1
|
Xie D, Zhang P, You S, Shen Y, Xu W, Zhan C, Zhang J. Salidroside derivative SHPL-49 attenuates glutamate excitotoxicity in acute ischemic stroke via promoting NR2A-CAMKⅡα-Akt /CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155583. [PMID: 39173548 DOI: 10.1016/j.phymed.2024.155583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Ischemic stroke is a significant cause of death and disability with a limited treatment time window. The reduction of early glutamate excitotoxicity using neuroprotective agents targeting N-methyl-d-aspartic acid (NMDA) receptors have attracted recent research attention. SHPL-49, a structurally modified derivative of salidroside, was synthesized by our team. Previous studies have confirmed the neuroprotective efficacy of SHPL-49 in rats with ischemic stroke. However, the underlying mechanisms need to be clarified. METHODS We conducted in vivo experiments using the permanent middle cerebral artery occlusion rat model to investigate the role of SHPL-49 in glutamate release at different time points and treatment durations. Glutamate transporters and receptor proteins and neural survival proteins in the brain were also examined at the same time points. In vitro, primary neurons and the coculture system of primary neurons-astrocytes were subjected to oxygen-glucose deprivation and glutamate injury. Proteomics and parallel reaction monitoring analyses were performed to identify potential therapeutic targets of SHPL-49, which were further confirmed through in vitro experiments on the inhibition and mutation of the target. RESULTS SHPL-49 significantly reduced glutamate release caused by hypoxia-ischemia. One therapeutic pathway of SHPL-49 was promoting the expression of glutamate transporter-1 to increase glutamate reuptake and further reduce the occurrence of subsequent neurotoxicity. In addition, we explored the therapeutic targets of SHPL-49 and its regulatory effects on glutamate receptors for the first time. SHPL-49 enhanced neuroprotection by activating the NMDA subunit NR2A, which upregulated the cyclic-AMP response binding protein (CREB) neural survival pathway and Akt phosphorylation. Since calcium/calmodulin-dependent kinase IIα (CaMKIIα) is necessary for synaptic transmission of NMDA receptors, we explored the interaction between CaMKIIα and SHPL-49, which protected CaMKIIα from hypoxia-ischemia-induced autophosphorylation damage. CONCLUSION Overall, SHPL-49 enhanced neuronal survival and attenuated acute ischemic stroke by promoting the NR2A-CAMKⅡα-Akt/CREB pathway. Our study provides the first evidence demonstrating that the neuroprotective effect of SHPL-49 is achieved by promoting the NR2A subunit to extend the treatment time window, making it a promising drug for ischemic stroke.
Collapse
Affiliation(s)
- Dong Xie
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yue Shen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| |
Collapse
|
2
|
Jiang Y, Sachdeva K, Goulbourne CN, Berg MJ, Peddy J, Stavrides PH, Pensalfini A, Pawlik M, Whyte L, Balapal BS, Shivakumar S, Bleiwas C, Smiley JF, Mathews PM, Nixon RA. Increased neuronal expression of the early endosomal adaptor APPL1 leads to endosomal and synaptic dysfunction with cholinergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613736. [PMID: 39345644 PMCID: PMC11430014 DOI: 10.1101/2024.09.19.613736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dysfunction of the endolysosomal system within neurons is a prominent feature of Alzheimer's disease (AD) pathology. Multiple AD-risk factors are known to cause hyper-activity of the early-endosome small GTPase rab5, resulting in neuronal endosomal pathway disruption. APPL1, an important rab5 effector protein, is an interface between endosomal and neuronal function through a rab5-activating interaction with the BACE1-generated C-terminal fragment (βCTF or C99) of the amyloid precursor protein (APP), a pathogenic APP fragment generated within endolysosomal compartments. To better understand the role of APPL1 in the AD endosomal phenotype, we generated a transgenic mouse model over-expressing human APPL1 within neurons (Thy1-APPL1 mice). Consistent with the important endosomal regulatory role of APPL1, Thy1-APPL1 mice have enlarged neuronal early endosomes and increased synaptic endocytosis due to increased rab5 activation. We additionally demonstrate pathological consequences of APPL1 overexpression, including functional changes in hippocampal long-term potentiation (LTP) and long-term depression (LTD), as well as degeneration of the large projection cholinergic neurons of the basal forebrain