1
|
Avagimyan A, Fogacci F, Pogosova N, Kakrurskiy L, Kogan E, Urazova O, Kobalava Z, Mikhaleva L, Vandysheva R, Zarina G, Trofimenko A, Navasardyan G, Mkrtchyan L, Galli M, Jndoyan Z, Aznauryan A, Saahakyan K, Agati L, Shafie D, Cicero A, Salvo GD, Sarrafzadegan N. Diabetic Cardiomyopathy: 2023 Update by the International Multidisciplinary Board of Experts. Curr Probl Cardiol 2024; 49:102052. [PMID: 37640176 DOI: 10.1016/j.cpcardiol.2023.102052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Diabetes mellitus (DM) is considered by many the pandemic of the 21st century and is associated with multiple organ damages. Among these, cardiovascular complications are responsible for an incredible burden of mortality and morbidity in Western Countries. The study of the pathological mechanisms responsible for the cardiovascular complications in DM patients is key for the development of new therapeutic strategies. The metabolic disorders caused by hyperglycemia, insulin resistance, and dyslipidemia, results in a cascade of pathomorphological changes favoring the atherosclerotic process and leading to myocardial remodeling. Parallel to this, oxidative stress, calcium overload, mitochondrial dysfunction, activation of protein kinase C signaling pathways, myocardial lipomatosis, and low-grade inflammation of the myocardium - are the main pathways responsible for the diabetic cardiomyopathy development. This review aims to appraise and discuss the pathogenetic mechanisms behind the diabetic cardiomyopathy development.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University, Yerevan, Armenia.
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Nana Pogosova
- Research and Preventive Cardiology, National Medical Research Centre of Cardiology, Moscow, Russia
| | - Lev Kakrurskiy
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Eugenia Kogan
- Pathology Department, Immunohistochemistry Reference Centre of Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga Urazova
- Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Zhanna Kobalava
- Internal Disease and Cardiology Department, Peoples Friendship University of Russia, Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Gioeva Zarina
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Artem Trofimenko
- Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | | | - Lusine Mkrtchyan
- Cardiology Department, Yerevan State Medical University, Yerevan, Armenia
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Zinaida Jndoyan
- Internal Diseases Propaedeutic Department, Yerevan State Medical University, Yerevan, Armenia
| | - Anait Aznauryan
- Histology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Karmen Saahakyan
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Luciano Agati
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Arrigo Cicero
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Cerf ME. Maternal and Child Health, Non-Communicable Diseases and Metabolites. Metabolites 2023; 13:756. [PMID: 37367913 DOI: 10.3390/metabo13060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mothers influence the health and disease trajectories of their children, particularly during the critical developmental windows of fetal and neonatal life reflecting the gestational-fetal and lactational-neonatal phases. As children grow and develop, they are exposed to various stimuli and insults, such as metabolites, that shape their physiology and metabolism to impact their health. Non-communicable diseases, such as diabetes, cardiovascular disease, cancer and mental illness, have high global prevalence and are increasing in incidence. Non-communicable diseases often overlap with maternal and child health. The maternal milieu shapes progeny outcomes, and some diseases, such as gestational diabetes and preeclampsia, have gestational origins. Metabolite aberrations occur from diets and physiological changes. Differential metabolite profiles can predict the onset of non-communicable diseases and therefore inform prevention and/or better treatment. In mothers and children, understanding the metabolite influence on health and disease can provide insights for maintaining maternal physiology and sustaining optimal progeny health over the life course. The role and interplay of metabolites on physiological systems and signaling pathways in shaping health and disease present opportunities for biomarker discovery and identifying novel therapeutic agents, particularly in the context of maternal and child health, and non-communicable diseases.
Collapse
Affiliation(s)
- Marlon E Cerf
- Grants, Innovation and Product Development, South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
3
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
4
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
5
|
Jin Y, Arroo R. The protective effects of flavonoids and carotenoids against diabetic complications-A review of in vivo evidence. Front Nutr 2023; 10:1020950. [PMID: 37032781 PMCID: PMC10080163 DOI: 10.3389/fnut.2023.1020950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder caused either by inadequate insulin secretion, impaired insulin function, or both. Uncontrolled diabetes is characterized by hyperglycemia which over time leads to fatal damage to both macro-and microvascular systems, causing complications such as cardiovascular diseases, retinopathy and nephropathy. Diabetes management is conventionally delivered through modifications of diet and lifestyle and pharmacological treatment, using antidiabetic drugs, and ultimately insulin injections. However, the side effects and financial cost of medications often reduce patient compliance to treatment, negatively affecting their health outcomes. Natural phytochemicals from edible plants such as fruits and vegetables (F&V) and medicinal herbs have drawn a growing interest as potential therapeutic agents for treating diabetes and preventing the onset and progression of diabetic complications. Flavonoids, the most abundant polyphenols in the human diet, have shown antidiabetic effects in numerous in vitro and preclinical studies. The underlying mechanisms have been linked to their antioxidant, anti-inflammatory and immunomodulatory activities. Carotenoids, another major group of dietary phytochemicals, have also shown antidiabetic potential in recent in vitro and in vivo experimental models, possibly through a mechanism of action similar to that of flavonoids. However, scientific evidence on the efficacy of these phytochemicals in treating diabetes or preventing the onset and progression of its complications in clinical settings is scarce, which delays the translation of animal study evidence to human applications and also limits the knowledge on their modes of actions in diabetes management. This review is aimed to highlight the potential roles of flavonoids and carotenoids in preventing or ameliorating diabetes-related complications based on in vivo study evidence, i.e., an array of preclinical animal studies and human intervention trials. The current general consensus of the underlying mechanisms of action exerted by both groups of phytochemicals is that their anti-inflammatory action is key. However, other potential mechanisms of action are considered. In total, 50 in vivo studies were selected for a review after a comprehensive database search via PubMed and ScienceDirect from January 2002 to August 2022. The key words used for analysis are type-2 diabetes (T2DM), diabetic complications, flavonoids, carotenoids, antioxidant, anti-inflammatory, mechanisms of prevention and amelioration, animal studies and human interventions.
Collapse
Affiliation(s)
- Yannan Jin
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
- *Correspondence: Yannan Jin,
| | - Randolph Arroo
- Leicester School of Pharmacy, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
6
|
Qingda granule alleviate angiotensin ⅱ-induced hypertensive renal injury by suppressing oxidative stress and inflammation through NOX1 and NF-κB pathways. Biomed Pharmacother 2022; 153:113407. [DOI: 10.1016/j.biopha.2022.113407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
|
7
|
Kushwaha K, Garg SS, Gupta J. Targeting epigenetic regulators for treating diabetic nephropathy. Biochimie 2022; 202:146-158. [PMID: 35985560 DOI: 10.1016/j.biochi.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Diabetes is accompanied by the worsening of kidney functions. The reasons for kidney dysfunction mainly include high blood pressure (BP), high blood sugar levels, and genetic makeup. Vascular complications are the leading cause of the end-stage renal disorder (ESRD) and death of diabetic patients. Epigenetics has emerged as a new area to explain the inheritance of non-mendelian conditions like diabetic kidney diseases. Aberrant post-translational histone modifications (PTHMs), DNA methylation (DNAme), and miRNA constitute major epigenetic mechanisms that progress diabetic nephropathy (DN). Increased blood sugar levels alter PTHMs, DNAme, and miRNA in kidney cells results in aberrant gene expression that causes fibrosis, accumulation of extracellular matrix (ECM), increase in reactive oxygen species (ROS), and renal injuries. Histone acetylation (HAc) and histone deacetylation (HDAC) are the most studied epigenetic modifications with implications in the occurrence of kidney disorders. miRNAs induced by hyperglycemia in renal cells are also responsible for ECM accumulation and dysfunction of the glomerulus. In this review, we highlight the role of epigenetic modifications in DN progression and current strategies employed to ameliorate DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, Punjab, India
| | - Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
8
|
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 2022; 152:113248. [PMID: 35691153 DOI: 10.1016/j.biopha.2022.113248] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aβ) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl₃ combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aβ42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.
