1
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
2
|
Moderate Ethanol-Preconditioning Offers Ischemic Tolerance Against Focal Cerebral Ischemic/Reperfusion: Role of Large Conductance Calcium-Activated Potassium Channel. Neurochem Res 2022; 47:3647-3658. [PMID: 35790697 DOI: 10.1007/s11064-022-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The mechanism underlying moderate ethanol (EtOH)-preconditioning (PC) against ischemic brain injury remains unclear. We evaluated the role of large conductance calcium-sensitive potassium (BKCa) channels in EtOH-PC. Almost one hundred and ninety normal adult SD rats (8 to 10 weeks, 320-350 g) were enrolled in this study. Ischemic/reperfusion (I/R) brain injury was induced in rats by middle cerebral artery occlusion for 2 h followed by reperfusion for 24 h. EtOH or the BKCa channel opener, NS11021, was administered 24 h before I/R with or without pre-treatment with the BKCa channel blocker, paxilline. Infarct volumes were measured by tissue staining and imaging, and neurological functions were assessed by a scoring system. The expression of BKCa channel subunit α was detected by Western blotting, and cell apoptosis was assessed using staining. Prior (24 h) administration of ethanol that produced a peak plasma concentration of ~ 45 mg/dl in rats would offer neuroprotection after cerebral I/R. In addition, the expression of BKCa channel α-subunit was significantly increased 24 h after EtOH-PC (n = 10; control: 2.00 ± 0.09, EtOH: 1.00 ± 0.06; P < 0.5). Compared to I/R, EtOH-PC enhanced the expression of BKCa channel α-subunit both in the penumbra (n = 10; 24 h: I/R: 1.25 ± 0.10, EtOH-PC + I/R: 1.99 ± 0.12; P < 0.01; 4 h: I/R: 1.03 ± 0.03, EtOH-PC + I/R: 1.49 ± 0.05; P < 0.001) and infarct core (n = 10; 4 h: I/R: 1.04 ± 0.04, EtOH-PC + I/R: 1.42 ± 0.05; P < 0.001), improved the neurological function (n = 10; I/R: 14.00 (12.75-15.00), EtOH-PC + I/R: 7.00 (4.75-8.25); P < 0.001), attenuated the apoptosis (n = 10; I/R: 26.80 ± 0.69, EtOH-PC + I/R: 8.46 ± 0.31; P < 0.001), and decreased the infarct volume (n = 10; I/R: 244.00 ± 26.24, EtOH-PC + I/R: 70.09 ± 14.69; P < 0.001) after experimental cerebral I/R. These changes were reversed by paxilline administration. The moderate EtOH-PC protects against I/R-induced brain damage dependent on the upregulation BKCa channels.
Collapse
|
3
|
Su F, Yang H, Guo A, Qu Z, Wu J, Wang Q. Mitochondrial BK Ca Mediates the Protective Effect of Low-Dose Ethanol Preconditioning on Oxygen-Glucose Deprivation and Reperfusion-Induced Neuronal Apoptosis. Front Physiol 2021; 12:719753. [PMID: 34759831 PMCID: PMC8573145 DOI: 10.3389/fphys.2021.719753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury contributes to the morbidity and mortality of ischemic strokes. As an in vitro model, oxygen-glucose deprivation and reperfusion (OGD/R) exposure induces neuronal injury. Low-dose ethanol preconditioning (EtOH-PC) was reported to alleviate neuronal apoptosis during OGD/R. However, whether the mitochondrial BKCa (mitoBKCa) channel is involved in the neuroprotective effect of EtOH-PC during OGD/R is not clearly defined. This study attempts to explore the mediation of the mitoBKCa channel in the neuroprotective effect of EtOH-PC on OGD/R-induced neuronal apoptosis and the underlying mechanisms. OGD/R model was established using primary cortical neurons that were preincubated with ethanol. Subsequently, the cell viability was measured by CCK-8 assay, and the apoptotic cells were determined by TUNEL assay. Annexin V/7-AAD staining and mitochondrial membrane potential using JC-10 were detected by flow cytometry. Western blot analysis was performed to check the apoptosis-related proteins. In the mixed primary culture, 95% neurofilament-positive cells were cortical neurons. Low-dose EtOH-PC (10 mmol/L) for 24 h significantly attenuated the OGD2h/R24h-induced neuronal apoptosis through activating the BKCa channel. Further investigations suggested that ethanol pretreatment increased the mitochondrial membrane potential (MMP) and downregulated the production of cleaved caspase 3 in OGD/R-injured neurons by activating the mitoBKCa channel. Low-dose ethanol pretreatment significantly attenuated the OGD/R-induced neuronal apoptosis mediated by the mitoBKCa channel which modulated the mitochondrial function by impeding the uncontrolled opening of mitochondrial permeability transition pore (MPTP).
Collapse
Affiliation(s)
- Fang Su
- Department of Neurology, The Fourth Hospital of Harbin Medical University, Harbin, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchen Guo
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zhengyi Qu
- Department of Neurology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jianping Wu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Li W, Guo A, Sun M, Wang J, Wang Q. Neuroprotective Effects of Deproteinized Calf Serum in Ischemic Stroke. Front Neurol 2021; 12:636494. [PMID: 34557139 PMCID: PMC8453072 DOI: 10.3389/fneur.2021.636494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Deproteinized calf serum (DCS) may have neuroprotective effects after ischemic stroke. The aim of this study is to investigate whether and how the DCS inhibits neuronal injury following cerebral ischemia. Rats were subjected to 2 h transient middle cerebral artery occlusion (MCAO). One dose of 0.125 mg/gbw DCS was given immediately after reperfusion. Neurological deficit and infarct volume at 24 h post-MCAO in DCS-treated rats were lower than those in vehicle-treated rats (p < 0.0005). In cultured neurons model, cell viability was decreased, and apoptosis was increased by oxygen-glucose deprivation/reperfusion (OGD/R) (p < 0.0005). These effects of OGD/R were attenuated by 0.4 μg/μl DCS (p < 0.05) that were validated by CCK8 cell viability assay, phycoerythrin–Annexin V Apoptosis Detection assay, and TUNEL assay. Furthermore, the increase of intracellular ROS level in cultured neurons was suppressed by DCS (p < 0.05). Compared with cells subjected to OGD/R, the expression level of Bax protein decreased, and bcl-2 protein increased after DSC treatment (p < 0.05). Overall, the neuroprotective effects of DCS following cerebral ischemia may in part be due to decreased ROS production and inhibition of apoptosis.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Anchen Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Beijing, China
| | - Jiachuan Wang
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neuropharmacology, Beijing Neurosurgical Institute, Beijing, China
| |
Collapse
|
5
|
Wen JY, Zhang J, Chen S, Chen Y, Zhang Y, Ma ZY, Zhang F, Xie WM, Fan YF, Duan JS, Chen ZW. Endothelium-derived hydrogen sulfide acts as a hyperpolarizing factor and exerts neuroprotective effects via activation of large-conductance Ca 2+ -activated K + channels. Br J Pharmacol 2021; 178:4155-4175. [PMID: 34216027 DOI: 10.1111/bph.15607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelium-derived hyperpolarizing factor (EDHF) has been suggested as a therapeutic target for vascular protection against ischaemic brain injury. However, the molecular entity of EDHF and its action on neurons remains unclear. This study was undertaken to demonstrate whether the hydrogen sulfide (H2 S) acts as EDHF and exerts neuroprotective effect via large-conductance Ca2+ -activated K+ (BKCa /KCa 1.1) channels. EXPERIMENTAL APPROACH The whole-cell patch-clamp technology was used to record the changes of BKCa currents in rat neurons induced by EDHF. The cerebral ischaemia/reperfusion model of mice and oxygen-glucose deprivation/reoxygenation (OGD/R) model of neurons were used to explore the neuroprotection of EDHF by activating BKCa channels in these neurons. KEY RESULTS Increases of BKCa currents and membrane hyperpolarization in hippocampal neurons induced by EDHF could be markedly inhibited by BKCa channel inhibitor iberiotoxin or endothelial H2 S synthase inhibitor propargylglycine. The H2 S donor, NaHS-induced BKCa current and membrane hyperpolarization in neurons were also inhibited by iberiotoxin, suggesting that H2 S acts as EDHF and activates the neuronal BKCa channels. Besides, we found that the protective effect of endothelium-derived H2 S against mice cerebral ischaemia/reperfusion injury was disrupted by iberiotoxin. Importantly, the inhibitory effect of NaHS or BKCa channel opener on OGD/R-induced neuron injury and the increment of intracellular Ca2+ level could be inhibited by iberiotoxin but enhanced by co-application with L-type but not T-type calcium channel inhibitor. CONCLUSION AND IMPLICATIONS Endothelium-derived H2 S acts as EDHF and exerts neuroprotective effects via activating the BKCa channels and then inhibiting the T-type calcium channels in hippocampal neurons.