and impairment of hippocampal-dependent memory. Our findings show that increased neuronal APPL1 levels lead to a cascade of pathological effects within neurons, including early endosomal alterations, synaptic dysfunction, and neurodegeneration. Multiple risk factors and molecular regulators, including APPL1 activity, are known to contribute to the endosomal dysregulation seen in the early stages of AD, and these findings further highlight the shared pathobiology and consequences to a neuron of early endosomal pathway disruption. Significance Statement Dysfunction in the endolysosomal system within neurons is a key feature of Alzheimer's disease (AD). Multiple AD risk factors lead to hyperactivity of the early-endosome GTPase rab5, disrupting neuronal pathways including the cholinergic circuits involved early in memory decline. APPL1, a crucial rab5 effector, connects endosomal and neuronal functions through its interaction with a specific amyloid precursor protein (APP) fragment generated within endosomes. To understand APPL1's role, a transgenic mouse model over-expressing human APPL1 in neurons (Thy1-APPL1 mice) was developed. These mice show enlarged early endosomes and increased synaptic endocytosis due to rab5 activation, resulting in impaired hippocampal long-term potentiation and depression, the degeneration of basal forebrain cholinergic neurons, and memory deficits, highlighting a pathological cascade mediated through APPL1 at the early endosome.
Collapse
|
3
|
Guan F, Ding Y, He Y, Li L, Yang X, Wang C, Hu M. Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:457-468. [PMID: 36302621 PMCID: PMC9614402 DOI: 10.4196/kjpp.2022.26.6.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.
Collapse
Affiliation(s)
- Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yikang He
- Tongji Medical College Huazhong University of Science and Technology, School of Nursing, Wuhan 430030, China
| | - Lu Li
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xinyu Yang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China,Correspondence Changhua Wang, E-mail:
| | - Mingbai Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,Mingbai Hu, E-mail:
| |
Collapse
|
4
|
Excitatory Synaptic Transmission in Ischemic Stroke: A New Outlet for Classical Neuroprotective Strategies. Int J Mol Sci 2022; 23:ijms23169381. [PMID: 36012647 PMCID: PMC9409263 DOI: 10.3390/ijms23169381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota–gut–brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).
Collapse
|
5
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
6
|
Curcumin Protects against Renal Ischemia/Reperfusion Injury by Regulating Oxidative Stress and Inflammatory Response. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8490772. [PMID: 34812266 PMCID: PMC8605918 DOI: 10.1155/2021/8490772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Objective The aim of this study was to explore the pharmacological effects of curcumin on oxidative stress and inflammatory response of renal dysfunction induced by renal ischemia/reperfusion (RIRI). Methods Fifty male SD rats (Sprague Dawley) were randomly divided into the sham group, RIRI group, and curcumin group (low, medium, and high). The RIRI model was established by clipping the left renal artery for 45 min and then reperfusion for 24 h and resection of the contralateral kidney. In the curcumin group, curcumin was intraperitoneally injected once a day for 3 consecutive days using different dosage regimens. The RIRI group was intraperitoneally administered with normal saline. Renal injury was evaluated by measuring the concentration of creatinine (Cr) and urea nitrogen (BUN) in serum. Oxidative stress was assessed by assessing the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), and iron reduction/antioxidant capacity (FRAP) in tissues. In addition, the protective effect of RIRI was investigated by measuring Paller scores, the level of serum inflammatory factors and caspase-3, and the number of apoptotic cells. Results Ischemia/reperfusion resulted in increased levels of Cr and BUN in serum and MDA in tissues and decreased levels of SOD, CAT, GPx, GSH, and FRAP. Curcumin pretreatment strikingly increased the level of SOD, CAT, GPx, GSH, IL-10, IFN-γ, and FRAP and significantly decreased MDA, Cr, BUN, IL-8, TNF-α, IL-6, and myeloperoxidase (MPO) expressions in tissues. Conclusion Curcumin can relieve the degree of renal injury and improve renal function in ischemia-reperfusion, which may be related to the fact that curcumin can increase SOD content in serum and reduce MDA and FRAP levels in the rat model.
