- and sex-dependent manner. Hippocampus 2020; 30:958-969. [PMID: 32343455 DOI: 10.1002/hipo.23209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 4 (TLR4) is primarily responsible for initiating an immune response following pathogen recognition. However, TLR4 is also expressed on neural progenitor cells and has been reported to regulate hippocampal neurogenesis as young male TLR4 knockout mice show increases in cell proliferation and doublecortin positive cells. Whether these effects occur in both sexes and are sustained with normal aging is currently unknown. The present study evaluated whether TLR4 deficiency alters adult hippocampal neurogenesis in young (3-4 months) and aged (18-20 months), male and female, TLR4 deficient (TLR4-/-; B6.B10ScN-Tlr4lps-del/JthJ) and wild type (WT) mice. Additionally, neurogenesis within the dorsal and the ventral hippocampal subdivisions was evaluated to determine if TLR4 has differential effects across the hippocampus. Bromodeoxyuridine (BrdU) was administered to quantify new cell survival as well as cell differentiation. Ki-67 was measured to evaluate cell proliferation. Results show that young TLR4-/- females had higher rates of proliferation and neuronal differentiation in both the dorsal and ventral hippocampus relative to WT females. Young TLR4-/- males show elevated proliferation and neuronal differentiation mainly in the ventral hippocampus. While young TLR4-/- mice show enhanced neurogenesis compared to young WT mice, the increase was not apparent in the aged TLR4-/- mice. Both aged WT and TLR4-/- mice showed a decrease in proliferation, new cell survival, and neuronal differentiation compared to young WT and TLR4-/- mice. The data collectively indicate that TLR4 regulates hippocampal neurogenesis in young adults, but that these effects are region-specific in males and that females show broader changes in neurogenesis throughout the hippocampus.
Collapse
Affiliation(s)
- Meghan G Connolly
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Oriana L Yost
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Opal V Potter
- School of Medicine, Wake Forest University, Winston Salem, North Carolina, USA
| | - Megan E Giedraitis
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Rachel A Kohman
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
17
|
Ye C, Qiu Y, Zhang F, Chen AD, Zhou H, Wang JJ, Chen Q, Li YH, Kang YM, Zhu GQ. Chemical Stimulation of Renal Tissue Induces Sympathetic Activation and a Pressor Response via the Paraventricular Nucleus in Rats. Neurosci Bull 2019; 36:143-152. [PMID: 31392556 DOI: 10.1007/s12264-019-00417-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sympathetic activation and the kidney play critical roles in hypertension and chronic heart failure. The role of the kidney in sympathetic activation is still not well known. In this study, we revealed an excitatory renal reflex (ERR) in rats induced by chemical stimulation of the kidney that regulated sympathetic activity and blood pressure. The ERR was induced by renal infusion of capsaicin, and evaluated by the changes in renal sympathetic outflow, blood pressure, and heart rate. Renal infusion of capsaicin dose-dependently increased the contralateral renal sympathetic nerve activity, mean arterial pressure, and heart rate. Capsaicin in the cortico-medullary border had greater effects than in the cortex or medulla. Intravenous infusion of capsaicin had no significant effects. The effects of renal infusion of capsaicin were abolished by ipsilateral renal denervation, but were not affected by bilateral sinoaortic denervation. Renal infusion of capsaicin increased the ipsilateral renal afferent activity. The ERR was also induced by renal infusion of bradykinin, adenosine, and angiotensin II, but not by ATP. Renal infusion of capsaicin increased c-Fos expression in the paraventricular nucleus (PVN) of hypothalamus. Lesion of neurons in the PVN with kainic acid abolished the capsaicin-induced ERR. These findings indicate that chemical stimulation of kidney causes an excitatory reflex, leading to sympathetic activation, pressor response, and accelerated heart rate. The PVN is an important central nucleus in the pathway of the ERR.