Collapse
Affiliation(s)
- Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yurong Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lan Han
- School of pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
CUI Z, SHU Y, XIE X, JIN Y. Light-driven activation of NADPH oxidases. SCIENTIA SINICA VITAE 2022. [DOI: 10.1360/ssv-2022-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients 2022; 14:nu14112200. [PMID: 35683999 PMCID: PMC9182467 DOI: 10.3390/nu14112200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Hypertension is a major cardiovascular risk factor that is responsible for a heavy burden of morbidity and mortality worldwide. A critical aspect of cardiovascular risk estimation in hypertensive patients depends on the assessment of hypertension-mediated organ damage (HMOD), namely the generalized structural and functional changes in major organs induced by persistently elevated blood pressure values. The vasculature of the eye shares several common structural, functional, and embryological features with that of the heart, brain, and kidney. Since retinal microcirculation offers the unique advantage of being directly accessible to non-invasive and relatively simple investigation tools, there has been considerable interest in the development and modernization of techniques that allow the assessment of the retinal vessels’ structural and functional features in health and disease. With the advent of artificial intelligence and the application of sophisticated physics technologies to human sciences, consistent steps forward have been made in the study of the ocular fundus as a privileged site for diagnostic and prognostic assessment of diverse disease conditions. In this narrative review, we will recapitulate the main ocular imaging techniques that are currently relevant from a clinical and/or research standpoint, with reference to their pathophysiological basis and their possible diagnostic and prognostic relevance. A possible non pharmacological approach to prevent the onset and progression of retinopathy in the presence of hypertension and related cardiovascular risk factors and diseases will also be discussed.
Collapse
|
11
|
Cai W, Shen K, Ji P, Jia Y, Han S, Zhang W, Hu X, Yang X, Han J, Hu D. The Notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species. BURNS & TRAUMA 2022; 10:tkac008. [PMID: 35441079 PMCID: PMC9014447 DOI: 10.1093/burnst/tkac008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/02/2022] [Indexed: 12/21/2022]
Abstract
Background Acute lung injury (ALI) is a common complication following severe burns. The underlying mechanisms of ALI are incompletely understood; thus, available treatments are not sufficient to repair the lung tissue after ALI. Methods To investigate the relationship between the Notch pathway and burn-induced lung injury, we established a rat burn injury model by scalding and verified lung injury via lung injury evaluations, including hematoxylin and eosin (H&E) staining, lung injury scoring, bronchoalveolar lavage fluid and wet/dry ratio analyses, myeloperoxidase immunohistochemical staining and reactive oxygen species (ROS) accumulation analysis. To explore whether burn injury affects Notch1 expression, we detected the expression of Notch1 and Hes1 after burn injury. Then, we extracted pulmonary microvascular endothelial cells (PMVECs) and conducted Notch pathway inhibition and activation experiments, via a γ-secretase inhibitor (GSI) and OP9-DLL1 coculture, respectively, to verify the regulatory effect of the Notch pathway on ROS accumulation and apoptosis in burn-serum-stimulated PMVECs. To investigate the regulatory effect of the Notch pathway on ROS accumulation, we detected the expression of oxidative-stress-related molecules such as superoxide dismutase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 2, NOX4 and cleaved caspase-3. NOX4-specific small interfering RNA (siRNA) and the inhibitor GKT137831 were used to verify the regulatory effect of the Notch pathway on ROS via NOX4. Results We successfully established a burn model and revealed that lung injury, excessive ROS accumulation and an inflammatory response occurred. Notch1 detection showed that the expression of Notch1 was significantly increased after burn injury. In PMVECs challenged with burn serum, ROS and cell death were elevated. Moreover, when the Notch pathway was suppressed by GSI, ROS and cell apoptosis levels were significantly increased. Conversely, these parameters were reduced when the Notch pathway was activated by OP9-DLL1. Mechanistically, the inhibition of NOX4 by siRNA and GKT137831 showed that the Notch pathway reduced ROS production and cell apoptosis by downregulating the expression of NOX4 in PMVECs. Conclusions The Notch pathway reduced ROS production and apoptosis by downregulating the expression of NOX4 in burn-stimulated PMVECs. The Notch-NOX4 pathway may be a novel therapeutic target to treat burn-induced ALI.
Collapse
Affiliation(s)
- Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaolong Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
12
|
Sinha S, Haque M. Insulin Resistance Is Cheerfully Hitched with Hypertension. Life (Basel) 2022; 12:564. [PMID: 35455055 PMCID: PMC9028820 DOI: 10.3390/life12040564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases and type 2 diabetes mellitus (T2DM) have risen steadily worldwide, particularly in low-income and developing countries. In the last hundred years, deaths caused by cardiovascular diseases increased rapidly to 35-40%, becoming the most common cause of mortality worldwide. Cardiovascular disease is the leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM), which is aggravated by hypertension. Hypertension and diabetes are closely interlinked since they have similar risk factors such as endothelial dysfunction, vascular inflammation, arterial remodeling, atherosclerosis, dyslipidemia, and obesity. Patients with high blood pressure often show insulin resistance and have a higher risk of developing diabetes than normotensive individuals. It has been observed that over the last 30 years, the prevalence of insulin resistance (IR) has increased significantly. Accordingly, hypertension and insulin resistance are strongly related to an increased risk of impaired glucose tolerance, diabetes, cardiovascular diseases (CVD), and endocrine disorders. Common mechanisms, for instance, upregulation of the renin-angiotensin-aldosterone system, oxidative stress, inflammation, and activation of the immune system, possibly have a role in the association between diabetes and hypertension. Altogether these abnormalities significantly increase the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, 33 KDA Avenue, Hotel Royal Mor, Khulna Sadar, Khulna 9100, Bangladesh;
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
13
|
Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S, Bayat M. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120157. [PMID: 34271236 DOI: 10.1016/j.saa.2021.120157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
We studied the effects of photobiomodulation therapy (PBMT) on adipose-derived mesenchymal stem cells (ADSCs) which were extracted from streptozotocin (STZ) induced diabetic rats. Adipose tissue was extracted from the hypodermis of diabetic rats, and diabetic ADSCs were extracted, characterized, and cultured. There were two in vitro groups: control-diabetic ADSCs, and PBMT-diabeticADSCs. We used 630 nm and 810 nm laser at 1.2 J/cm2 with 3 applications 48 h apart. We measured cell viability, apoptosis, population doubling time (PDT), and reactive oxygen species (ROS) by flow cytometry. Gene expression of antioxidants, including cytosolic copper-zinc superoxide dismutase (SOD1), catalase (CAT), total antioxidant capacity (TAC), and oxidative stress biomarkers (NADPH oxidase 1 and 4) by quantitative real time (qRT) - PCR. In this study, data were analyzed using t-test. Viability of PBMT-diabetic- ADSC group was higher than control- diabetic-ADSC (p = 0.000). PDT and apoptosis of PBMT- diabetic-ADSC group were lower than control-diabetic -ADSC (p = 0.001, p = 0.02). SOD1 expression and TAC of PBMT- diabetic-ADSC group were higher than control -diabetic -ADSC (p = 0.018, p = 0.005). CAT of PBMT -diabetic-ADSC group was higher than control-diabetic -ADSC. ROS, NOX1, and NOX4 of PBMT- diabetic -ADSC group were lower than control-diabetic-ADSC (p = 0.002, p = 0.021, p = 0.017). PBMT may improve diabetic- ADSC function in vitro by increasing levels of cell viability, and gene expression of antioxidant agents (SOD1, CAT, and TAC), and significantly decreasing of levels of PDT, apoptosis, ROS, and gene expression of oxidative stress biomarkers (NOX1 and NOX4).
Collapse
Affiliation(s)
- Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Roudafshani
- Central Lab, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| |
Collapse
|
14
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021; 10:cells10123328. [PMID: 34943836 PMCID: PMC8699655 DOI: 10.3390/cells10123328] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| | - Davidson Correa Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Leticia Prates Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany;
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| |
Collapse
|
15
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Jaleel Z, Blasberg E, Troiano C, Montanaro P, Mazzilli S, Gertje HP, Crossland NA, Platt M, Spiegel J. Association of vaping with decreased vascular endothelial growth factor expression and decreased microvessel density in cutaneous wound healing tissue in rats. Wound Repair Regen 2021; 29:1024-1034. [PMID: 34129265 DOI: 10.1111/wrr.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022]
Abstract
Vaping is suggested to be a risk factor for poor wound healing akin to smoking. However, the molecular and histologic mechanisms underlying this postulation remain unknown. Our study sought to compare molecular and histologic changes in cutaneous flap and non-flap tissue between vaping, smoking and control cohorts. Animal study of 15 male Sprague-Dawley rats was randomized to three cohorts: negative control (n = 5), e-cigarette (n = 5) and cigarette (n = 5) and exposed to their respective treatments with serum cotinine monitoring. After 30 days, random pattern flaps were raised and healed for 2 weeks after which skin punch biopsies of flap and non-flap tissues were collected for quantitative-reverse transcription-polymerase chain reaction of three selected wound healing genes (transforming growth factor β [TGF-β], vascular endothelial growth factor [VEGF], matrix metalloproteinase-1 [MMP-1]); then, immunohistochemistry for CD68 expression, α-smooth muscle actin looking at microvessel density (MVD) and in situ hybridization to localize VEGF production were undertaken. In flap tissue, vaping (mean[SEM]) (0.61[0.07]) and smoking (0.70[0.04]) were associated with decreased fold change of VEGF expression compared with controls (0.91[0.03]) (p < 0.05, p < 0.05, respectively). In non-flap tissue, only vaping was associated with decreased VEGF expression (mean[SEM]) (0.81[0.07]), compared with controls (1.17[0.10]) (p < 0.05) with expression primarily localized to basal keratinocytes and dermal capillaries. Immunohistochemistry showed decreased MVD in smoking (0.27[0.06]) and vaping (0.26[0.04]) flap tissue compared to matched controls (0.65[0.14]) (p < 0.05, p < 0.05, respectively) and decreased areas of fibrosis compared with controls on gross histology. Vaping and smoking were similarly associated with decreased VEGF expression, MVD and fibrotic changes in flap tissue. The results suggest attenuated angiogenesis via decreased VEGF expression as a mechanism for poor wound healing in vaping-exposed rats.