Collapse
Affiliation(s)
- Ji-Yue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuo Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ye Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zi-Yao Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei-Ming Xie
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yi-Fei Fan
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing-Si Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Wu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Yang Y, Tian Y, Guo X, Li S, Wang W, Shi J. Ischemia Injury induces mPTP opening by reducing Sirt3. Neuroscience 2021; 468:68-74. [PMID: 34119577 DOI: 10.1016/j.neuroscience.2021.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial permeability transition pore (mPTP) opening is critical to mitochondrial apoptosis during ischemic injury. Sirtuin 3 (Sirt3) is a mitochondrial deacetylase known to play a major role in stress resistance and cell death. Our previous studies have shown that Sirt3 activates superoxide dismutase 2 and forkhead box O3a to reduce cellular reactive oxygen species. However, it is unclear the interaction between Sirt3 and mPTP and the roles they play in ischemic stroke. We used the middle cerebral artery occlusion (MCAO) model, a mouse model of stroke, to examine Sirt3 and mPTP-related protein levels. We then applied lentivirus packaged Sirt3 overexpression in HT22 cells, a mouse hippocampal neuronal cell line, to investigate the underlying mechanism. We found Sirt3 protein level was decreased in the penumbra area in MCAO mice, along with an increase in mPTP related proteins, namely voltage-dependent anion channel 1 (VDAC1) and adenine nucleotide translocator 1 (ANT1). Sirt3 overexpression suppressed the increase in VDAC1, ANT1 and cleaved caspase 3 that were induced by the serum and glucose deprivation (SGD) condition. Our studies suggest that ischemic injury induced mPTP opening and apoptosis by reducing Sirt3. It helps to identify new therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ye Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaosu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiong Shi
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Mazumder AH, Barnett J, Lindberg N, Torniainen-Holm M, Lähteenvuo M, Lahdensuo K, Kerkelä M, Hietala J, Isometsä ET, Kampman O, Kieseppä T, Jukuri T, Häkkinen K, Cederlöf E, Haaki W, Kajanne R, Wegelius A, Männynsalo T, Niemi-Pynttäri J, Suokas K, Lönnqvist J, Niemelä S, Tiihonen J, Paunio T, Palotie A, Suvisaari J, Veijola J. Reaction Time and Visual Memory in Connection with Alcohol Use in Schizophrenia and Schizoaffective Disorder. Brain Sci 2021; 11:brainsci11060688. [PMID: 34071123 PMCID: PMC8224767 DOI: 10.3390/brainsci11060688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to explore the association between cognition and hazardous drinking and alcohol use disorder in schizophrenia and schizoaffective disorder. Cognition is more or less compromised in schizophrenia, and schizoaffective disorder and alcohol use might aggravate this phenomenon. The study population included 3362 individuals from Finland with diagnoses of schizophrenia or schizoaffective disorder. Hazardous drinking was screened with the AUDIT-C (Alcohol Use Disorders Identification Test for Consumption) screening tool. Alcohol use disorder (AUD) diagnoses were obtained from national registrar data. Participants performed two computerized tasks from the Cambridge Automated Neuropsychological Test Battery (CANTAB) on a tablet computer: The Five-Choice Serial Reaction Time Task (5-CSRTT) or the reaction time (RT) test and the Paired Associative Learning (PAL) test. The association between alcohol use and the RT and PAL tests was analyzed with log-linear regression and logistic regression, respectively. After adjustment for age, education, housing status, and the age at which the respondents had their first psychotic episodes, hazardous drinking was associated with a lower median RT in females and less variable RT in males, while AUD was associated with a poorer PAL test performance in terms of the total errors adjusted scores (TEASs) in females. Our findings of positive associations between alcohol and cognition in schizophrenia and schizoaffective disorder are unique.