Collapse
|
7
|
Thangaleela S, Ragu Varman D, Sivasangari K, Rajan KE. Inhibition of monoamine oxidase attenuates social defeat-induced memory impairment in goldfish, (Carassius auratus): A possible involvement of synaptic proteins and BDNF. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108873. [PMID: 32805442 DOI: 10.1016/j.cbpc.2020.108873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
Abstract
Social defeat (SD) has been implicated in different modulatory effects of physiology and behaviour including learning and memory. We designed an experiment to test the functional role of monoamine oxidase (MAO) in regulation of synaptic transmission, synaptic plasticity and memory in goldfish Carassius auratus. To test this, individuals were divided into three groups: (i) control; (ii) social defeat (SD) group (individuals were subjected to social defeat for 10 min by Pseudotropheus demasoni) and (iii) SD + MAO inhibitor pre-treated group. All experimental groups were subjected to spatial learning and then memory. Our results suggest that SD affects a spatial learning and memory, whereas SD exerts no influence on MAOI pre-treated group. In addition, we noted that the expression of monoamine oxidase-A (MAO-A) was up-regulated and level of serotonin (5-hydroxytryptamine; 5-HT), expression of serotonin transporter (SERT), synaptophysin (SYP), synaptotagmin -1 (SYT-1), N-methyl-D-asparate (NMDA) receptors subunits (NR2A and NR2B), postsynaptic density-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) were reduced by SD, while MAOIs pretreatment protects the effect of SD. Taken together, our results suggest that MAO is an essential component in the serotonergic system that finely tunes the level of 5-HT, which further regulates the molecules involving in synaptic transmission, synaptic plasticity and memory.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Durairaj Ragu Varman
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Karunanithi Sivasangari
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India.
| |
Collapse
|
8
|
Nader N, Dib M, Hodeify R, Courjaret R, Elmi A, Hammad AS, Dey R, Huang XY, Machaca K. Membrane progesterone receptor induces meiosis in Xenopus oocytes through endocytosis into signaling endosomes and interaction with APPL1 and Akt2. PLoS Biol 2020; 18:e3000901. [PMID: 33137110 PMCID: PMC7660923 DOI: 10.1371/journal.pbio.3000901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/12/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
The steroid hormone progesterone (P4) mediates many physiological processes through either nuclear receptors that modulate gene expression or membrane P4 receptors (mPRs) that mediate nongenomic signaling. mPR signaling remains poorly understood. Here we show that the topology of mPRβ is similar to adiponectin receptors and opposite to that of G-protein-coupled receptors (GPCRs). Using Xenopus oocyte meiosis as a well-established physiological readout of nongenomic P4 signaling, we demonstrate that mPRβ signaling requires the adaptor protein APPL1 and the kinase Akt2. We further show that P4 induces clathrin-dependent endocytosis of mPRβ into signaling endosome, where mPR interacts transiently with APPL1 and Akt2 to induce meiosis. Our findings outline the early steps involved in mPR signaling and expand the spectrum of mPR signaling through the multitude of pathways involving APPL1. The steroid hormone progesterone mediates many physiological processes through either nuclear receptors that modulate gene expression, or membrane progesterone receptors (mPRs) that mediate non-genomic signaling. This study shows that non-genomic mPRβ signaling progresses through clathrin-dependent endocytosis into signaling endosomes where it interacts with and activates APPL1 and Akt2 to induce oocyte meiosis.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Asha Elmi
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat S. Hammad
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Raja Dey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- * E-mail:
| |
Collapse
|
9
|