Collapse
Affiliation(s)
- Zaroug Jaleel
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth Blasberg
- Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Chelsea Troiano
- Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Paige Montanaro
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sarah Mazzilli
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hans Peter Gertje
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Platt
- Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey Spiegel
- Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Chen B, Jia Y, Lu D, Sun Z. Acute glucose fluctuation promotes in vitro intestinal epithelial cell apoptosis and inflammation via the NOX4/ROS/JAK/STAT3 signaling pathway. Exp Ther Med 2021; 22:688. [PMID: 33986853 PMCID: PMC8112130 DOI: 10.3892/etm.2021.10120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
High blood glucose commonly occurs in patients with diabetes mellitus, but little is known of its effects on intestinal epithelial cells, or its associated mechanisms of action therein. In the present study, intestinal epithelial cells were assigned to five groups: i) The normal glucose (NG) group, incubated in 5.0 mmol/l glucose; ii) the constant high glucose (CHG) group, treated with 25.0 mmol/l glucose; iii) the intermittent high glucose (IHG) group, treated with alternating doses of 5.0 and 25.0 mmol/l glucose every 8 h; iv) the mannose group, cultured in 25.0 mmol/l mannose (the osmotic control); and v) the IHG glucose + GKT137831 group, pretreated with 100 nmol/l NADPH oxidase 4 (NOX4) inhibitor, GKT137831, and then exposed to IHG. TNF-α, IL-1 and IL-6 levels were quantified using ELISA kits. Intestinal epithelial cell apoptosis was assessed by flow cytometry and oxidative stress was evaluated by reactive oxygen species (ROS) and malondialdehyde (MDA) detection. The expression levels of proteins associated with apoptosis and involved in the signal transduction of Janus kinase (JAK)/STAT3 pathway were assessed using western blot analysis. The results indicated that NOX4 expression was significantly higher in the CHG group than in the NG group (P<0.01), but lower than in the IHG group (P<0.001). The IHG group exhibited apoptosis and oxidative stress accompanied by the most significant increase in MDA, ROS and inflammatory cytokine levels (P<0.001), which was followed by that of the CHG group. Additionally, the IHG group exhibited reduced Bcl-2, as well as enhanced Bax and cleaved caspase-3 levels compared with the CHG group (P<0.001). Furthermore, the level of phosphorylated (p-)JAK/p-STAT3 was increased to a greater extent in the IHG group than in the CHG group (P<0.001). In conclusion, the findings of the present study indicated that CHG may trigger intestinal epithelial cell apoptosis and inflammation through the NOX4/ROS/JAK/STAT3 pathway, which may be aggravated by acute glucose fluctuation.
Collapse
Affiliation(s)
- Bingyu Chen
- Department of Gastroenterology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Gastroenterology, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210017, P.R. China
| | - Yuanyuan Jia
- Department of Medical Oncology, The Second People's Hospital of Huai'an, Huaian, Jiangsu 223001, P.R. China
| | - Dongxue Lu
- Department of Gastroenterology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Zhiguang Sun
- Department of Gastroenterology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
18
|
Cerf ME. Healthy lifestyles and noncommunicable diseases: Nutrition, the life‐course, and health promotion. LIFESTYLE MEDICINE 2021. [DOI: 10.1002/lim2.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Marlon E. Cerf
- Grants, Innovation and Product Development South African Medical Research Council Cape Town South Africa
- Biomedical Research and Innovation Platform South African Medical Research Council Cape Town South Africa
| |
Collapse
|
19
|
Abstract
Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes. In addition to the characteristic clinical manifestations of proteinuria, it also has a complex pathological process that results from the combined effects of multiple factors involving the whole renal structure such as glomeruli, renal tubules, and blood vessels. Non-coding RNAs (ncRNA) are transcripts with no or low coding potential, among which micro RNA (miRNA) has been widely studied as a functional miRNA involved in regulation and a potential biomarker for disease prediction. The abundance of long coding RNA (lncRNA) in vivo is highly expressed with a certain degree of research progress, but the structural similarity makes the research still challenging. The research of circular RNA (circRNA) is still in its early stages. It is more relevant to the study to provide a more relevant link between diseases in the kidney and other tissues or organs. This classification review mainly summarized the biogenesis characteristics, the pathological mechanism of ncRNA-regulating diseases, the ways of ncRNA in the clinical prediction as a potential biomarker, and the interaction networks of ncRNA.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Eshaq RS, Watts MN, Carter PR, Leskova W, Aw TY, Alexander JS, Harris NR. Candesartan Normalizes Changes in Retinal Blood Flow and p22phox in the Diabetic Rat Retina. PATHOPHYSIOLOGY 2021; 28:86-97. [PMID: 35366272 PMCID: PMC8830460 DOI: 10.3390/pathophysiology28010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
Angiotensin II has been implicated in the progression of diabetic retinopathy, which is characterized by altered microvasculature, oxidative stress, and neuronal dysfunction. The signaling induced by angiotensin II can occur not only via receptor-mediated calcium release that causes vascular constriction, but also through a pathway whereby angiotensin II activates NADPH oxidase to elicit the formation of reactive oxygen species (ROS). In the current study, we administered the angiotensin II receptor antagonist candesartan (or vehicle, in untreated animals) in a rat model of type 1 diabetes in which hyperglycemia was induced by injection of streptozotocin (STZ). Eight weeks after the STZ injection, untreated diabetic rats were found to have a significant increase in tissue levels of angiotensin converting enzyme (ACE; p < 0.05) compared to non-diabetic controls, a 33% decrease in retinal blood flow rate (p < 0.001), and a dramatic increase in p22phox (a subunit of the NADPH oxidase). The decrease in retinal blood flow, and the increases in retinal ACE and p22phox in the diabetic rats, were all significantly attenuated (p < 0.05) by the administration of candesartan in drinking water within one week. Neither STZ nor candesartan induced any changes in tissue levels of superoxide dismutase (SOD-1), 4-hydroxynonenal (4-HNE), or nitrotyrosine. We conclude that one additional benefit of candesartan (and other angiotensin II antagonists) may be to normalize retinal blood flow, which may have clinical benefits in diabetic retinopathy.
Collapse
|
21
|
Lu Y, Zhu S, Wang X, Liu J, Li Y, Wang W, Wang S, Wang F. ShengMai-San Attenuates Cardiac Remodeling in Diabetic Rats by Inhibiting NOX-Mediated Oxidative Stress. Diabetes Metab Syndr Obes 2021; 14:647-657. [PMID: 33603429 PMCID: PMC7884944 DOI: 10.2147/dmso.s287582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE ShengMai-San (SMS) is traditionally used to treat ischemic cardiovascular and cerebrovascular diseases. Recently, several studies have reported the cardioprotective effects of SMS in diabetic animals. However, the potential mechanisms have not yet been fully elucidated. In this study, we investigated whether SMS exerts a beneficial effect in diabetic cardiomyopathy (DCM) by alleviating NADPH oxidase (NOX)-mediated oxidative stress. METHODS SD rats were randomly divided into a negative control group (NC), diabetes mellitus group (DM) and SMS-treated group (SMS). The myocardial structure alterations, apoptosis and biomarkers of oxidative stress were observed. Moreover, to explore the protective mechanism of SMS, the activation of AMPKα, expression and translocation of NOX-related proteins were assessed. RESULTS Diabetes led to excessive collagen content, fibrosis, and apoptosis in the myocardium. Oxidative stress in diabetic hearts was indicated by low levels of T-AOC, high levels of 8-iso-PGF2α and 8-OHdG, inactivation of AMPKα, elevated expression of NOX2 and NOX4 and translocation of NOX isoforms p47phox and p67phox. Treatment with SMS for 10 weeks resulted in the alleviation of diabetes-associated myocardial structure abnormalities and apoptosis. Additionally, SMS attenuated the accumulation of oxidative stress markers in myocardial tissue. Further investigation showed that SMS was able to reverse the levels of oxidative stress-associated proteins NOX2 and NOX4 in the DM rats. Moreover, SMS treatment blunted the translocation of NADPH oxidase isoforms p47phox and p67phox as well. Furthermore, SMS promoted the activation of AMPK in the cardiac tissue of diabetic rats. CONCLUSION These findings indicate that SMS exhibits therapeutic properties against diabetic cardiomyopathy by attenuating myocardial oxidative damage via activation of AMPKα and inhibition of NOX signaling.
