1
|
Sierra-Pagan JE, Dsouza N, Das S, Larson TA, Sorensen JR, Ma X, Stan P, Wanberg EJ, Shi X, Garry MG, Gong W, Garry DJ. FOXK1 regulates Wnt signalling to promote cardiogenesis. Cardiovasc Res 2023; 119:1728-1739. [PMID: 37036809 PMCID: PMC10325700 DOI: 10.1093/cvr/cvad054] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS Congenital heart disease (CHD) is the most common genetic birth defect, which has considerable morbidity and mortality. We focused on deciphering key regulators that govern cardiac progenitors and cardiogenesis. FOXK1 is a forkhead/winged helix transcription factor known to regulate cell cycle kinetics and is restricted to mesodermal progenitors, somites, and heart. In the present study, we define an essential role for FOXK1 during cardiovascular development. METHODS AND RESULTS We used the mouse embryoid body system to differentiate control and Foxk1 KO embryonic stem cells into mesodermal, cardiac progenitor cells and mature cardiac cells. Using flow cytometry, immunohistochemistry, cardiac beating, transcriptional and chromatin immunoprecipitation quantitative polymerase chain reaction assays, bulk RNA sequencing (RNAseq) and assay for transposase-accessible chromatin using sequencing (ATACseq) analyses, FOXK1 was observed to be an important regulator of cardiogenesis. Flow cytometry analyses revealed perturbed cardiogenesis in Foxk1 KO embryoid bodies (EBs). Bulk RNAseq analysis at two developmental stages showed a significant reduction of the cardiac molecular program in Foxk1 KO EBs compared to the control EBs. ATACseq analysis during EB differentiation demonstrated that the chromatin landscape nearby known important regulators of cardiogenesis was significantly relaxed in control EBs compared to Foxk1 KO EBs. Furthermore, we demonstrated that in the absence of FOXK1, cardiac differentiation was markedly impaired by assaying for cardiac Troponin T expression and cardiac contractility. We demonstrate that FOXK1 is an important regulator of cardiogenesis by repressing the Wnt/β-catenin signalling pathway and thereby promoting differentiation. CONCLUSION These results identify FOXK1 as an essential transcriptional and epigenetic regulator of cardiovascular development. Mechanistically, FOXK1 represses Wnt signalling to promote the development of cardiac progenitor cells.
Collapse
Affiliation(s)
- Javier E Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Nikita Dsouza
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Satyabrata Das
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Thijs A Larson
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Jacob R Sorensen
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Xiao Ma
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Patricia Stan
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Erik J Wanberg
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Xiaozhong Shi
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, 516 Delaware ST SE Minneapolis, MN 55455, USA
| | - Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, 516 Delaware ST SE Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Dunville K, Tonelli F, Novelli E, Codino A, Massa V, Frontino AM, Galfrè S, Biondi F, Gustincich S, Caleo M, Pandolfini L, Alia C, Cremisi F. Laminin 511 and WNT signalling sustain prolonged expansion of hiPSC-derived hippocampal progenitors. Development 2022; 149:276383. [DOI: 10.1242/dev.200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Using the timely re-activation of WNT signalling in neuralizing human induced pluripotent stem cells (hiPSCs), we have produced neural progenitor cells with a gene expression profile typical of human embryonic dentate gyrus (DG) cells. Notably, in addition to continuous WNT signalling, a specific laminin isoform is crucial to prolonging the neural stem state and to extending progenitor cell proliferation for over 200 days in vitro. Laminin 511 is indeed specifically required to support proliferation and to inhibit differentiation of hippocampal progenitor cells for extended time periods when compared with a number of different laminin isoforms assayed. Global gene expression profiles of these cells suggest that a niche of laminin 511 and WNT signalling is sufficient to maintain their capability to undergo typical hippocampal neurogenesis. Moreover, laminin 511 signalling sustains the expression of a set of genes responsible for the maintenance of a hippocampal neurogenic niche. Finally, xenograft of human DG progenitors into the DG of adult immunosuppressed host mice produces efficient integration of neurons that innervate CA3 layer cells spanning the same area of endogenous hippocampal neuron synapses.