Shrestha A, Sultana R, Adeniyi PA, Lee CC, Ogundele OM. Positive Modulation of SK Channel Impedes Neuron-Specific Cytoskeletal Organization and Maturation. Dev Neurosci 2020; 42:59-71. [PMID: 32580196 PMCID: PMC7486235 DOI: 10.1159/000507989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) modulates the structural plasticity of dendritic spines by impacting cytoskeletal organization and kinase signaling. In the developing nervous system, activation of NMDAR is pertinent for neuronal migration, neurite differentiation, and cellular organization. Given that small conductance potassium channels (SK2/3) repress NMDAR ionotropic signaling, this study highlights the impact of neonatal SK channel potentiation on adult cortical and hippocampal organization. Neonatal SK channel potentiation was performed by one injection of SK2/3 agonist (CyPPA) into the pallium of mice on postnatal day 2 (P2). When the animals reached adulthood (P55), the hippocampus and cortex were examined to assess neuronal maturation, lamination, and the distribution of synaptic cytoskeletal proteins. Immunodetection of neuronal markers in the brain of P2-treated P55 mice revealed the presence of immature neurons in the upper cortical layers (layers II-IV) and CA1 (hippocampus). Also, layer-dependent cortical-cell density was attenuated due to the ectopic localization of mature (NeuN+) and immature (Doublecortin+ [DCX+]) neurons in cortical layers II-IV. Similarly, the decreased count of NeuN+ neurons in the CA1 is accompanied by an increase in the number of immature DCX+ neurons. Ectopic localization of neurons in the upper cortex and CA1 caused the dramatic expression of neuron-specific cytoskeletal proteins. In line with this, structural deformity of neuronal projections and the loss of postsynaptic densities suggests that postsynaptic integrity is compromised in the SK2/3+ brain. From these results, we deduced that SK channel activity in the developing brain likely impacts neuronal maturation through its effects on cytoskeletal formation.
Collapse
Affiliation(s)
- Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Philip A Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA,
| |
Collapse
|
10
|
NMDARs in Cell Survival and Death: Implications in Stroke Pathogenesis and Treatment. Trends Mol Med 2020; 26:533-551. [PMID: 32470382 DOI: 10.1016/j.molmed.2020.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Stroke is a leading cause of death and disability in developed countries. N-methyl-D-aspartate glutamate receptors (NMDARs) have important roles in stroke pathology and recovery. Depending on their subtypes and locations, these NMDARs may promote either neuronal survival or death. Recently, the functions of previously overlooked NMDAR subtypes during stroke were characterized, and NMDARs expressed at different subcellular locations were found to have synergistic rather than opposing functions. Moreover, the complexity of the neuronal survival and death signaling pathways following NMDAR activation was further elucidated. In this review, we summarize the recent developments in these areas and discuss how delineating the dual roles of NMDARs in stroke has directed the development of novel neuroprotective therapeutics for stroke.
Collapse
|
11
|
Shrestha A, Sultana R, Lee CC, Ogundele OM. SK Channel Modulates Synaptic Plasticity by Tuning CaMKIIα/β Dynamics. Front Synaptic Neurosci 2019; 11:18. [PMID: 31736736 PMCID: PMC6834780 DOI: 10.3389/fnsyn.2019.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
N-Methyl-D-Aspartate Receptor 1 (NMDAR)-linked Ca++ current represents a significant percentage of post-synaptic transient that modulates synaptic strength and is pertinent to dendritic spine plasticity. In the hippocampus, Ca++ transient produced by glutamatergic ionotropic neurotransmission facilitates Ca++-Calmodulin-dependent kinase 2 (CaMKII) Thr286 phosphorylation and promote long-term potentiation (LTP) expression. At CA1 post-synaptic densities, Ca++ transients equally activate small conductance (SK2) channel which regulates excitability by suppressing Ca++ movement. Here, we demonstrate that upstream attenuation of GluN1 function in the hippocampus led to a decrease in Thr286 CaMKIIα phosphorylation, and increased SK2 expression. Consistent with the loss of GluN1 function, potentiation of SK channel in wild type hippocampus reduced CaMKIIα expression and abrogate synaptic localization of T286 pCaMKIIα. Our results demonstrate that positive modulation of SK channel at hippocampal synapses likely refine GluN1-linked plasticity by tuning dendritic localization of CaMKIIα.