Collapse
Affiliation(s)
- Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Shu Zhu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Xiaoyan Wang
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Juhai Liu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Yingying Li
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Wei Wang
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Shijun Wang
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Correspondence: Shijun Wang; Furong Wang Email ;
| | - Furong Wang
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| |
Collapse
|
22
|
Álvarez Cilleros D, López-Oliva ME, Martín MÁ, Ramos S. (-)-Epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid protect against high glucose and lipopolysaccharide-induced inflammation in renal proximal tubular cells through NOX-4/p38 signalling. Food Funct 2020; 11:8811-8824. [PMID: 32959859 DOI: 10.1039/d0fo01805h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic hyperglycaemia and inflammation are present in diabetes and both processes have been related to the pathogenesis of diabetic kidney disease. Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake, such as 2,3-dihydroxybenzoic acid (DHBA), 3,4-dihydroxyphenylacetic acid (DHPAA) and 3-hydroxyphenylpropionic acid (HPPA), have been suggested to exert beneficial effects in diabetes. This study was aimed at investigating whether the mentioned compounds could prevent inflammation in renal proximal tubular NRK-52E cells induced by high glucose and lipopolysaccharide (LPS). Pre-treatment of cells with EC and DHBA (5 μM) reverted the enhanced levels of pro-inflammatory cytokines, such as tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1), activated by high glucose and LPS. Additionally, EC and DHBA pre-incubation reduced the increased values of adhesion molecules, namely, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as those of mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated kinase (ERK), -c-jun N-terminal kinase (JNK) and -p38 protein kinase (p38)] activated by the high glucose and LPS challenge. Thus, in EC and DHBA pre-treated cells ICAM-1, p-ERK and p-JNK were returned to control values, and VCAM-1 and p-p38 levels were reduced by ∼20 and 25%, respectively, when compared to high glucose plus LPS-stimulated cells. Likewise, pre-treatment with EC and DHBA protected against high glucose plus LPS-triggered oxidative stress by preventing increased ROS and NADPH oxidase 4 (NOX-4) levels (∼25 and 45% reduction, respectively). By using specific inhibitors of p38 and NOX-4, the participation of both proteins in EC- and DHBA-mediated protection against inflammation and associated oxidative stress was shown. Taken together, EC and DHBA exert beneficial effects in renal proximal tubular cells, as they contribute to preventing the inflammatory-induced milieu and the accompanying redox imbalance, playing NOX-4/p38 a crucial role.
Collapse
Affiliation(s)
- David Álvarez Cilleros
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
| | - María Elvira López-Oliva
- Sección Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain. and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Chan TC, Wilkinson Berka JL, Deliyanti D, Hunter D, Fung A, Liew G, White A. The role of reactive oxygen species in the pathogenesis and treatment of retinal diseases. Exp Eye Res 2020; 201:108255. [PMID: 32971094 DOI: 10.1016/j.exer.2020.108255] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) normally play an important physiological role in health regulating cellular processes and signal transduction. The amount of ROS is usually kept in fine balance with the generation of ROS largely being offset by the body's antioxidants. A tipping of this balance has increasingly been recognised as a contributor to human disease. The retina, as a result of its cellular anatomy and physical location, is a potent generator of ROS that has been linked to several major retinal diseases. This review will provide a summary of the role of oxidative stress in the pathogenesis of diabetic retinopathy, age-related macular degeneration, myopia, retinal vein occlusion, retinitis pigmentosa and retinopathy of prematurity. Therapies aimed at controlling oxidative stress in these diseases are also examined.
Collapse
Affiliation(s)
- Thomas Cw Chan
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Jennifer L Wilkinson Berka
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Medical Building 181, Grattan Street, Parkville, Victoria, 3010, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Devy Deliyanti
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Medical Building 181, Grattan Street, Parkville, Victoria, 3010, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Damien Hunter
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Centre for Vision Research, Westmead Institute of Medical Research, New South Wales, Australia
| | - Adrian Fung
- Westmead and Central Clinical Schools, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Faculty of Medicine Health and Human Sciences, Macquarie University, New South Wales, Australia; Save Sight Institute, 8 Macquarie St, Sydney, Australia
| | - Gerald Liew
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Centre for Vision Research, Westmead Institute of Medical Research, New South Wales, Australia
| | - Andrew White
- Discipline of Ophthalmology and Eye Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Centre for Vision Research, Westmead Institute of Medical Research, New South Wales, Australia; Save Sight Institute, 8 Macquarie St, Sydney, Australia; Personal Eyes, Level 6, 34 Charles St, Parramatta, 2150, Australia.
| |
Collapse
|
24
|
The efficiency of blackberry loaded AgNPs, AuNPs and Ag@AuNPs mediated pectin in the treatment of cisplatin-induced cardiotoxicity in experimental rats. Int J Biol Macromol 2020; 159:1084-1093. [DOI: 10.1016/j.ijbiomac.2020.05.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
|
25
|
Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxid Redox Signal 2020; 33:415-434. [PMID: 32008354 DOI: 10.1089/ars.2020.8047] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress plays a critical role in the development and progression of serious micro- and macrovascular complications of diabetes. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) significantly contribute to oxidative stress-associated inflammatory pathways that lead to tissue damage of different organs, including the kidneys, retina, brain, nerves, and the cardiovascular system. Recent Advances: Preclinical studies, including genetic-modified mouse models or cell culture models, have revealed the role of specific NOX isoforms in different diabetic complications, and suggested them as a promising target for the treatment of these diseases. Critical Issues: In this review, we provide an overview of the role of ROS and oxidative stress in macrovascular complications, such as stroke, myocardial infarction, coronary artery disease, and peripheral vascular disease that are all mainly driven by atherosclerosis, as well as microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy. We summarize conducted genetic deletion studies of different Nox isoforms as well as pharmacological intervention studies using NOX inhibitors in the context of preclinical as well as clinical research on diabetic complications. Future Directions: We outline the isoforms that are most promising for future clinical trials in the context of micro- and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Florence Ho
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells 2020; 9:cells9081849. [PMID: 32781794 PMCID: PMC7466096 DOI: 10.3390/cells9081849] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a new vessel formation from the pre-existing ones, is essential for embryonic development, wound repair and treatment of ischemic heart and limb diseases. However, dysregulated angiogenesis contributes to various pathologies such as diabetic retinopathy, atherosclerosis and cancer. Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) as well as mitochondria play an important role in promoting the angiogenic switch from quiescent endothelial cells (ECs). However, how highly diffusible ROS produced from different sources and location can communicate with each other to regulate angiogenesis remains unclear. To detect a localized ROS signal in distinct subcellular compartments in real time in situ, compartment-specific genetically encoded redox-sensitive fluorescence biosensors have been developed. Recently, the intercellular communication, “cross-talk”, between ROS derived from NOX and mitochondria, termed “ROS-induced ROS release”, has been proposed as a mechanism for ROS amplification at distinct subcellular compartments, which are essential for activation of redox signaling. This “ROS-induced ROS release” may represent a feed-forward mechanism of localized ROS production to maintain sustained signaling, which can be targeted under pathological conditions with oxidative stress or enhanced to promote therapeutic angiogenesis. In this review, we summarize the recent knowledge regarding the role of the cross-talk between NOX and mitochondria organizing the sustained ROS signaling involved in VEGF signaling, neovascularization and tissue repair.