Collapse
Affiliation(s)
- Atiqul Haq Mazumder
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Correspondence: or
| | - Jennifer Barnett
- Cambridge Cognition, University of Cambridge, Cambridge CB25 9TU, UK;
| | - Nina Lindberg
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
| | - Minna Torniainen-Holm
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Kaisla Lahdensuo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
| | - Martta Kerkelä
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
- Department of Psychiatry, Turku University Hospital, 20521 Turku, Finland
| | - Erkki Tapio Isometsä
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
| | - Olli Kampman
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
- Department of Psychiatry, Pirkanmaa Hospital District, 33521 Tampere, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
| | - Tuomas Jukuri
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Katja Häkkinen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Erik Cederlöf
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Willehard Haaki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
| | - Risto Kajanne
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Asko Wegelius
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Teemu Männynsalo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Social Services and Health Care Sector, City of Helsinki, 00099 Helsinki, Finland
| | - Jussi Niemi-Pynttäri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Social Services and Health Care Sector, City of Helsinki, 00099 Helsinki, Finland
| | - Kimmo Suokas
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
| | - Jouko Lönnqvist
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Department of Psychiatry, University of Helsinki, 00014 Helsinki, Finland
| | - Solja Niemelä
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
- Department of Psychiatry, Turku University Hospital, 20521 Turku, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, 11364 Stockholm, Sweden
| | - Tiina Paunio
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Department of Psychiatry, University of Helsinki, 00014 Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
- Stanley Center for Psychiatric Research, The Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jaana Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Juha Veijola
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Department of Psychiatry, Oulu University Hospital, 90220 Oulu, Finland
| |
Collapse
|
8
|
Ahmed J, Pullattayil S AK, Robertson NJ, More K. Melatonin for neuroprotection in neonatal encephalopathy: A systematic review & meta-analysis of clinical trials. Eur J Paediatr Neurol 2021; 31:38-45. [PMID: 33601197 DOI: 10.1016/j.ejpn.2021.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/11/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Melatonin has shown neuroprotective properties in pre-clinical studies of perinatal asphyxia through antioxidant, anti-apoptotic and anti-inflammatory actions. Studies have also demonstrated its safety and efficacy in neonatal encephalopathy (NE). However, its role in the current era of therapeutic hypothermia (HT) is unclear. The review aims to describe the currently available clinical evidence for Melatonin as a potential therapy for NE. METHODS Data Sources: We searched Medline, EMBASE, CINAHL, LILACS, and Cochrane central databases, published journals, and conference proceedings from inception to May 31, 2020. STUDY SELECTION Randomized controlled trials (RCTs) of Melatonin for NE in term or late preterm infants reporting neurodevelopmental outcomes, death, or both. The evidence quality was evaluated using the GRADE system, while the recommendations were taken according to the quality. RESULTS We included five RCTs involving 215 neonates. Long-term development outcome data is lacking in all except in one small study, reporting significantly higher composite cognition scores at 18 months. One study reported intermediate 6-month favorable development on follow-up. Meta-analysis of mortality in combined HT + Melatonin group vs HT alone (Studies = 2, participants = 54) demonstrated no significant reduction with relative risk (RR) 0.42; 95%CI, 0.99-1.12). The overall GRADE evidence quality was very low for a very small sample size. We did not meta-analyze the data for Melatonin alone therapy without HT, as the included studies were of very low quality. CONCLUSIONS Despite strong experimental data supporting the role of Melatonin as a neuroprotective agent in NE (both alone and as an adjunct with therapeutic hypothermia), the clinical data supporting the neuroprotective effects in neonates is limited. Larger well designed, adequately powered multicentre clinical trials are urgently needed to define the neuroprotective role of Melatonin in optimizing outcomes of NE.
Collapse
Affiliation(s)
- Javed Ahmed
- Division of Neonatology, Women's Wellness and Research Centre, Hamad Medical Corporation, Doha, Qatar.
| | | | - Nicola J Robertson
- Institute for Women's Health, University College London, London, WC1E 6HX, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, BioQuarter, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; The Roslin Institute, University of Edinburgh, Easter Bush Campus, EH25 9RG, UK.
| | - Kiran More
- Division of Neonatology, Sidra Medicine, Doha, Qatar; Weill Cornell Medicine, Doha, Qatar.
| |
Collapse
|
9
|
Quelhas P, Baltazar G, Cairrao E. The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Curr Neurovasc Res 2020; 16:502-515. [PMID: 31738142 DOI: 10.2174/1567202616666191026122642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/01/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is a physiological unit present in the brain, which is constituted by elements of the nervous system (neurons and astrocytes) and the vascular system (endothelial and mural cells). This unit is responsible for the homeostasis and regulation of cerebral blood flow. There are two major types of mural cells in the brain, pericytes and smooth muscle cells. At the arterial level, smooth muscle cells are the main components that wrap around the outside of cerebral blood vessels and the major contributors to basal tone maintenance, blood pressure and blood flow distribution. They present several mechanisms by which they regulate both vasodilation and vasoconstriction of cerebral blood vessels and their regulation becomes even more important in situations of injury or pathology. In this review, we discuss the main regulatory mechanisms of brain smooth muscle cells and their contributions to the correct brain homeostasis.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| |
Collapse
|
10
|
Liu N, Yan F, Ma Q, Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg Med Chem 2020; 28:115609. [PMID: 32690264 DOI: 10.1016/j.bmc.2020.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
As a member of transient receptor potential family, the transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which belongs to non-voltage gated Ca2+ channel. Large-conductance Ca2+-activated K+ channel (BKCa) represents a unique superfamily of Ca2+-activated K+ channel (KCa) that is both voltage and intracellular Ca2+ dependent. Not surprisingly, aberrant function of either TRPV4 or BKCa in neurons has been associated with brain disorders, such as Alzheimer's disease, cerebral ischemia, brain tumor, epilepsy, as well as headache. In these diseases, vascular dysfunction is a common characteristic. Notably, endothelial and smooth muscle TRPV4 can mediate BKCa to regulate cerebral blood flow and pressure. Therefore, in this review, we not only discuss the diverse functions of TRPV4 and BKCa in neurons to integrate relative signaling pathways in the context of cerebral physiological and pathological situations respectively, but also reveal the relationship between TRPV4 and BKCa in regulation of cerebral vascular tone as an etiologic factor. Based on these analyses, this review demonstrates the effective mechanisms of compounds targeting these two channels, which may be potential therapeutic strategies for diseases in the brain.
Collapse
Affiliation(s)
- Na Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Fang Yan
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingjie Ma
- Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Jianhua Zhao
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| |
Collapse
|
11
|
Chen C, Liu L, Shu YQ, Jing P, Lu Y, Zhang XX, Zong XG, Guo LJ, Li CJ. Blockade of HCN2 Channels Provides Neuroprotection Against Ischemic Injury via Accelerating Autophagic Degradation in Hippocampal Neurons. Neurosci Bull 2020; 36:875-894. [PMID: 32519067 PMCID: PMC7410947 DOI: 10.1007/s12264-020-00513-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/16/2020] [Indexed: 01/25/2023] Open
Abstract
In the central nervous system, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential to maintain normal neuronal function. Recent studies have shown that HCN channels may be involved in the pathological process of ischemic brain injury, but the mechanisms remain unclear. Autophagy is activated in cerebral ischemia, but its role in cell death/survival remains controversial. In this study, our results showed that the HCN channel blocker ZD7288 remarkably decreased the percentage of apoptotic neurons and corrected the excessive autophagy induced by oxygen-glucose deprivation followed by reperfusion (OGD/R) in hippocampal HT22 neurons. Furthermore, in the OGD/R group, p-mTOR, p-ULK1 (Ser757), and p62 were significantly decreased, while p-ULK1 (Ser317), atg5, and beclin1 were remarkably increased. ZD7288 did not change the expression of p-ULK1 (Ser757), ULK1 (Ser317), p62, Beclin1, and atg5, which are involved in regulating autophagosome formation. Besides, we found that OGD/R induced a significant increase in Cathepsin D expression, but not LAMP-1. Treatment with ZD7288 at 10 μmol/L in the OGD/R group did not change the expression of cathepsin D and LAMP-1. However, chloroquine (CQ), which decreases autophagosome-lysosome fusion, eliminated the correction of excessive autophagy and neuroprotection by ZD7288. Besides, shRNA knockdown of HCN2 channels significantly reduced the accumulation of LC3-II and increased neuron survival in the OGD/R and transient global cerebral ischemia (TGCI) models, and CQ also eliminated the effects of HCN2-shRNA. Furthermore, we found that the percentage of LC3-positive puncta that co-localized with LAMP-1-positive lysosomes decreased in Con-shRNA-transfected HT22 neurons exposed to OGD/R or CQ. In HCN2-shRNA-transfected HT22 neurons, the percentage of LC3-positive puncta that co-localized with LAMP-1-positive lysosomes increased under OGD/R; however, the percentage was significantly decreased by the addition of CQ to HCN2-shRNA-transfected HT22 neurons. The present results demonstrated that blockade of HCN2 channels provides neuroprotection against OGD/R and TGCI by accelerating autophagic degradation attributable to the promotion of autophagosome and lysosome fusion.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Liu
- Office of Academic Research, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qiao Shu
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Jing
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430030, China
| | - Xiao-Xue Zhang
- Department of Clinical Laboratory, Wuhan PuAi Hospital, Wuhan, 430033, China
| | - Xian-Gang Zong
- Center for Integrated Protein Science and Zentrum für Pharmaforschung, Department Pharmazie, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lian-Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430030, China.