Collapse
Affiliation(s)
- Keagan Dunville
- Laboratorio di Biologia, Scuola Normale Superiore 1 , Pisa, 56126 , Italy
| | - Fabrizio Tonelli
- Laboratorio di Biologia, Scuola Normale Superiore 1 , Pisa, 56126 , Italy
| | - Elena Novelli
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Azzurra Codino
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia 3 , Genova, 16152 , Italy
| | - Verediana Massa
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | | | - Silvia Galfrè
- Department of Biology and Biotechnologies ‘Charles Darwin’, Università La Sapienza 4 , Roma, 00185 , Italy
| | - Francesca Biondi
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Stefano Gustincich
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia 3 , Genova, 16152 , Italy
| | - Matteo Caleo
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Luca Pandolfini
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia 3 , Genova, 16152 , Italy
| | - Claudia Alia
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Federico Cremisi
- Laboratorio di Biologia, Scuola Normale Superiore 1 , Pisa, 56126 , Italy
| |
Collapse
|
3
|
Lin Q, Wu L, Chatla S, Chowdhury FA, Atale N, Joseph J, Du W. Hematopoietic stem cell regeneration through paracrine regulation of the Wnt5a/Prox1 signaling axis. J Clin Invest 2022; 132:155914. [PMID: 35703178 PMCID: PMC9197516 DOI: 10.1172/jci155914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
The crosstalk between the BM microenvironment (niche) and hematopoietic stem cells (HSCs) is critical for HSC regeneration. Here, we show that in mice, deletion of the Fanconi anemia (FA) genes Fanca and Fancc dampened HSC regeneration through direct effects on HSCs and indirect effects on BM niche cells. FA HSCs showed persistent upregulation of the Wnt target Prox1 in response to total body irradiation (TBI). Accordingly, lineage-specific deletion of Prox1 improved long-term repopulation of the irradiated FA HSCs. Forced expression of Prox1 in WT HSCs mimicked the defective repopulation phenotype of FA HSCs. WT mice but not FA mice showed significant induction by TBI of BM stromal Wnt5a protein. Mechanistically, FA proteins regulated stromal Wnt5a expression, possibly through modulating the Wnt5a transcription activator Pax2. Wnt5a treatment of irradiated FA mice enhanced HSC regeneration. Conversely, Wnt5a neutralization inhibited HSC regeneration after TBI. Wnt5a secreted by LepR+CXCL12+ BM stromal cells inhibited β-catenin accumulation, thereby repressing Prox1 transcription in irradiated HSCs. The detrimental effect of deregulated Wnt5a/Prox1 signaling on HSC regeneration was also observed in patients with FA and aged mice. Irradiation induced upregulation of Prox1 in the HSCs of aged mice, and deletion of Prox1 in aged HSCs improved HSC regeneration. Treatment of aged mice with Wnt5a enhanced hematopoietic repopulation. Collectively, these findings identified the paracrine Wnt5a/Prox1 signaling axis as a regulator of HSC regeneration under conditions of injury and aging.
Collapse
Affiliation(s)
- Qiqi Lin
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Fabliha A Chowdhury
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Neha Atale
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jonathan Joseph
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Su M, Liu J, Yu B, Zhou K, Sun C, Yang M, Zhao C. Loss of Calretinin in L5a impairs the formation of the barrel cortex leading to abnormal whisker-mediated behaviors. Mol Brain 2021; 14:67. [PMID: 33845857 PMCID: PMC8042711 DOI: 10.1186/s13041-021-00775-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
The rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.
Collapse
Affiliation(s)
- Mingzhao Su
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kaixing Zhou
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Congli Sun
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Mengjie Yang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|