Collapse
|
27
|
Ghazipour AM, Shirpoor A, Ghiasi R, Pourheydar B, Khalaji N, Naderi R. Cyclosporine A induces testicular injury via mitochondrial apoptotic pathway by regulation of mir-34a and sirt-1 in male rats: The rescue effect of curcumin. Chem Biol Interact 2020; 327:109180. [PMID: 32569592 DOI: 10.1016/j.cbi.2020.109180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Abstract
Testicular damage contributes to cyclosporine A (CsA) induced male infertility. However, the exact underlying molecular mediators involved in CsA-induced testis disorder remains unclear. The present study aimed to characterize the role of mir-34a/sirt-1 in CsA induced testicular injury alone or in combination with curcumin. A total of twenty-eight male Wistar rats were subdivided into four groups: control (Con), sham, cyclosporine A (CsA), cyclosporineA + curcumin (CsA + cur). The animals received cyclosporine A (30 mg/kg) and curcumin (40 mg/kg) for 28 days by oral gavage. At the end of the experiment, CsA administration significantly resulted in a decrease in testis weight and testis coefficient. The molecular analysis demonstrated that CsA exposure increased 8-OHdg and Nox4 protein contents in the testis tissue. TUNEL staining indicated that CsA caused the number of apoptotic cells to increase in the testes of male rats. In addition, exposure to CsA resulted in an increased expression of Bax, and a decreased expresion in that of Bcl-2, with a concomitant up-regulation of the Bax/Bcl-2, c-Caspase-3/p-Caspase-3 ratio and cytochrome c level. Meanwhile, exposure to CsA increased the expression of mir-34a and decreased sirt-1 protein level in the testis tissue samples compared to the control group. Taken together, our findings suggested that CsA can cause damage to testicular germ cells via oxidative stress and mitochondrial apoptotic pathway, and probably mir-34a/sirt-1 play a crucial role in this process. It also demonstrates that these negative effects of CsA can be reduced by using curcumin as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz Faculty of Medical Science Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Khalaji
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
28
|
Álvarez-Cilleros D, López-Oliva ME, Martín MÁ, Ramos S. Cocoa ameliorates renal injury in Zucker diabetic fatty rats by preventing oxidative stress, apoptosis and inactivation of autophagy. Food Funct 2020; 10:7926-7939. [PMID: 31773121 DOI: 10.1039/c9fo01806a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Redox balance, autophagy and apoptosis are main processes involved in the development of diabetic nephropathy. Epidemiological and animal studies suggest that cocoa might reduce the risk of diabetic complications. However, the molecular mechanisms responsible for these potential preventive activities and whether cocoa exerts beneficial effects on dysregulated signalling pathways involved in cellular antioxidant defence, autophagy and apoptosis in the diabetic kidney remain largely unknown. Therefore, this work investigated the effect of a cocoa-rich diet on the mentioned processes in the renal cortex of Zucker Diabetic Fatty (ZDF) rats. Male ZDF rats were fed either a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet (10-20 weeks-of-life). ZDF rats fed with cocoa decreased body weight and glucose and insulin levels, and improved renal function. Cocoa intake further prevented the enhanced renal cortical oxidative stress in diabetic rats by regulating the antioxidant defence system and close-related proteins to cytoprotection and cell response; thus, cocoa diminished oxidative markers (reactive oxygen species and carbonyl groups) and NADPH-oxidase-4 levels, and restored key enzymatic antioxidant activities (superoxide dismutase and catalase), nuclear-erythroid-2-related factor-2, and ERK-MAPK levels, as well as sirtuin-1/5'-AMP-activated-protein kinase signalling. Moreover, in ZDF rats cocoa-rich diet contributed to alleviation of the renal cortical injury through autophagy activation (p62 upregulation, and downregulation of beclin-1 and LC3), and inhibition of apoptosis (Bcl-xL stimulation and suppression of Bax and caspases-9 and -3). These findings provide the first in vivo evidence on the molecular mechanisms of cocoa to circumvent renal cortical damage that involve improvement of antioxidant competences, stimulation of autophagy and suppression of apoptosis in ZDF rats.
Collapse
Affiliation(s)
- David Álvarez-Cilleros
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
29
|
Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2020; 61:211-233. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(-)-Epicatechin (EC) is a flavanol easily obtained through the diet and is present in tea, cocoa, vegetables, fruits, and cereals. Recent studies have shown that EC protects human health and exhibits prominent anti-oxidant and anti-inflammatory activities, enhances muscle performance, improves symptoms of cardiovascular and cerebrovascular diseases, prevents diabetes, and protects the nervous system. With the development of modern medical and biotechnology research, the mechanisms of action associated with EC toward various chronic diseases are becoming more apparent, and the pharmacological development and utilization of EC has been increasingly clarified. Currently, there is no comprehensive systematic introduction to the effects of EC and its mechanisms of action. This review presents the latest research progress and the role of EC in the prevention and treatment of various chronic diseases and its protective health effects and provides a theoretical basis for future research on EC.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
30
|
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 2020; 15:327-345. [PMID: 30894700 DOI: 10.1038/s41581-019-0135-6] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development and progression of diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, are influenced by both genetic and environmental factors. DKD is an important contributor to the morbidity of patients with diabetes mellitus, indicating a clear need for an improved understanding of disease aetiology to inform the development of more efficacious treatments. DKD is characterized by an accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells. Increasing evidence shows that genes associated with these features of DKD are regulated not only by classical signalling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation and non-coding RNAs. These mechanisms can respond to changes in the environment and, importantly, might mediate the persistent long-term expression of DKD-related genes and phenotypes induced by prior glycaemic exposure despite subsequent glycaemic control, a phenomenon called metabolic memory. Detection of epigenetic events during the early stages of DKD could be valuable for timely diagnosis and prompt treatment to prevent progression to end-stage renal disease. Identification of epigenetic signatures of DKD via epigenome-wide association studies might also inform precision medicine approaches. Here, we highlight the emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
31
|
Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, Egido J. The Coming Age of Flavonoids in the Treatment of Diabetic Complications. J Clin Med 2020; 9:jcm9020346. [PMID: 32012726 PMCID: PMC7074336 DOI: 10.3390/jcm9020346] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM), and its micro and macrovascular complications, is one of the biggest challenges for world public health. Despite overall improvement in prevention, diagnosis and treatment, its incidence is expected to continue increasing over the next years. Nowadays, finding therapies to prevent or retard the progression of diabetic complications remains an unmet need due to the complexity of mechanisms involved, which include inflammation, oxidative stress and angiogenesis, among others. Flavonoids are natural antioxidant compounds that have been shown to possess anti-diabetic properties. Moreover, increasing scientific evidence has demonstrated their potential anti-inflammatory and anti-oxidant effects. Consequently, the use of these compounds as anti-diabetic drugs has generated growing interest, as is reflected in the numerous in vitro and in vivo studies related to this field. Therefore, the aim of this review is to assess the recent pre-clinical and clinical research about the potential effect of flavonoids in the amelioration of diabetic complications. In brief, we provide updated information concerning the discrepancy between the numerous experimental studies supporting the efficacy of flavonoids on diabetic complications and the lack of appropriate and well-designed clinical trials. Due to the well-described beneficial effects on different mechanisms involved in diabetic complications, the excellent tolerability and low cost, future randomized controlled studies with compounds that have adequate bioavailability should be evaluated as add-on therapy on well-established anti-diabetic drugs.
Collapse
Affiliation(s)
- Teresa Caro-Ordieres
- Research Discovery and Innovation Department, FAES FARMA, S.A, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa (Bizkaia), Spain;
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Luna Jiménez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
- Correspondence:
| |
Collapse
|
32
|
Mroueh FM, Noureldein M, Zeidan YH, Boutary S, Irani SAM, Eid S, Haddad M, Barakat R, Harb F, Costantine J, Kanj R, Sauleau EA, Ouhtit A, Azar ST, Eid AH, Eid AA. Unmasking the interplay between mTOR and Nox4: novel insights into the mechanism connecting diabetes and cancer. FASEB J 2019; 33:14051-14066. [DOI: 10.1096/fj.201900396rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fatima Mohsen Mroueh
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mohamed Noureldein
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Youssef H. Zeidan
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
- Department of Radiation Oncology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Suzan Boutary
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sara Abou Merhi Irani
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Stéphanie Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mary Haddad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Rasha Barakat
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Frederic Harb
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Joseph Costantine
- Department of Electrical and Computer Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Rouwaida Kanj
- Department of Electrical and Computer Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Erik-André Sauleau
- Department of Biostatistics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7357 ICube, University of Strasbourg, Strasbourg, France
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Sami T. Azar
- Department of Internal Medicine, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
- American University of Beirut (AUB) Diabetes, Faculty of Medicine and Medical Center American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
- American University of Beirut (AUB) Diabetes, Faculty of Medicine and Medical Center American University of Beirut, Beirut, Lebanon
| |
Collapse
|
33
|
Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin Sci (Lond) 2019; 133:2121-2141. [DOI: 10.1042/cs20190067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
AbstractDiabetes mellitus (DM) is an important metabolic disorder characterized by persistent hyperglycemia resulting from inadequate production and secretion of insulin, impaired insulin action, or a combination of both. Genetic disorders and insulin receptor disorders, environmental factors, lifestyle choices and toxins are key factors that contribute to DM. While it is often referred to as a metabolic disorder, modern lifestyle choices and nutrient excess induce a state of systemic chronic inflammation that results in the increased production and secretion of inflammatory cytokines that contribute to DM. It is chronic hyperglycemia and the low-grade chronic-inflammation that underlies the development of microvascular and macrovascular complications leading to damage in a number of tissues and organs, including eyes, vasculature, heart, nerves, and kidneys. Improvements in the management of risk factors have been beneficial, including focus on intensified glycemic control, but most current approaches only slow disease progression. Even with recent studies employing SGLT2 inhibitors demonstrating protection against cardiovascular and kidney diseases, kidney function continues to decline in people with established diabetic kidney disease (DKD). Despite the many advances and a greatly improved understanding of the pathobiology of diabetes and its complications, there remains a major unmet need for more effective therapeutics to prevent and reverse the chronic complications of diabetes. More recently, there has been growing interest in the use of specialised pro-resolving mediators (SPMs) as an exciting therapeutic strategy to target diabetes and the chronic complications of diabetes.