Collapse
Affiliation(s)
| | | | | | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
12
|
Su Y, Liu J, Yu B, Ba R, Zhao C. Brpf1 Haploinsufficiency Impairs Dendritic Arborization and Spine Formation, Leading to Cognitive Deficits. Front Cell Neurosci 2019; 13:249. [PMID: 31213987 PMCID: PMC6558182 DOI: 10.3389/fncel.2019.00249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of the bromodomain and PHD finger-containing protein 1 (BRPF1) gene causes intellectual disability (ID), which is characterized by impaired intellectual and cognitive function; however, the neurological basis for ID and the neurological function of BRPF1 dosage in the brain remain unclear. Here, by crossing Emx1-cre mice with Brpf1fl/fl mice, we generated Brpf1 heterozygous mice to model BRPF1-related ID. Brpf1 heterozygotes showed reduced dendritic complexity in both hippocampal granule cells and cortical pyramidal neurons, accompanied by reduced spine density and altered spine and synapse morphology. An in vitro study of Brpf1 haploinsufficiency also demonstrated decreased frequency and amplitude of miniature EPSCs that may subsequently contribute to abnormal behaviors, including decreased anxiety levels and defective learning and memory. Our results demonstrate a critical role for Brpf1 dosage in neuron dendrite arborization, spine morphogenesis and behavior and provide insight into the pathogenesis of BRPF1-related ID.
Collapse
Affiliation(s)
- Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Wang B, Wu Q, Lei L, Sun H, Michael N, Zhang X, Wang Y, Zhang Y, Ge B, Wu X, Wang Y, Xin Y, Zhao J, Li S. Long-term social isolation inhibits autophagy activation, induces postsynaptic dysfunctions and impairs spatial memory. Exp Neurol 2018; 311:213-224. [PMID: 30219732 DOI: 10.1016/j.expneurol.2018.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022]
Abstract
. Moreover, we found that L-PWSI increased the protein expression of p-AKT/AKT, p-mTOR/mTOR and p62, whereas the protein levels of LC3B and Beclin1 were decreased indicating an inhibition in autophagy activity. Intraperitoneal injection of rapamycin significantly potentiated fEPSP slope and cognition-related proteins expression in the L-PWSI mice. These results therefore suggest that L-PWSI induces postsynaptic dysfunction by disrupting the interaction between AMPAR, NMDAR and PSD-95, and inhibit the autophagy activity which led to impaired spatial memory and cognitive function.
Collapse
Affiliation(s)
- Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China.
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Lei Lei
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Hailun Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Ntim Michael
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Xuan Zhang
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Biying Ge
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Xuefei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Yi Xin
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China.
| | - Jie Zhao
- Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
14
|
The Effect of Dexmedetomidine on Cognitive Function and Protein Expression of A β, p-Tau, and PSD95 after Extracorporeal Circulation Operation in Aged Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4014021. [PMID: 29568750 PMCID: PMC5820664 DOI: 10.1155/2018/4014021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/28/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a kind of serious neurologic complications and dexmedetomidine has a certain effect on POCD. However, functional mechanism of dexmedetomidine on POCD still remains unclear, so the research mainly studied the effect of dexmedetomidine on cognitive function and protein expression in hippocampus and prefrontal cortex cerebrospinal fluid after extracorporeal circulation operation in aged rats. We Found that, compared with POCD group, the cognitive function was improved in POCD + Dex group. We speculate that dexmedetomidine could improve the cognitive function after extracorporeal circulation operation in aged rats and Aβ, p-Tau, and PSD95 protein might have contributed to this favorable outcome.