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Qiu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Xie X, Gao Y, Zeng M, Wang Y, Wei TF, Lu YB, Zhang WP. Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer's disease model mice. Metab Brain Dis 2019; 34:353-366. [PMID: 30523581 DOI: 10.1007/s11011-018-0346-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) supplementation to repair the disabled mitochondria is a promising strategy for the treatment of Alzheimer's disease (AD) and other dementia. Nicotinamide ribose (NR) is a safe NAD precursor with high oral bioavailability, and has beneficial effects on aging. Here, we applied NR supplied food (2.5 g/kg food) to APP/PS1 transgenic AD model mice and aged mice for 3 months. Cognitive function, locomotor activity and anxiety level were assessed by standard behavioral tests. The change of body weight, the activation of microglia and astrocytes, the accumulation of Aβ and the level of serum nicotinamide phosphoribosyltransferase (NAMPT) were determined for the evaluation of pathological processes. We found that NR supplementation improved the short-term spatial memory of aged mice, and the contextual fear memory of AD mice. Moreover, NR supplementation inhibited the activation of astrocytes and the elevation of serum NAMPT of aged mice. For AD model mice, NR supplementation inhibited the accumulation of Aβ and the migration of astrocyte to Aβ. In addition, NR supplementation inhibit the body weight gain of aged and APP/PS1 mice. Thus, NR has selective benefits for both AD and aged mice, and the oral uptake of NR can be used to prevent the progression of dementia.
Collapse
Affiliation(s)
- Xian Xie
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- Hospital of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Gao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Min Zeng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Tao-Feng Wei
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yun-Bi Lu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Wei-Ping Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China.
- Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
19
|
Potter OV, Giedraitis ME, Johnson CD, Cox MN, Kohman RA. Young and aged TLR4 deficient mice show sex-dependent enhancements in spatial memory and alterations in interleukin-1 related genes. Brain Behav Immun 2019; 76:37-47. [PMID: 30394314 PMCID: PMC6814391 DOI: 10.1016/j.bbi.2018.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor-4 (TLR4) is a transmembrane receptor that initiates an immune response following a bacterial infection or host derived molecules associated with cellular distress. Beyond triggering inflammation, TLR4 has been implicated in modulating behavioral and cognitive processes in a physiologically normal state, as young adult TLR4 deficient mice show learning enhancements in select tasks. Currently unknown is whether these benefits are present in both sexes and persist with aging. The present study evaluated spatial memory, anxiety-like behavior, and central levels of pro- and anti-inflammatory molecules in young (4-5 months) and aged (18-19 months) TLR4 deficient (TLR4-/-) and wild-type (WT) male and female mice. Results confirmed that TLR4-/- mice show enhanced spatial memory compared to WT mice. These effects were age- and sex-specific, as memory retention was superior in the TLR4-/- young males and aged females. While TLR4-/- mice showed age-related changes in behavior, these changes were attenuated relative to aged WT mice. Further, aged TLR4-/- mice showed differential expression of molecules involved in interleukin (IL)-1 signaling in the hippocampus. For instance, aged TLR4-/- females showed heightened expression of IL-1 receptor antagonist (IL-1ra) and the IL-1 accessory proteins AcP and AcPb. Collectively, these data provide the initial evidence that TLR4 deficiency enhances cognitive function and modulates the inflammatory profile of the hippocampus in a sex- and age-dependent manner.