| | - Chang-Jun Li
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Zhu JJ, Wu SH, Chen X, Jiang TT, Li XQ, Li JM, Yan Y, Wu XJ, Liu YY, Dong P. Tanshinone IIA Suppresses Hypoxia-induced Apoptosis in Medial Vestibular Nucleus Cells Via a Skp2/BKCa Axis. Curr Pharm Des 2020; 26:4185-4194. [PMID: 32484767 DOI: 10.2174/1381612826666200602144405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the protective effects of Tanshinone IIA (Tan IIA) on hypoxia-induced injury in the medial vestibular nucleus (MVN) cells. METHODS An in vitro hypoxia model was established using MVN cells exposed to hypoxia. The hypoxia-induced cell damage was confirmed by assessing cell viability, apoptosis and expression of apoptosis-associated proteins. Oxidative stress and related indicators were also measured following hypoxia modeling and Tan IIA treatment, and the genes potentially involved in the response were predicted using multiple GEO datasets. RESULTS The results of the present study showed that Tan IIA significantly increased cell viability, decreased cell apoptosis and decreased the ratio of Bax/Bcl-2 in hypoxia treated cells. In addition, hypoxia treatment increased oxidative stress in MVN cells, and treatment with Tan IIA reduced the oxidative stress. The expression of SPhase Kinase Associated Protein 2 (SKP2) was upregulated in hypoxia treated cells, and Tan IIA treatment reduced the expression of SKP2. Mechanistically, SKP2 interacted with large-conductance Ca2+-activated K+ channels (BKCa), regulating its expression, and BKCa knockdown alleviated the protective effects of Tan IIA on hypoxia induced cell apoptosis. CONCLUSION The results of the present study suggested that Tan IIA had a protective effect on hypoxia-induced cell damage through its anti-apoptotic and anti-oxidative activity via an SKP2/BKCa axis. These findings suggest that Tan IIA may be a potential therapeutic for the treatment of hypoxia-induced vertigo.
Collapse
Affiliation(s)
- Jing-Jing Zhu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Shu-Hui Wu
- Department of Otolaryngology, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Xiang Chen
- Department of General Surgery, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Ting-Ting Jiang
- Department of Otolaryngology, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Xin-Qian Li
- Department of Otolaryngology, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Jing-Min Li
- Department of Otolaryngology, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Yong Yan
- Department of Otolaryngology, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Xue-Jun Wu
- Department of Otolaryngology, Baoshan Branch, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Yu-Ying Liu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| |
Collapse
|
13
|
Sun H, He X, Tao X, Hou T, Chen M, He M, Liao H. The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke. J Neuroinflammation 2020; 17:171. [PMID: 32473633 PMCID: PMC7260848 DOI: 10.1186/s12974-020-01845-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spontaneous functional recovery occurs during the acute phase after stroke onset, but this intrinsic recovery remains limited. Therefore, exploring the mechanism underlying spontaneous recovery and identifying potential strategies to promote functional rehabilitation after stroke are very important. The CD200/CD200R signaling pathway plays an important role in neurological recovery by modulating synaptic plasticity during multiple brain disorders. However, the effect and mechanism of action of the CD200/CD200R pathway in spontaneous functional recovery after stroke are unclear. METHODS In this study, we used a transient middle cerebral artery occlusion (MCAO) model in rats to investigate the function of CD200/CD200R signaling in spontaneous functional recovery after stroke. We performed a battery of behavioral tests (Longa test, adhesive removal test, limb-use asymmetry test, and the modified grip-traction test) to evaluate sensorimotor function after intracerebroventricular (i.c.v.) injection with CD200 fusion protein (CD200Fc) or CD200R blocking antibody (CD200R Ab) post-stroke. Density and morphology of dendritic spines were analyzed by Golgi staining. Microglia activation was evaluated by immunofluorescence staining. Western blot was used to detect the levels of protein and the levels of mRNA were measured by qPCR. RESULTS Our study demonstrated that sensorimotor function, synaptic proteins, and structures were gradually recovered and CD200R was transiently upregulated in ipsilateral cortex after stroke. Synapse-related proteins and dendritic spines were preserved, accompanied by sensorimotor functional recovery, after stereotaxic CD200Fc injection post-stroke. In addition, CD200Fc restrained microglia activation and pro-inflammatory factor release (such as Il-1, Tnf-α, and Il-6) after MCAO. On the contrary, CD200R Ab aggravated sensory function recovery in adhesive removal test and further promoted microglia activation and pro-inflammatory factor release (such as Il-1) after MCAO. The immune-modulatory effect of CD200/CD200R signaling might be exerted partly by its inhibition of the MAPK pathway. CONCLUSIONS This study provides evidence that the CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity via inhibition of microglia activation and inflammatory factor release.
Collapse
Affiliation(s)
- Hao Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Xinran He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Xia Tao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Tingting Hou
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Mingming Chen
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Meijun He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Hong Liao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| |
Collapse
|
14
|
Li L, Li S, Hu C, Zhou L, Zhang Y, Wang M, Qi Z. BK Ca channel is a molecular target of vitamin C to protect against ischemic brain stroke. Mol Membr Biol 2020; 35:9-20. [PMID: 30991005 DOI: 10.1080/09687688.2019.1608378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiological studies have demonstrated that vitamin C decreases the risk of stroke, which has generally been ascribed to its function as antioxidant and free radical scavenger. However, whether there is a defined molecular target for vitamin C on stroke is unknown. Utilizing middle cerebral artery occlusion (MCAO) in rats as a model for ischemic stroke, we demonstrated that long-term, low-dose administration of vitamin C prior to MCAO could exert significant neuroprotective effect on the brain damage. The long-term, low-dose vitamin C pretreated rats had decreased brain infarct size and decreased neurological deficit score compared with the vehicle or single high dose pretreated MCAO rats. Furthermore, electrophysiological experiments using patch clamp technique showed that vitamin C increased the whole-cell current of the large-conductance Ca2+-activated K+ (BKCa) channel. Moreover, vitamin C increased the open probability of the channel without change its amplitude. Importantly, blockade of the BKCa channels abolished the neuroprotective effect of vitamin C on MCAO. Therefore, this study shows that long-term, low-dose pretreatment with vitamin C could reduce MCAO-induced brain damage through activation of the BKCa channels, suggesting that the BKCa channel is a molecular target of vitamin C on stroke.