Collapse
|
34
|
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147:104299. [PMID: 31207342 PMCID: PMC7011157 DOI: 10.1016/j.phrs.2019.104299] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Diabetic Retinopathy (DR), is a significant public health issue and the leading cause of blindness in working-aged adults worldwide. The vision loss associated with DR affects patients' quality of life and has negative social and psychological effects. In the past, diabetic retinopathy was considered as a vascular disease; however, it is now recognized to be a neuro-vascular disease of the retina. Current therapies for DR, such as laser photocoagulation and anti-VEGF therapy, treat advanced stages of the disease, particularly the vasculopathy and have adverse side effects. Unavailability of effective treatments to prevent the incidence or progression of DR is a major clinical problem. There is a great need for therapeutic interventions capable of preventing retinal damage in DR patients. A growing body of evidence shows that neurodegeneration is an early event in DR pathogenesis. Therefore, studies of the underlying mechanisms that lead to neurodegeneration are essential for identifying new therapeutic targets in the early stages of DR. Deregulation of the polyamine metabolism is implicated in various neurodegenerative diseases, cancer, renal failure, and diabetes. Spermine Oxidase (SMOX) is a highly inducible enzyme, and its dysregulation can alter polyamine homeostasis. The oxidative products of polyamine metabolism are capable of inducing cell damage and death. The current review provides insight into the SMOX-regulated molecular mechanisms of cellular damage and dysfunction, and its potential as a therapeutic target for diabetic retinopathy. Structural and functional changes in the diabetic retina and the mechanisms leading to neuronal damage (excitotoxicity, loss of neurotrophic factors, oxidative stress, mitochondrial dysfunction etc.) are also summarized in this review. Furthermore, existing therapies and new approaches to neuroprotection are discussed.
Collapse
Affiliation(s)
- S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; VA Medical Center, Augusta, GA, United States.
| | - Esraa Shosha
- Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States
| |
Collapse
|
35
|
Zhao W, Yuan Y, Zhao H, Han Y, Chen X. Aqueous extract of Salvia miltiorrhiza Bunge-Radix Puerariae herb pair ameliorates diabetic vascular injury by inhibiting oxidative stress in streptozotocin-induced diabetic rats. Food Chem Toxicol 2019; 129:97-107. [DOI: 10.1016/j.fct.2019.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022]
|
36
|
Shortening of telomere length by metabolic factors in diabetes: protective effects of fenofibrate. J Cell Commun Signal 2019; 13:523-530. [PMID: 31203557 DOI: 10.1007/s12079-019-00521-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
People with diabetes mellitus have shorter telomeres compared with non-diabetic subjects. The aim of this study was to investigate an in-vitro model of telomere shortening under diabetes metabolic conditions. The mechanisms of the accelerated telomere length attrition and the potential telomere protective action of fenofibrate with related cellular mechanisms were also examined. Human dermal fibroblasts were passaged and cultured in normal (5.5 mM) or high (25 mM) D-glucose, across 7 days with hydrogen peroxide (H2O2), glucosamine (GA), or glycated albumin (AGEs-BSA). Relative telomere length (RTL) was determined by qPCR. The expression of shelterin complex members which regulate telomere stability were measured by qRT-PCR and Western immunoblot. Culture in high glucose decreased RTL compared with normal glucose: H2O2 and GA lowered the RTL after 7 days (each P < 0.05 vs untreated control), whereas AGEs-BSA had no effect compared with control-BSA. At day 7 the mRNA levels of most shelterin complex members, were induced by H2O2 and to a lesser extent by GA. Trf1 and Trf2 protein were induced by H2O2. Co-treatment with fenofibrate (100 μM) significantly attenuated the reduction in RTL caused by H2O2 and GA and prevented Trf induction by H2O2. However knockdown of Trf1 and Trf2 expression using specific siRNA did not prevent H2O2 effects to lower RTL, thus implicating factors other than these Trfs alone in the fenofibrate protection against the H2O2 induction of RTL lowering. These in vitro findings demonstrate that diabetic conditions can induce telomere shortening and that fenofibrate has protective effects on telomere attrition, through as yet undefined mechanisms.
Collapse
|
37
|
Touyz RM, Anagnostopoulou A, Rios F, Montezano AC, Camargo LL. NOX5: Molecular biology and pathophysiology. Exp Physiol 2019; 104:605-616. [PMID: 30801870 PMCID: PMC6519284 DOI: 10.1113/ep086204] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review provides a comprehensive overview of Nox5 from basic biology to human disease and highlights unique features of this Nox isoform What advances does it highlight? Major advances in Nox5 biology relate to crystallization of the molecule and new insights into the pathophysiological role of Nox5. Recent discoveries have unravelled the crystal structure of Nox5, the first Nox isoform to be crystalized. This provides new opportunities to develop drugs or small molecules targeted to Nox5 in an isoform-specific manner, possibly for therapeutic use. Moreover genome wide association studies (GWAS) identified Nox5 as a new blood pressure-associated gene and studies in mice expressing human Nox5 in a cell-specific manner have provided new information about the (patho) physiological role of Nox5 in the cardiovascular system and kidneys. Nox5 seems to be important in the regulation of vascular contraction and kidney function. In cardiovascular disease and diabetic nephropathy, Nox5 activity is increased and this is associated with increased production of reactive oxygen species and oxidative stress implicated in tissue damage. ABSTRACT Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), comprise seven family members (Nox1-Nox5 and dual oxidase 1 and 2) and are major producers of reactive oxygen species in mammalian cells. Reactive oxygen species are crucially involved in cell signalling and function. All Noxs share structural homology comprising six transmembrane domains with two haem-binding regions and an NADPH-binding region on the intracellular C-terminus, whereas their regulatory systems, mechanisms of activation and tissue distribution differ. This explains the diverse function of Noxs. Of the Noxs, NOX5 is unique in that rodents lack the gene, it is regulated by Ca2+ , it does not require NADPH oxidase subunits for its activation, and it is not glycosylated. NOX5 localizes in the perinuclear and endoplasmic reticulum regions of cells and traffics to the cell membrane upon activation. It is tightly regulated through numerous post-translational modifications and is activated by vasoactive agents, growth factors and pro-inflammatory cytokines. The exact pathophysiological significance of NOX5 remains unclear, but it seems to be important in the physiological regulation of sperm motility, vascular contraction and lymphocyte differentiation, and NOX5 hyperactivation has been implicated in cardiovascular disease, kidney injury and cancer. The field of NOX5 biology is still in its infancy, but with new insights into its biochemistry and cellular regulation, discovery of the NOX5 crystal structure and genome-wide association studies implicating NOX5 in disease, the time is now ripe to advance NOX5 research. This review provides a comprehensive overview of our current understanding of NOX5, from basic biology to human disease, and highlights the unique characteristics of this enigmatic Nox isoform.
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Aikaterini Anagnostopoulou
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Francisco Rios
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Livia L. Camargo
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| |
Collapse
|
38
|
Luo W, Jin Y, Wu G, Zhu W, Qian Y, Zhang Y, Li J, Zhu A, Liang G. Blockage of ROS and MAPKs-mediated inflammation via restoring SIRT1 by a new compound LF10 prevents type 1 diabetic cardiomyopathy. Toxicol Appl Pharmacol 2019; 370:24-35. [PMID: 30857947 DOI: 10.1016/j.taap.2019.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 01/23/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes. A multitude of factors are involved in the pathogenesis of DCM including chronic inflammation and oxidative stress. We have recently shown that compound LF10 prevents inflammatory responses in an animal model of lung injury. In the present study, we explored the protective effects and mechanism of LF10 against DCM using a mouse model of streptozotocin-induced diabetes and high glucose (HG)-challenged cultured cardiomyocytes. We show that LF10 suppressed diabetes-induced cardiomyocyte hypertrophy and fibrosis, which was accompanied by preservation of cardiac function in mice. Mechanistically, LF10 prevented increases in the levels of pro-inflammatory molecules and oxidative stress under in vitro and in vivo diabetic conditions. Moreover, LF10 restored HG-downregulated sirtuin 1 (SIRT1) in cardiomyocytes and prevented HG-induced activation of MAPKs. Using specific small-molecule regulators, we found that SIRT1 was an upstream signal of MAPKs. In conclusion, LF10 inhibited ROS and MAPKs-mediated inflammation by restoring SIRT1, and prevented development of DCM. LF10 targeted both oxidative stress and inflammation, two tightly interconnected pathogenic pathways, which makes LF10 a highly advantageous therapeutic drug potential.