Collapse
Affiliation(s)
- Opal V Potter
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Megan E Giedraitis
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Charles D Johnson
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Mackenzie N Cox
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
20
|
Cheng J, Wang J, Ma X, Ullah R, Shen Y, Zhou YD. Anterior Paraventricular Thalamus to Nucleus Accumbens Projection Is Involved in Feeding Behavior in a Novel Environment. Front Mol Neurosci 2018; 11:202. [PMID: 29930498 PMCID: PMC5999750 DOI: 10.3389/fnmol.2018.00202] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/22/2018] [Indexed: 11/24/2022] Open
Abstract
Foraging food in a novel environment is essential for survival. Animals coordinate the complex motivated states and decide whether to initiate feeding or escape from unfamiliar scenes. Neurons in the paraventricular thalamic nucleus (PVT) receive multiple inputs from the hypothalamus, forebrain, and caudal brainstem that are known to regulate feeding behavior. The PVT neurons also project to the forebrain regions that are involved in reward and motivation. Notably, the PVT neurons projecting to the nucleus accumbens (NAc) are activated when an incentive stimulus is presented. Optogenetic activation of the PVT-NAc path has been shown to increase the motivation for sucrose-seeking in instrumental tasks. However, how the PVT circuitry regulates the feeding behavior in a novel environment remains largely obscure. In the present study, we found that the activity of glutamatergic neurons in the anterior PVT (aPVT) projecting to the NAc dictates the novelty-suppressed feeding behavior in mice. Optogenetic activation of the aPVT-NAc projection increased the feeding time and food consumption in mice under a moderate food restriction in a novel open field where the food was placed in the central area. The exploratory and anxiety-like behaviors, however, were not altered by the aPVT-NAc activation. Our work reveals that activation of the aPVT-NAc pathway in mice generates a motivation to consume food in a novel environment.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jincheng Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Ma
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rahim Ullah
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Atlas of the Striatum and Globus Pallidus in the Tree Shrew: Comparison with Rat and Mouse. Neurosci Bull 2018; 34:405-418. [PMID: 29508249 DOI: 10.1007/s12264-018-0212-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/04/2017] [Indexed: 02/05/2023] Open
Abstract
The striatum and globus pallidus are principal nuclei of the basal ganglia. Nissl- and acetylcholinesterase-stained sections of the tree shrew brain showed the neuroanatomical features of the caudate nucleus (Cd), internal capsule (ic), putamen (Pu), accumbens, internal globus pallidus, and external globus pallidus. The ic separated the dorsal striatum into the Cd and Pu in the tree shrew, but not in rats and mice. In addition, computer-based 3D images allowed a better understanding of the position and orientation of these structures. These data provided a large-scale atlas of the striatum and globus pallidus in the coronal, sagittal, and horizontal planes, the first detailed distribution of parvalbumin-immunoreactive cells in the tree shrew, and the differences in morphological characteristics and density of parvalbumin-immunoreactive neurons between tree shrew and rat. Our findings support the tree shrew as a potential model for human striatal disorders.
Collapse
|
22
|
Femenia T, Qian Y, Arentsen T, Forssberg H, Diaz Heijtz R. Toll-like receptor-4 regulates anxiety-like behavior and DARPP-32 phosphorylation. Brain Behav Immun 2018; 69:273-282. [PMID: 29221855 DOI: 10.1016/j.bbi.2017.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in early innate immune responses to inflammatory agents and pathogens. In the brain, some members of the TLR family are expressed in glial cells and neurons. In particular, TLR4 has been involved in learning and memory processes, stress-induced adaptations, and pathogenesis of neurodegenerative disorders. However, the role of TLR4 in emotional behaviors and their underlying mechanisms are poorly understood. In this study, we investigated the role of TLR4 in emotional and social behavior by using different behavioral approaches, and assessed potential molecular alterations in important brain areas involved in emotional responses. TLR4 knockout (KO) mice displayed increased anxiety-like behavior and reduced social interaction compared to wild type control mice. This behavioral phenotype was associated with an altered expression of genes known to be involved in emotional behavior [e.g., brain-derived neurotrophic factor (BDNF) and metabotropic glutamate receptors (mGluRs)]. Interestingly, the mRNA expression of dopamine- and cAMP-regulated phosphoprotein-32 (DARPP-32) was strongly upregulated in emotion-related regions of the brain in TLR4 KO mice. In addition, the phosphorylation levels at Thr75 and Ser97 in DARPP-32 were increased in the frontal cortex of TLR4 KO male mice. These findings indicate that TLR4 signaling is involved in emotional regulation through modulation of DARPP-32, which is a signaling hub that plays a critical role in the integration of numerous neurotransmitter systems, including dopamine and glutamate.