Collapse
Affiliation(s)
- Luyao Li
- a Department of Basic Medical Sciences , School of Medicine, Xiamen University , Xiamen , China
| | - Shan Li
- a Department of Basic Medical Sciences , School of Medicine, Xiamen University , Xiamen , China
| | - Chuanbing Hu
- a Department of Basic Medical Sciences , School of Medicine, Xiamen University , Xiamen , China
| | - Li Zhou
- a Department of Basic Medical Sciences , School of Medicine, Xiamen University , Xiamen , China
| | - Yujiao Zhang
- b School of Psychology , Xinxiang Medical University , Xinxiang City , Henan , China
| | - Mingyan Wang
- a Department of Basic Medical Sciences , School of Medicine, Xiamen University , Xiamen , China
| | - Zhi Qi
- a Department of Basic Medical Sciences , School of Medicine, Xiamen University , Xiamen , China
| |
Collapse
|
15
|
Trombetta-Lima M, Krabbendam IE, Dolga AM. Calcium-activated potassium channels: implications for aging and age-related neurodegeneration. Int J Biochem Cell Biol 2020; 123:105748. [PMID: 32353429 DOI: 10.1016/j.biocel.2020.105748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Population aging, as well as the handling of age-associated diseases, is a worldwide increasing concern. Among them, Alzheimer's disease stands out as the major cause of dementia culminating in full dependence on other people for basic functions. However, despite numerous efforts, in the last decades, there was no new approved therapeutic drug for the treatment of the disease. Calcium-activated potassium channels have emerged as a potential tool for neuronal protection by modulating intracellular calcium signaling. Their subcellular localization is determinant of their functional effects. When located on the plasma membrane of neuronal cells, they can modulate synaptic function, while their activation at the inner mitochondrial membrane has a neuroprotective potential via the attenuation of mitochondrial reactive oxygen species in conditions of oxidative stress. Here we review the dual role of these channels in the aging phenotype and Alzheimer's disease pathology and discuss their potential use as a therapeutic tool.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands; Medical School, Neurology Department, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
16
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model. Sci Rep 2020; 10:3898. [PMID: 32127612 PMCID: PMC7054316 DOI: 10.1038/s41598-020-60858-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/17/2020] [Indexed: 01/13/2023] Open
Abstract
With the current practice of therapeutic hypothermia for neonatal encephalopathy, disability rates and the severity spectrum of cerebral palsy are reduced. Nevertheless, safe and effective adjunct therapies are needed to optimize outcomes. This study's objective was to assess if 18 mg/kg melatonin given rapidly over 2 h at 1 h after hypoxia-ischemia with cooling from 1-13 h was safe, achieved therapeutic levels within 3 h and augmented hypothermic neuroprotection. Following hypoxia-ischemia, 20 newborn piglets were randomized to: (i) Cooling 1-13 h (HT; n = 6); (ii) HT+ 2.5% ethanol vehicle (HT+V; n = 7); (iii) HT + Melatonin (HT+M; n = 7). Intensive care was maintained for 48 h; aEEG was acquired throughout, brain MRS acquired at 24 and 48 h and cell death (TUNEL) evaluated at 48 h. There were no differences for insult severity. Core temperature was higher in HT group for first hour after HI. Comparing HT+M to HT, aEEG scores recovered more quickly by 19 h (p < 0.05); comparing HT+V to HT, aEEG recovered from 31 h (p < 0.05). Brain phosphocreatine/inorganic phosphate and NTP/exchangeable phosphate were higher at 48 h in HT+M versus HT (p = 0.036, p = 0.049 respectively). Including both 24 h and 48 h measurements, the rise in Lactate/N-acetyl aspartate was reduced in white (p = 0.030) and grey matter (p = 0.038) after HI. Reduced overall TUNEL positive cells were observed in HT+M (47.1 cells/mm2) compared to HT (123.8 cells/mm2) (p = 0.0003) and HT+V (97.5 cells/mm2) compared to HT (p = 0.012). Localized protection was seen in white matter for HT+M versus HT (p = 0.036) and internal capsule for HT+M compared to HT (p = 0.001) and HT+V versus HT (p = 0.006). Therapeutic melatonin levels (15-30mg/l) were achieved at 2 h and were neuroprotective following HI, but ethanol vehicle was partially protective.
Collapse
|
18
|
Wang XG, Zhu DD, Li N, Huang YL, Wang YZ, Zhang T, Wang CM, Wang B, Peng Y, Ge BY, Li S, Zhao J. Scorpion Venom Heat-Resistant Peptide is Neuroprotective against Cerebral Ischemia-Reperfusion Injury in Association with the NMDA-MAPK Pathway. Neurosci Bull 2020; 36:243-253. [PMID: 31502213 PMCID: PMC7056763 DOI: 10.1007/s12264-019-00425-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies have shown that SVHRP is neuroprotective in models of Alzheimer's disease and Parkinson's disease. The present study aimed to explore the potential neuroprotective effects of SVHRP on cerebral ischemia/reperfusion (I/R) injury, using a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a cellular model of oxygen-glucose deprivation/reoxygenation (OGD/R). Our results showed that SVHRP treatment decreased the neurological deficit scores, edema formation, infarct volume and neuronal loss in the MCAO/R mice, and protected primary neurons against OGD/R insult. SVHRP pretreatment suppressed the alterations in protein levels of N-methyl-D-aspartate receptors (NMDARs) and phosphorylated p38 MAPK as well as some proinflammatory factors in both the animal and cellular models. These results suggest that SVHRP has neuroprotective effects against cerebral I/R injury, which might be associated with inhibition of the NMDA-MAPK-mediated excitotoxicity.
Collapse
Affiliation(s)
- Xu-Gang Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Dan-Dan Zhu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China
| | - Yue-Lin Huang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ying-Zi Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ting Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chen-Mei Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yan Peng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bi-Ying Ge
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China.
| | - Jie Zhao
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
19
|
Lu S, Liao L, Zhang B, Yan W, Chen L, Yan H, Guo L, Lu S, Xiong K, Yan J. Antioxidant cascades confer neuroprotection in ethanol, morphine, and methamphetamine preconditioning. Neurochem Int 2019; 131:104540. [DOI: 10.1016/j.neuint.2019.104540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
|
20
|
Guo Y, Yu XM, Chen S, Wen JY, Chen ZW. Total flavones of Rhododendron simsii Planch flower protect rat hippocampal neuron from hypoxia-reoxygenation injury via activation of BK Ca channel. J Pharm Pharmacol 2019; 72:111-120. [PMID: 31598976 DOI: 10.1111/jphp.13178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To study the effects of total flavones of Rhododendra simsii Planch flower (TFR) on hypoxia/reoxygenation (H/R) injury in rat hippocampal neurons and its underlying mechanism. METHOD Model of H/R was established in newborn rat primary cultured hippocampal neuron. Lactate dehydrogenase (LDH) and neuron-specific enolase (NSE) activity as well as malondialdehyde (MDA) content in cultured supernatants of the neurons were examined. Methyl thiazolyl tetrazolium assay and Hoechst33258 staining were, respectively, used to detect cell viability and apoptosis of neurons. Protein expression and current of BKCa channel were assessed by using Western blotting and whole-cell patch-clamp methods, respectively. KEY FINDINGS In the ranges of 3.7-300 mg/l, TFR significantly inhibited H/R-induced decrease of neuronal viability and increases of LDH, NSE and MDA in the supernatants as well as apoptosis; TFR 33.3, 100 and 300 mg/l markedly increased current of BKCa channel rather than the BKCa channel protein expression in the neurons. CONCLUSIONS Total flavones of R. simsii Planch flower had a protective effect against H/R injury in rat hippocampal neuron, and activation of BKCa channel may contribute to the neuroprotection.