Collapse
|
15
|
Fan Y, Chen H, Peng H, Huang F, Zhong J, Zhou J. Molecular Mechanisms of Curcumin Renoprotection in Experimental Acute Renal Injury. Front Pharmacol 2017; 8:912. [PMID: 29311922 PMCID: PMC5733093 DOI: 10.3389/fphar.2017.00912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
As a highly perfused organ, the kidney is especially sensitive to ischemia and reperfusion. Ischemia-reperfusion (IR)-induced acute kidney injury (AKI) has a high incidence during the perioperative period in the clinic and is an important link in ischemic acute renal failure (IARF). Therefore, IR-induced AKI has important clinical significance and it is necessary to explore to develop drugs to prevent and alleviate IR-induced AKI. Curcumin [diferuloylmethane, 1,7-bis(4-hydroxy-3-methoxiphenyl)-1,6-heptadiene-3,5-dione)] is a polyphenol compound derived from Curcuma longa (turmeric) and was shown to have a renoprotective effect on ischemia-reperfusion injury (IRI) in a previous study. However, the specific mechanisms underlying the protective role of curcumin in IR-induced AKI are not completely understood. APPL1 is a protein coding gene that has been shown to be involved in the crosstalk between the adiponectin-signaling and insulin-signaling pathways. In the study, to investigate the molecular mechanisms of curcumin effects in kidney ischemia/reperfusion model, we observed the effect of curcumin in experimental models of IR-induced AKI and we found that curcumin treatment significantly increased the expression of APPL1 and inhibited the activation of Akt after IR treatment in the kidney. Our in vitro results showed that apoptosis of renal tubular epithelial cells was exacerbated with hypoxia-reoxygenation (HR) treatment compared to sham control cells. Curcumin significantly decreased the rate of apoptosis in renal tubular epithelial cells with HR treatment. Moreover, knockdown of APPL1 activated Akt and subsequently aggravated apoptosis in HR-treated renal tubular epithelial cells. Conversely, inhibition of Akt directly reversed the effects of APPL1 knockdown. In summary, our study demonstrated that curcumin mediated upregulation of APPL1 protects against ischemia reperfusion induced AKI by inhibiting Akt phosphorylation.
Collapse
Affiliation(s)
- Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Huihua Peng
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Fang Huang
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
16
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
17
|
Wang Y, Sawyer TW, Tse YC, Fan C, Hennes G, Barnes J, Josey T, Weiss T, Nelson P, Wong TP. Primary Blast-Induced Changes in Akt and GSK 3β Phosphorylation in Rat Hippocampus. Front Neurol 2017; 8:413. [PMID: 28868045 PMCID: PMC5563325 DOI: 10.3389/fneur.2017.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β), in rat hippocampus, were investigated. Male Sprague-Dawley (SD) rats (350–400 g) were exposed to a single pulse shock wave (25 psi; ~7 ms duration) and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9), were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA) receptor activity was significantly increased 6 weeks after primary blast, suggesting that increased Akt phosphorylation may enhance synaptic NMDA receptor activation, or that enhanced synaptic NMDA receptor activation may increase Akt phosphorylation.
Collapse
Affiliation(s)
- Yushan Wang
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Thomas W Sawyer
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Yiu Chung Tse
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Changyang Fan
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Grant Hennes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Julia Barnes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tyson Josey
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tracy Weiss
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Peggy Nelson
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Liu Z, Xiao T, Peng X, Li G, Hu F. APPLs: More than just adiponectin receptor binding proteins. Cell Signal 2017; 32:76-84. [PMID: 28108259 DOI: 10.1016/j.cellsig.2017.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
APPLs (adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) are multifunctional adaptor proteins that bind to various membrane receptors, nuclear factors and signaling proteins to regulate many biological activities and processes, such as cell proliferation, chromatin remodeling, endosomal trafficking, cell survival, cell metabolism and apoptosis. APPL1, one of the APPL isoforms, was the first identified protein and interacts directly with adiponectin receptors to mediate adiponectin signaling to enhance lipid oxidation and glucose uptake. APPLs also act on insulin signaling pathways and are important mediators of insulin sensitization. Based on recent findings, this review highlights the critical roles of APPLs, particularly APPL1 and its isoform partner APPL2, in mediating adiponectin, insulin, endosomal trafficking and other signaling pathways. A deep understanding of APPLs and their related signaling pathways may potentially lead to therapeutic and interventional treatments for obesity, diabetes, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhuoying Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoyu Peng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|