Collapse
Affiliation(s)
- T Femenia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Y Qian
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - T Arentsen
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - H Forssberg
- Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - R Diaz Heijtz
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
23
|
Dang R, Chen Q, Song J, He C, Zhang J, Xia J, Hu Z. Orexin knockout mice exhibit impaired spatial working memory. Neurosci Lett 2018; 668:92-97. [PMID: 29325715 DOI: 10.1016/j.neulet.2018.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 11/15/2022]
Abstract
Orexins play a crucial role in the maintenance of arousal and are involved in the modulation of diverse physiological process, including cognitive function. Recent data have suggested that orexins are involved in learning and memory processes. The purpose of this study was to assess the effects of orexin deficiency on working memory. A delayed non-matching-to-place T-maze task was used to evaluate spatial working memory in mice lacking orexin prepro-peptide (orexin knockout; KO) and wild-type controls. We demonstrated that the number of correct choices in the orexin KO mice became lower than that of the controls over training. In an object exploration task, the controls explored the displaced object more than the mutants did, whereas this difference was not observed for the nondisplaced objects in either group. The orexin KO mice showed locomotor activity comparable to the control mice in terms of total distance traveled across training in both the object exploration task and the open field test. These findings indicate that the orexin system plays an important role in working memory of spatial cues.
Collapse
Affiliation(s)
- Ruozhi Dang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Qiuhan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Jie Song
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Chao He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Jun Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China
| | - Jianxia Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China.
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
24
|
Kong X, Wei J, Wang D, Zhu X, Zhou Y, Wang S, Xu GY, Jiang GQ. Upregulation of Spinal Voltage-Dependent Anion Channel 1 Contributes to Bone Cancer Pain Hypersensitivity in Rats. Neurosci Bull 2017; 33:711-721. [PMID: 29196874 DOI: 10.1007/s12264-017-0195-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/08/2017] [Indexed: 01/02/2023] Open
Abstract
Voltage-dependent anion channel 1 (VDAC1) is thought to contribute to the progression of tumor development. However, whether VDAC1 contributes to bone cancer pain remains unknown. In this study, we found that the expression of VDAC1 was upregulated in the L2-5 segments of the spinal dorsal horn at 2 and 3 weeks after injection of tumor cells into the tibial cavity. Intrathecal injection of a VDAC1 inhibitor significantly reversed the pain hypersensitivity and reduced the over-expression of Toll-like receptor 4 (TLR4). Intrathecal injection of minocycline, an inhibitor of microglia, also attenuated the pain hypersensitivity of rat models of bone cancer pain. These results suggest that VDAC1 plays a significant role in the development of complicated cancer pain, possibly by regulating the expression of TLR4.
Collapse
Affiliation(s)
- Xiangpeng Kong
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, China
| | - Jinrong Wei
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, China
| | - Diyu Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, China
| | - Xiaoju Zhu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Youlang Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, China
| | - Shusheng Wang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, China.
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China.
| | - Guo-Qin Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
25
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Wei J, Li M, Wang D, Zhu H, Kong X, Wang S, Zhou YL, Ju Z, Xu GY, Jiang GQ. Overexpression of suppressor of cytokine signaling 3 in dorsal root ganglion attenuates cancer-induced pain in rats. Mol Pain 2017; 13:1744806916688901. [PMID: 28326931 PMCID: PMC5302175 DOI: 10.1177/1744806916688901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Cancer-induced pain (CIP) is one of the most severe types of chronic pain with which clinical treatment remains challenging and the involved mechanisms are largely unknown. Suppressor of cytokine signaling 3 (SOCS3) is an important intracellular protein and provides a classical negative feedback loop, thus involving in a wide variety of processes including inflammation and nociception. However, the role of SOCS3 pathway in CIP is poorly understood. The present study was designed to investigate the role of SOCS3 in dorsal root ganglion (DRG) in the development of CIP. Method CIP was established by injection of Walker 256 mammary gland tumor cells into the rat tibia canal. Whole-cell patch clamping and Western blotting were performed. Results Following the development of bone cancer, SOCS3 expression was significantly downregulated in rat DRGs at L2-L5 segments. Overexpression of SOCS3, using lentiviral-mediated production of SOCS3 at spinal cord level, drastically attenuated mechanical allodynia and body weight-bearing difference, but not thermal hyperalgesia in bone cancer rats. In addition, overexpression of SOCS3 reversed the hyperexcitability of DRG neurons innervating the tibia, and reduced abnormal expression of toll-like receptors 4 in the DRGs. Conclusions These results suggest that SOCS3 might be a key molecular involved in the development of complicated cancer pain and that overexpression of SOCS3 might be an important strategy for treatment for mechanical allodynia associated with bone cancer.