Collapse
Affiliation(s)
- Yan Guo
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Xiao-Meng Yu
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Shuo Chen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ji-Yue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Pignataro L. Alcohol protects the CNS by activating HSF1 and inducing the heat shock proteins. Neurosci Lett 2019; 713:134507. [PMID: 31541723 DOI: 10.1016/j.neulet.2019.134507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Although alcohol abuse and dependence have profound negative health consequences, emerging evidence suggests that exposure to low/moderate concentrations of ethanol protects multiple organs and systems. In the CNS, moderate drinking decreases the risk of dementia and Alzheimer's disease. This neuroprotection correlates with an increased expression of the heat shock proteins (HSPs). Multiple epidemiological studies revealed an inverse association between ethanol intoxication and traumatic brain injury mortality. In this case, ethanol-induced HSPs limit the inflammatory immune response diminishing cell death and improving the neurobehavioural outcome. Ethanol also protects the brain against ischemic injuries via the HSPs. In our laboratory, we demonstrated that ethanol increased the expression of several HSP genes in neurons and astrocytes by activating the transcription factor, heat shock factor 1 (HSF1). HSF1 induces HSPs that target misfolded proteins for refolding or degradation, increasing the survival chances of the cells. These data indicate that ethanol neuroprotection is mediated by the activation HSF1 and the induction of HSPs.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Columbia University, Department of Anesthesiology, 622 West 168th St., PH 511, New York, NY, 10032, USA; College of Staten Island - City University of New York, 2800 Victory Blvd., Building 1A - 101, Staten Island, NY, 10314, USA.
| |
Collapse
|
22
|
Yang S, Wu P, Xiao J, Jiang L. Overexpression of COX6B1 protects against I/R‑induced neuronal injury in rat hippocampal neurons. Mol Med Rep 2019; 19:4852-4862. [PMID: 31059068 PMCID: PMC6522897 DOI: 10.3892/mmr.2019.10144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/27/2019] [Indexed: 01/06/2023] Open
Abstract
Cerebrovascular disease (CVD) is one of the leading causes of mortality worldwide. The role of cytochrome c oxidase subunit 6B1 (COX6B1) in the central nervous system remains unclear. The present study aimed to analyze the role of COX6B1 in rat hippocampal neurons extracted from fetal rats. The subcellular localization of the neuron‑specific marker microtubule‑associated protein 2 was detected by immunofluorescence assay. Cell viability was assessed using a cell counting kit, and the levels of apoptosis and cytosolic Ca2+ were analyzed by flow cytometry. The expression levels of the molecular factors downstream to COX6B1 were determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. Reoxygenation following oxygen‑glucose deprivation (OGD) decreased cell viability and the expression levels of COX6B1 in a time‑dependent manner, and 60 min of reoxygenation was identified as the optimal time period for establishing an ischemia/reperfusion (I/R) model. Overexpression of COX6B1 was demonstrated to reverse the viability of hippocampal neurons following I/R treatment. Specifically, COX6B1 overexpression decreased the cytosolic concentration of Ca2+ and suppressed neuronal apoptosis, which were increased following I/R treatment. Furthermore, overexpression of COX6B1 increased the protein expression levels of apoptosis regulator BCL‑2 and mitochondrial cytochrome c (cyt c), and decreased the protein expression levels of apoptosis regulator BCL2‑associated X and cytosolic cyt c in I/R model cells. Collectively, the present study results suggested that COX6B1 overexpression may reverse I/R‑induced neuronal damage by increasing the viability of neurons, by decreasing the cytosolic levels of Ca2+ and by suppressing apoptosis. These results may facilitate the development of novel strategies for the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Shan Yang
- Department of Pediatrics, Nanchuan People's Hospital Affiliated to Chongqing Medical University, Chongqing 408400, P.R. China
| | - Peng Wu
- Department of Neurology, Children's Hospital Affiliated to Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jianwen Xiao
- Department of Hematology, Children's Hospital Affiliated to Chongqing Medical University, Chongqing 400014, P.R. China
| | - Li Jiang
- Department of Neurology, Children's Hospital Affiliated to Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
23
|
Abbasi Y, Shabani R, Mousavizadeh K, Soleimani M, Mehdizadeh M. Neuroprotective effect of ethanol and Modafinil on focal cerebral ischemia in rats. Metab Brain Dis 2019; 34:805-819. [PMID: 30644018 DOI: 10.1007/s11011-018-0378-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023]
Abstract
Ethanol is known as an effective agent against cerebral lesions after ischemia. Modafinil is a stimulant of the central nervous system (CNS) with antioxidant properties. We assessed the neuroprotective effect of modafinil in combination with ethanol after focal cerebral ischemia. Male wistar rats weighing 280-300 g were divided into nine groups (n = 12 each group): The groups consisted of the MCAO (middle cerebral artery occlusion) group (i.e. ischemia without treatment); the vehicle group(Dimethylsulfoxide); the modafinil group including three subgroups which pretreated with Modafinil (10, 30, 100 mg/kg), respectively, for seven days prior to the induction of MCAO; the ethanol group which received 1.5g/kg ethanol at the time of reperfusion; and modafinil+ethanol group which was divided into three subgroups that received three doses of modanifil (10, 30,100 mg/kg), respectively, for seven days prior to MCAO as well as ethanol at the time of reperfusion. Transient cerebral ischemia was induced by 60-min intraluminal occlusion of the right middle cerebral artery. Edema, infarct volume, glial scar formation (gliosis) and apoptosis were analyzed. The ethanol alone treatment (with a less significant effect), modafinil (in a dose-dependent way), and the combination of modafinil and ethanol significantly decreased the brain infarct volume, edema, apoptosis, and gliosis (P ≤ 0.05). Additionally, modafinil+ethanol mediated the restoration of aerobic metabolism and hyper-glycolysis suppress, thereby resulting in an increase in pyruvate dehydrogenase and a decrease in lactate dehydrogenase activity, respectively, which ultimately reduced oxidative reperfusion injury. These results demonstrate that pretreatment with modafinil (100 mg/kg) and modafinil+ethanol(1.5 g/kg) may prevent ischemic brain injuries.