Collapse
Affiliation(s)
- Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Aisong Zhu
- School of Basic Medicine, Liaoning University of Traditional Chinese Medicine, Liaoning, Shenyang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China.
| |
Collapse
|
39
|
DiNicolantonio JJ, McCarty MF, O’Keefe JH. Antioxidant bilirubin works in multiple ways to reduce risk for obesity and its health complications. Open Heart 2018; 5:e000914. [PMID: 30364545 PMCID: PMC6196942 DOI: 10.1136/openhrt-2018-000914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - James H O’Keefe
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
40
|
Cerf ME. Cardiac Glucolipotoxicity and Cardiovascular Outcomes. ACTA ACUST UNITED AC 2018; 54:medicina54050070. [PMID: 30344301 PMCID: PMC6262512 DOI: 10.3390/medicina54050070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Cardiac insulin signaling can be impaired due to the altered fatty acid metabolism to induce insulin resistance. In diabetes and insulin resistance, the metabolic, structural and ultimately functional alterations in the heart and vasculature culminate in diabetic cardiomyopathy, coronary artery disease, ischemia and eventually heart failure. Glucolipotoxicity describes the combined, often synergistic, adverse effects of elevated glucose and free fatty acid concentrations on heart structure, function, and survival. The quality of fatty acid shapes the cardiac structure and function, often influencing survival. A healthy fatty acid balance is therefore critical for maintaining cardiac integrity and function.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
41
|
SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition. J Transl Med 2018; 98:1276-1290. [PMID: 29540859 DOI: 10.1038/s41374-018-0043-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress resulting from excessive production of reactive oxygen species (ROS) or impaired antioxidant defenses is closely related to the development of diabetic vascular complications, including nephropathy and atherosclerosis. Chronic activation of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes to diabetic complications by inducing expression of genes involved in cell proliferation, fibrosis, inflammation, and oxidative stress. Suppressors of cytokine signaling (SOCS) family of endogenous JAK/STAT regulators is an attractive target for therapeutic intervention. We investigated the beneficial effect of two different SOCS1-targeted therapies (adenovirus-mediated gene transfer and kinase-inhibitory region peptidomimetic) to combat oxidative stress injury in an experimental diabetes model of concomitant renal and macrovascular disease (streptozotocin-induced diabetic apolipoprotein E-deficient mouse). Diabetes resulted in progressive alteration of redox balance in mice, as demonstrated by increased ROS levels and decreased antioxidant activity, which ultimately led to renal dysfunction and vascular injury. The molecular and pathological alterations in early diabetes were partially reversed by preventive intervention with SOCS1-targeted therapies. Importantly, SOCS1 peptidomimetic provided reno- and atheroprotection in diabetic mice even in a setting of established disease. Compared with untreated controls, kidney and aorta from SOCS1-treated mice exhibited significantly lower levels of superoxide anion, DNA oxidation marker and NADPH oxidase (Nox) subunits, along with higher expression of antioxidant enzymes. These trends correlated with a reduction in parameters of renal damage (albuminuria, creatinine and tubular injury), atherosclerosis (lesion size) and inflammation (leukocytes and chemokines). Mechanistic studies in renal, vascular and phagocytic cells exposed to cytokines and high-glucose showed that SOCS1 blocked ROS generation by inhibiting both Nox complex assembly and Nox subunit expression, an effect mediated by inactivation of JAK2, STAT1, and PI3K signaling pathways. This study provides evidence for SOCS1-targeted therapies, especially SOCS1 peptidomimetic, as an alternative antioxidant strategy to limit the progression of diabetic micro- and macrovascular complications.
Collapse
|
42
|
Fashioning blood vessels by ROS signalling and metabolism. Semin Cell Dev Biol 2018; 80:35-42. [DOI: 10.1016/j.semcdb.2017.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
|
43
|
Taurine Attenuates Calpain-2 Induction and a Series of Cell Damage via Suppression of NOX-Derived ROS in ARPE-19 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4596746. [PMID: 30151070 PMCID: PMC6087582 DOI: 10.1155/2018/4596746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key transmembrane proteins leading to reactive oxygen species (ROS) overproduction. However, the detailed roles of NOXs in retinal pigment epithelial (RPE) cell metabolic stress induced by Earle's balanced salt solution (EBSS) through starvation remain unclear. In this study, we investigated what roles NOXs play in regard to calpain activity, endoplasmic stress (ER), autophagy, and apoptosis during metabolic stress in ARPE-19 cells. We first found that EBSS induced an increase in NOX2, NOX4, p22phox, and NOX5 compared to NOX1. Secondly, suppression of NOXs resulted in reduced ER stress and autophagy, decreased ROS generation, and alleviated cell apoptosis. Thirdly, silencing of NOX4, NOX5, and p22phox resulted in reduced levels of cell damage. However, silencing of NOX1 was unaffected. Finally, taurine critically mediated NOXs in response to EBSS stress. In conclusion, this study demonstrated for the first time that NOX oxidases are the upstream regulators of calpain-2, ER stress, autophagy, and apoptosis. Furthermore, the protective effect of taurine is mediated by the reduction of NOX-derived ROS, leading to sequential suppression of calpain induction, ER stress, autophagy, and apoptosis.
Collapse
|
44
|
Mohammadi-Sardoo M, Mandegary A, Nabiuni M, Nematollahi-Mahani SN, Amirheidari B. Mancozeb induces testicular dysfunction through oxidative stress and apoptosis: Protective role of N-acetylcysteine antioxidant. Toxicol Ind Health 2018; 34:798-811. [DOI: 10.1177/0748233718778397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mancozeb (MZB) is one of the fungicides used in pest control programs that might affect human health including reproductive system. The aim of this study was to demonstrate the mechanisms through which MZB induces testicular tissue damage and the probable protective effect of N-acetylcysteine (NAC), a modified amino acid, with antioxidant property, against MZB toxicity in an animal model. Male albino mice ( n = 8) were exposed to different doses of MZB (250 and 500 mg/kg/day) by oral gavage without or with NAC (200 mg/kg, twice/week) for 40 days. Sub-chronic MZB dose-dependently decreased sperm motility and count. Exposure to MZB increased lipid peroxidation and protein carbonyl, while it reduced antioxidant enzymes activities, total antioxidant capacity, and glutathione content. The histopathological examination clearly showed deleterious changes in the testicular structure. At the molecular levels, the results of quantitative real time-poly chain reaction (qRT-PCR) showed that MZB upregulated oxidative stress markers inducible nitric oxide synthase (iNOS) and NADPH oxidase 4 (NOX4) and downregulated expression of the glutathione peroxidase 1 (Gpx1) gene as one of the most important antioxidant enzymes. MZB also induced apoptosis dose-dependently in the testes as determined by the terminal dUTP nick-end labeling assay and immunoblotting. NAC administration decreased the mRNA levels of both iNOS and NOX4 with a concomitant increase in Gpx1 expression. It also significantly decreased MZB-induced oxidative stress and apoptosis. Collectively, the present study showed MZB-induced oxidative damage in testes leading to apoptosis. It revealed that antioxidants such as NAC can mitigate oxidant injury induced by the dithiocarbamate pesticides in the reproductive system.