Collapse
Affiliation(s)
- Jinrong Wei
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Meng Li
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Dieyu Wang
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Hongyan Zhu
- 2 Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Xiangpeng Kong
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Shusheng Wang
- 2 Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - You-Lang Zhou
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Zhong Ju
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Guang-Yin Xu
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China.,2 Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Guo-Qin Jiang
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| |
Collapse
|
27
|
Pascual M, Montesinos J, Montagud-Romero S, Forteza J, Rodríguez-Arias M, Miñarro J, Guerri C. TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders. J Neuroinflammation 2017; 14:145. [PMID: 28738878 PMCID: PMC5525270 DOI: 10.1186/s12974-017-0918-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023] Open
Abstract
Background Inflammation during brain development participates in the pathogenesis of early brain injury and cognitive dysfunctions. Prenatal ethanol exposure affects the developing brain and causes neural impairment, cognitive and behavioral effects, collectively known as fetal alcohol spectrum disorders (FASD). Our previous studies demonstrate that ethanol activates the innate immune response and TLR4 receptor and causes neuroinflammation, brain damage, and cognitive defects in the developmental brain stage of adolescents. We hypothesize that by activating the TLR4 response, maternal alcohol consumption during pregnancy triggers the release of cytokines and chemokines in both the maternal sera and brains of fetuses/offspring, which impairs brain ontogeny and causes cognitive dysfunction. Methods WT and TLR4-KO female mice treated with or without 10% ethanol in the drinking water during gestation and lactation were used. Cytokine/chemokine levels were determined by ELISA in the amniotic fluid, maternal serum, and cerebral cortex, as well as in the offspring cerebral cortex. Microglial and neuronal markers (evaluated by western blotting), myelin proteins (immunohistochemical and western blotting) and synaptic parameters (western blotting and electron microscopy) were assessed in the cortices of the WT and TLR4-KO pups on PND 0, 20, and 66. Behavioral tests (elevated plus maze and passive avoidance) were performed in the WT and TLR4-KO mice on PND 66 exposed or not to ethanol. Results We show that alcohol intake during gestation and lactation increases the levels of several cytokines/chemokines (IL-1β, IL-17, MIP-1α, and fractalkine) in the maternal sera, amniotic fluid, and brains of fetuses and offspring. The upregulation of cytokines/chemokines is associated with an increase in activated microglia markers (CD11b and MHC-II), and with a reduction in some synaptic (synaptotagmin, synapsin IIa) and myelin (MBP, PLP) proteins in the brains of offspring on days 0, 20, and 66 (long-term effects). These changes are associated with long-term behavioral impairments, in the 66-day-old alcohol-exposed pups. TLR4-deficient mice are protected against ethanol-induced cytokine/chemokine production in alcohol-treated dams and offspring, along with synaptic and myelin alterations, and the log-term behavioral dysfunction induced by ethanol in offspring. Conclusions These results suggest that the immune system activation, through the TLR4 response, might play an important role in the neurodevelopmental defects in FASD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0918-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología, Unidad Mixta de Patología Molecular, Principe Felipe Research Center, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain. .,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|