Collapse
Affiliation(s)
- Yusef Abbasi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Reglodi D, Toth D, Vicena V, Manavalan S, Brown D, Getachew B, Tizabi Y. Therapeutic potential of PACAP in alcohol toxicity. Neurochem Int 2019; 124:238-244. [PMID: 30682380 DOI: 10.1016/j.neuint.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alcohol addiction is a worldwide concern as its detrimental effects go far beyond the addicted individual and can affect the entire family as well as the community. Considerable effort is being expended in understanding the neurobiological basis of such addiction in hope of developing effective prevention and/or intervention strategies. In addition, organ damage and neurotoxicological effects of alcohol are intensely investigated. Pharmacological approaches, so far, have only provided partial success in prevention or treatment of alcohol use disorder (AUD) including the neurotoxicological consequences of heavy drinking. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid neuropeptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents including alcohol. In this mini-review, following a brief presentation of alcohol addiction and its neurotoxicity, the potential of PACAP as a therapeutic intervention in toxicological consequences of this devastating disorder is discussed.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary.
| | - Denes Toth
- Department of Forensic Medicine, University of Pecs Medical School, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary; Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dwayne Brown
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
25
|
Robertson NJ, Martinello K, Lingam I, Avdic-Belltheus A, Meehan C, Alonso-Alconada D, Ragab S, Bainbridge A, Sokolska M, Tachrount M, Middleton B, Price D, Hristova M, Golay X, Soliani Raschini A, Aquino G, Pelizzi N, Facchinetti F. Melatonin as an adjunct to therapeutic hypothermia in a piglet model of neonatal encephalopathy: A translational study. Neurobiol Dis 2018; 121:240-251. [PMID: 30300675 DOI: 10.1016/j.nbd.2018.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Therapeutic hypothermia is only partially protective for neonatal encephalopathy; there is an urgent need to develop treatments that augment cooling. Our objective was to assess safety, efficacy and pharmacokinetics of 5 and 15 mg/kg/24 h melatonin (proprietary formulation) administered at 2 h and 26 h after hypoxia-ischemia (HI) with cooling in a piglet model. Following moderate cerebral HI, 30 piglets were eligible and randomized to: i) Hypothermia (33.5 °C, 2-26 h) and vehicle (HT + V;n = 13); b) HT and 5 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-5;n = 4); c) HT and 15 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-15;n = 13). Intensive care was maintained for 48 h; brain MRS was acquired and cell death (TUNEL) evaluated at 48 h. Comparing HT + V with HT + Mel-5 and HT + Mel-15, there was no difference in blood pressure or inotropic support needed, brain Lactate/N Acetylaspartate at 24 h and 48 h was similar, ATP/phosphate pool was higher for HT + Mel-15 versus HT + V at 24 h (p = 0.038) but not 48 h. A localized reduction in TUNEL positive cell death was observed in the sensorimotor cortex in the 15 mg/kg melatonin group (HT + Mel-15 versus HT + V; p < 0.003) but not in the 5 mg/kg melatonin group (HT + Mel-5 versus HT + V; p = 0.808). Putative therapeutic melatonin levels were reached 8 h after HI (104 increase from baseline; ~15-30 mg/l). Mean ± SD peak plasma melatonin levels after the first infusion were 0.0014 ± 0.0012 mg/l in the HT + V group, 3.97 ± 1.53 mg/l in the HT + Mel-5 group and 16.8 ± 8.3 mg/l in the HT + Mel-15 group. Protection was dose dependent; 15 mg/kg melatonin started 2 h after HI, given over 6 h, was well tolerated and augmented hypothermic protection in sensorimotor cortex. Earlier attainment of therapeutic plasma melatonin levels may optimize protection by targeting initial events of reperfusion injury. The time window for intervention with melatonin, as adjunct therapy with cooling, is likely to be narrow and should be considered in designing future clinical studies.
Collapse
Affiliation(s)
- Nicola J Robertson
- University College London, London WC1E 6HX, UK; Division of Neonatology, Department of Pediatrics, Sidra Medicine, Doha, Qatar.
| | | | | | | | | | | | - Sara Ragab
- University College London, London WC1E 6HX, UK
| | | | | | - Mohamed Tachrount
- Chronobiology Group, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Benita Middleton
- Chronobiology Group, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - David Price
- University College London Hospitals NHS Trust, UK
| | | | - Xavier Golay
- Institute of Neurology, Queen Square, University College London, London, UK
| | | | | | | | | |
Collapse
|
26
|
Getachew B, Hudson T, Heinbockel T, Csoka AB, Tizabi Y. Protective Effects of Donepezil Against Alcohol-Induced Toxicity in Cell Culture: Role of Caspase-3. Neurotox Res 2018; 34:757-762. [PMID: 29804239 DOI: 10.1007/s12640-018-9913-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/29/2018] [Accepted: 05/17/2018] [Indexed: 01/12/2023]
Abstract
Ethanol (EtOH) is one of the most frequently abused drugs with heavy health, economic, and societal burdens. Although moderate to low EtOH may have some neuroprotective effects, heavy EtOH consumption associated with high blood alcohol level (BAL) can be quite detrimental. The brain is particularly vulnerable to the damaging effects of high BAL, leading to neuronal loss, cognitive, and behavioral deficits. Although the exact causes of these detriments are not fully elucidated, it is believed that damage to the cholinergic system is at least partially responsible for the cognitive impairment. Thus, high BAL may result in selective apoptotic damage to the cholinergic neurons. Donepezil (DON), a centrally acting, reversible and non-competitive acetylcholinesterase (AChE) inhibitor, approved for use in Alzheimer's disease (AD), may also attenuate EtOH-induced cognitive impairment. Cognitive effects of DON might be due to an anti-apoptotic activity as some AChE inhibitors have been shown to have this property. The aim of this study was to determine whether DON might protect against EtOH-induced toxicity and whether such protection might be apoptotically mediated. We exposed the human neuroblastoma-derived, SH-SY5Y cells to a relatively high concentration of EtOH (500 mM) for 24 h and evaluated the effects of two concentrations of DON (0.1 and 1.0 μM) on alcohol-induced toxicity and caspase-3, an apoptotic marker. We found a dose-dependent protection of DON against EtOH-induced toxicity as well as dose-dependent attenuation of EtOH-induced increases in caspase-3 levels. Thus, DON may inhibit apoptosis as well as alcohol-induced toxicity.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Tamaro Hudson
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Thomas Heinbockel
- Department of Anatomy, Howard University College Medicine, Washington, DC, 20059, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College Medicine, Washington, DC, 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| |
Collapse
|
27
|
Cistanche deserticola polysaccharides protects PC12 cells against OGD/RP-induced injury. Biomed Pharmacother 2018; 99:671-680. [PMID: 29710464 DOI: 10.1016/j.biopha.2018.01.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Ischemia stroke is a disease with high morbidity and mortality. Cistanche deserticola polysaccharides (CDP) possess a wide range of beneficial effects, including hepatoprotection and immune homeostasis. As far as we know, the protective effect of CDP on neurons injured by oxygen-glucose deprivation/reperfusion (OGD/RP) has not been investigated. In this study, OGD/RP injured a PC12 cell model. Briefly, CDP (0.05, 0.5 and 5??g/ml) was administered before reperfusion. The protective effect of CDP was then evaluated on the basis of cell viability, lactate dehydrogenase (LDH) leakage, [Ca2+]i, mitochondrial membrane potential (MMP)and cell apoptosis, and redox status after reperfusion was evaluated by assaying reactive oxygen species (ROS), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity. Basing on the fact that Parkinson's disease-associated protein DJ-1 participates in endogenous antioxidation and performs neuroprotective effects after ischemia stroke, we investigated the interaction between CDP and DJ-1. DJ-1 expression was detected through ELISA and Western blot analysis, and the translocation of DJ-1 was evaluated through immunofluorescence. Result showed that CDP (0.05, 0.5 and 5??g/ml) attenuated PC12 cell death, preserved MMP and calcium homeostasis; inhibited oxidative stress and decreased cell apoptosis. Moreover, CDP (5??g/ml) markedly stimulated DJ-1 secretion and expression. Overall, the results suggested that CDP exerts neuroprotective effect against OGD/RP-induced injury by inhibiting oxidative stress and regulating the DJ-1 pathway.