Collapse
Affiliation(s)
| | - Ali Mandegary
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Bagher Amirheidari
- Department of Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
45
|
Álvarez-Cilleros D, Martín MÁ, Goya L, Ramos S. (−)-Epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Wang DX, Pan YQ, Liu B, Dai L. Cav-1 promotes atherosclerosis by activating JNK-associated signaling. Biochem Biophys Res Commun 2018; 503:513-520. [PMID: 29746866 DOI: 10.1016/j.bbrc.2018.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/16/2022]
Abstract
The objective of the study is to calculate the role and underlying the molecular mechanisms of caveolin-1 (Cav-1) in atherosclerosis (AS). Cav-1 was mainly expressed in the endothelial cells of atherosclerotic lesions in both human patients and apolipoprotein E deficient (ApoE-/-) mice. Cav-1 deficiency (Cav-1-/-) attenuated high-fat diet (HFD)-induced atherosclerotic lesions in ApoE-/- mice, supported by the reduced aortic plaques. Cav-1-/- reduced the macrophage content and decreased the release of inflammation-related cytokines or chemokine in serum or abdominal aortas, accompanied with the inactivation of inhibitor κB kinase κ (IKKβ)/p65/IκBα signaling pathway. Also, the activity of mitogen-activated protein kinases 7/c-Jun-N-terminal kinase (MKK7/JNK) signaling was decreased by Cav-1-/-. In addition, oxidative stress induced by HFD in ApoE-/- mice was alleviated by Cav-1-/-. In response to HFD, Cav-1-/- markedly reduced triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDLC) and very low-density lipoprotein-cholesterol (VLDLC) in serum of HFD-fed ApoE-/- mice, whereas enhanced high-density lipoprotein-cholesterol (HDLC) contents. Consistent with these findings, haematoxylin and eosin (H&E) and Oil Red O staining showed fewer lipid droplets in the liver of Cav-1-deficient mice. Further, real time-quantitative PCR (RT-qPCR) analysis indicated that Cav-1-/- alleviated dyslipidemia both in liver and abdominal aortas of ApoE-/- mice fed with HFD. Cav-1 inhibition-induced attenuation of inflammatory response, oxidative stress and dyslipidemia were confirmed in vitro using mouse vascular smooth muscle cells (VSMCs) treated with ox-LDL. Surprisingly, the processes regulated by Cav-1-knockdown could be abolished through promoting JNK activation in ox-LDL-treated VSMCs. In conclusion, Cav-1 expression could promote HFD-induced AS in a JNK-dependent manner.
Collapse
Affiliation(s)
- Dong-Xia Wang
- The First Affiliated Hospital of Dalian Medical University, 222 zhongshan Road, Dalian 116011, China
| | - Yong-Quan Pan
- The Second Affiliated Hospital of Dalian Medical University, 467 zhongshan Road, Dalian 116011, China
| | - Bing Liu
- The Second Affiliated Hospital of Dalian Medical University, 467 zhongshan Road, Dalian 116011, China
| | - Li Dai
- The Second Affiliated Hospital of Dalian Medical University, 467 zhongshan Road, Dalian 116011, China.
| |
Collapse
|
47
|
Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol 2018; 34:575-584. [PMID: 29459239 PMCID: PMC5953551 DOI: 10.1016/j.cjca.2017.12.005] [Citation(s) in RCA: 846] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Hypertension and type 2 diabetes are common comorbidities. Hypertension is twice as frequent in patients with diabetes compared with those who do not have diabetes. Moreover, patients with hypertension often exhibit insulin resistance and are at greater risk of diabetes developing than are normotensive individuals. The major cause of morbidity and mortality in diabetes is cardiovascular disease, which is exacerbated by hypertension. Accordingly, diabetes and hypertension are closely interlinked because of similar risk factors, such as endothelial dysfunction, vascular inflammation, arterial remodelling, atherosclerosis, dyslipidemia, and obesity. There is also substantial overlap in the cardiovascular complications of diabetes and hypertension related primarily to microvascular and macrovascular disease. Common mechanisms, such as upregulation of the renin-angiotensin-aldosterone system, oxidative stress, inflammation, and activation of the immune system likely contribute to the close relationship between diabetes and hypertension. In this article we discuss diabetes and hypertension as comorbidities and discuss the pathophysiological features of vascular complications associated with these conditions. We also highlight some vascular mechanisms that predispose to both conditions, focusing on advanced glycation end products, oxidative stress, inflammation, the immune system, and microRNAs. Finally, we provide some insights into current therapies targeting diabetes and cardiovascular complications and introduce some new agents that may have vasoprotective therapeutic potential in diabetes.
Collapse
Affiliation(s)
- John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
48
|
Yahyapour R, Amini P, Rezapour S, Cheki M, Rezaeyan A, Farhood B, Shabeeb D, Musa AE, Fallah H, Najafi M. Radiation-induced inflammation and autoimmune diseases. Mil Med Res 2018; 5:9. [PMID: 29554942 PMCID: PMC5859747 DOI: 10.1186/s40779-018-0156-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Currently, ionizing radiation (IR) plays a key role in the agricultural and medical industry, while accidental exposure resulting from leakage of radioactive sources or radiological terrorism is a serious concern. Exposure to IR has various detrimental effects on normal tissues. Although an increased risk of carcinogenesis is the best-known long-term consequence of IR, evidence has shown that other diseases, particularly diseases related to inflammation, are common disorders among irradiated people. Autoimmune disorders are among the various types of immune diseases that have been investigated among exposed people. Thyroid diseases and diabetes are two autoimmune diseases potentially induced by IR. However, the precise mechanisms of IR-induced thyroid diseases and diabetes remain to be elucidated, and several studies have shown that chronic increased levels of inflammatory cytokines after exposure play a pivotal role. Thus, cytokines, including interleukin-1(IL-1), tumor necrosis factor (TNF-α) and interferon gamma (IFN-γ), play a key role in chronic oxidative damage following exposure to IR. Additionally, these cytokines change the secretion of insulin and thyroid-stimulating hormone(TSH). It is likely that the management of inflammation and oxidative damage is one of the best strategies for the amelioration of these diseases after a radiological or nuclear disaster. In the present study, we reviewed the evidence of radiation-induced diabetes and thyroid diseases, as well as the potential roles of inflammatory responses. In addition, we proposed that the mitigation of inflammatory and oxidative damage markers after exposure to IR may reduce the incidence of these diseases among individuals exposed to radiation.
Collapse
Affiliation(s)
- Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Zip code: 8813833435, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Saeed Rezapour
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Zip code: 6135715794, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Zip code: 1449614535, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Zip code: 3715835155, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Zip code: 1417613151, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research center for molecular and cellular imaging, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Zip code: 3836119131, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Zip code: 6714869914, Iran.
| |
Collapse
|
49
|
Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018; 123:135-154. [PMID: 28757325 PMCID: PMC5742037 DOI: 10.1016/j.addr.2017.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
In recent decades, there have been tremendous improvements in burn care that have allowed patients to survive severe burn injuries that were once fatal. However, a major limitation of burn care currently is the development of hypertrophic scars in approximately 70% of patients. This significantly decreases the quality of life for patients due to the physical and psychosocial symptoms associated with scarring. Current approaches to manage scarring include surgical techniques and non-surgical methods such as laser therapy, steroid injections, and compression therapy. These treatments are limited in their effectiveness and regularly fail to manage symptoms. As a result, the development of novel treatments that aim to improve outcomes and quality of life is imperative. Drug delivery that targets the molecular cascades of wound healing to attenuate or prevent hypertrophic scarring is a promising approach that has therapeutic potential. In this review, we discuss current treatments for scar management after burn injury, and how drug delivery targeting molecular signaling can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| | - Yusef Yousuf
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
50
|
Sakai Y, Yamamori T, Yoshikawa Y, Bo T, Suzuki M, Yamamoto K, Ago T, Inanami O. NADPH oxidase 4 mediates ROS production in radiation-induced senescent cells and promotes migration of inflammatory cells. Free Radic Res 2017; 52:92-102. [PMID: 29228832 DOI: 10.1080/10715762.2017.1416112] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive DNA damage induced by ionising radiation (IR) to normal tissue cells is known to trigger cellular senescence, a process termed stress-induced premature senescence (SIPS). SIPS is often accompanied by the production of reactive oxygen species (ROS), and this is reported to be important for the initiation and maintenance of SIPS. However, the source of ROS during SIPS after IR and their significance in radiation-induced normal tissue damage remain elusive. In the present study, we tested the hypothesis that the NADPH oxidase (NOX) family of proteins mediates ROS production in SIPS-induced cells after IR and plays a role in SIPS-associated biological events. X-irradiation of primary mouse embryonic fibroblasts (MEFs) resulted in cellular senescence and the concomitant increase of intracellular ROS. Among all six murine NOX isoforms (NOX1-4 and DUOX1/2), only NOX4 was detectable under basal conditions and was upregulated following IR. In addition, radiation-induced ROS production was diminished by genetic or pharmacological inhibition of NOX4. Meanwhile, NOX4 deficiency did not affect the induction of cellular senescence after IR. Furthermore, the migration of human monocytic U937 cells to the culture medium collected from irradiated MEFs was significantly reduced by NOX4 inhibition, suggesting that NOX4 promotes the recruitment of inflammatory cells. Collectively, our findings imply that NOX4 mediates ROS production in radiation-induced senescent cells and contributes to normal tissue damage after IR via the recruitment of inflammatory cells and the exacerbation of tissue inflammation.
Collapse
Affiliation(s)
- Yuri Sakai
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tohru Yamamori
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yoji Yoshikawa
- b Department of Medicine and Clinical Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Tomoki Bo
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Motofumi Suzuki
- c Radiation and Cancer Biology Team , National Institutes for Quantum and Radiobiological Science and Technology , Chiba , Japan
| | - Kumiko Yamamoto
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tetsuro Ago
- b Department of Medicine and Clinical Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Osamu Inanami
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|