Collapse
|
28
|
Low Vs. High Alcohol: Central Benefits Vs. Detriments. Neurotox Res 2018; 34:860-869. [DOI: 10.1007/s12640-017-9859-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023]
|
29
|
Zhang M, Wu X, Xu Y, He M, Yang J, Li J, Li Y, Ao G, Cheng J, Jia J. The cystathionine β-synthase/hydrogen sulfide pathway contributes to microglia-mediated neuroinflammation following cerebral ischemia. Brain Behav Immun 2017; 66:332-346. [PMID: 28751019 DOI: 10.1016/j.bbi.2017.07.156] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022] Open
Abstract
The mechanisms underlying neuroinflammation following cerebral ischemia remain unclear. Hydrogen sulfide (H2S), a newly identified gasotransmitter, has been reported to regulate inflammation. In the current study, we investigated whether the endogenous H2S production pathway contributed to microglia-mediated neuroinflammation following stroke. We used a mouse middle cerebral artery occlusion (MCAO) model and an in vitro cellular model to mimic ischemia-induced microglial neuroinflammation. Expression of the H2S synthase cystathionine β-synthase (CBS) and H2S synthetic activity were rapidly decreased in the ischemic brain tissue following MCAO. Consistently, when cultured microglia were polarized toward a pro-inflammatory phenotype with conditioned medium collected from neurons that had been subjected to oxygen-glucose deprivation (OGD neuron CM), they displayed reduced CBS expression and H2S production. Enhancing H2S bioavailability either by overexpressing CBS or by supplementing with exogenous H2S donors promoted a shift in microglial polarization from ischemia-induced pro-inflammatory phenotypes toward anti-inflammatory phenotypes. Mechanistically, microglia that were exposed to OGD neuron CM displayed reduced activation of AMP-activated protein kinase (AMPK), which was rescued by overexpressing CBS or by supplementing with H2S donors. Moreover, the promoting effects of H2S donors on microglial anti-inflammatory polarization were abolished by an AMPK inhibitor or CaMKKβ inhibitor. Our results suggested that reduced CBS-H2S-AMPK cascade activity contributed to microglia-mediated neuroinflammation following stroke. Targeting the CBS-H2S pathway is a promising therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaowei Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yingxiu Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meijun He
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jiaying Yang
- College of Medicine, Soochow University, Suzhou, China
| | - Jie Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yuyao Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guizhen Ao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jian Cheng
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Jia Jia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
30
|
Khrustalev VV, Khrustaleva TA, Lelevich SV. Ethanol binding sites on proteins. J Mol Graph Model 2017; 78:187-194. [PMID: 29078103 DOI: 10.1016/j.jmgm.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 01/19/2023]
Abstract
This study is on the analysis of ethanol binding sites on 3D structures of nonredundant proteins from the Protein Data Bank. The only one amino acid residue that is significantly overrepresented around ethanol molecules is Tyr. There are usually two or more Tyr residues in the same ethanol binding site, while residues of Thr, Asp and Gln are underrepresented around them. Residues of Ala and Pro are significantly underrepresented in ethanol binding surfaces. Several residues (Phe, Val, Pro, Ala, Arg, His, Ser, Asp) bind ethanol significantly more frequent if they are not included in beta strands. Residues of Ala, Ile and Arg preferably bind ethanol when they are included in an alpha helix. Ethanol molecules often make hydrogen bonds with oxygen and nitrogen atoms from the main chain of a protein. Because of this reason, the binding of ethanol may be associated with the decrease of the length of alpha helices and the disappearance of 3/10 helices. Obtained data should be useful for studies on new targets of the direct action of ethanol on enzymes, receptors, and transcription factors.
Collapse
Affiliation(s)
| | | | - Sergey Vladimirovich Lelevich
- Department of Clinical Laboratory Diagnostics, Allergology and Immunology, Grodno State Medical University, Gorkogo 80, Grodno, Belarus
| |
Collapse
|
31
|
Mechanism of Lycium barbarum polysaccharides on primary cultured rat hippocampal neurons. Cell Tissue Res 2017; 369:455-465. [DOI: 10.1007/s00441-017-2648-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/25/2017] [Indexed: 01/27/2023]
|
32
|
Manavalan S, Getachew B, Manaye KF, Khundmiri SJ, Csoka AB, McKinley R, Tamas A, Reglodi D, Tizabi Y. PACAP Protects Against Ethanol and Nicotine Toxicity in SH-SY5Y Cells: Implications for Drinking-Smoking Co-morbidity. Neurotox Res 2017; 32:8-13. [PMID: 28342135 DOI: 10.1007/s12640-017-9727-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 01/21/2023]
Abstract
The detrimental effects of heavy drinking and smoking are multiplied when the two are combined. Treatment modalities for each and especially for the combination are very limited. Although in low concentration, alcohol and nicotine, each may have beneficial effects including neuroprotection, their combination, instead of providing additive protection, may actually lead to toxicity in cell cultures. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid peptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents. The aim of this study was to investigate whether PACAP may also protect against toxicity induced by high alcohol, high nicotine, or the combination of low alcohol and nicotine concentrations, and if so, whether this effect was mediated via PAC1 receptor. We used the neuroblastoma-derived SH-SY5Y cells and applied various colorimetric assays for determination of cell viability or toxicity. Results indicate that PACAP blocks toxicity induced by high alcohol and high nicotine as well as their combination at low concentrations. The effects of PACAP in turn were blocked by the PACAP antagonist (PACAP 6-38), indicating involvement of the PACAP receptor PAC1 and possibly vasoactive intestinal peptide (VIP) receptors in PACAP's protection. Moreover, no combined toxicity of low alcohol and low nicotine could be detected in calcium-free medium. These findings suggest possible beneficial effects of PACAP in preventing alcohol and nicotine toxicity and that calcium contributes to the damage induced by combination of low alcohol and nicotine in SH-SY5Y cells.
Collapse
Affiliation(s)
- Sridharan Manavalan
- Department of Basic Sciences, National University of Health Sciences, Pinellas Park, FL, USA.,Department of Anatomy, University of Pecs, Pécs, Hungary
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, NW, Washington, DC, 20059, USA
| | - Kebreten F Manaye
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Raechel McKinley
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, Pécs, Hungary
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, NW, Washington, DC, 20059, USA.
| |
Collapse
|