1
|
Gui Z, Shao C, Zhan Y, Wang Z, Li L. Vascular calcification: High incidence sites, distribution, and detection. Cardiovasc Pathol 2024; 72:107667. [PMID: 38866090 DOI: 10.1016/j.carpath.2024.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Vascular calcification is an important pathological change in a variety of disease states such as atherosclerosis (AS), diabetes, chronic kidney disease (CKD), hypertension, and is a strong predictor of cardiovascular events. The distribution and location of calcification in different vessels may have different clinical effects and prognosis. Therefore, the study of high-risk sites of vascular calcification will help us to better understand the prevention, diagnosis, and treatment of related diseases, as well as to evaluate the efficacy and prognosis. So far, although there are some studies on the sites with high incidence of vascular calcification, there is a lack of systematic sorting out the distribution and location of vascular calcification in humans. Based on this, relevant databases were searched, literatures were retrieved, analyzed, and summarized, and the locations of high incidence of vascular calcification and their distribution characteristics, the relationship between high incidence of vascular calcification and hemodynamics, and the common detection methods of high incidence of vascular calcification were systematically described, hoping to provide help for clinical and research.
Collapse
Affiliation(s)
- Zebin Gui
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuanzi Zhan
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Feistner L, Penk A, Böttner J, Büttner P, Thiele H, Huster D, Schlotter F. Nuclear magnetic resonance spectroscopy to quantify major extracellular matrix components in fibro-calcific aortic valve disease. Sci Rep 2023; 13:18823. [PMID: 37914797 PMCID: PMC10620231 DOI: 10.1038/s41598-023-46143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Fibro-calcific aortic valve disease (FCAVD) is a pathological condition marked by overt fibrous and calcific extracellular matrix (ECM) accumulation that leads to valvular dysfunction and left ventricular outflow obstruction. Costly valve implantation is the only approved therapy. Multiple pharmacological interventions are under clinical investigation, however, none has proven clinically beneficial. This failure of translational approaches indicates incomplete understanding of the underlying pathomechanisms and may result from a limited toolbox of scientific methods to assess the cornerstones of FCAVD: lipid deposition, fibrous and calcific ECM accumulation. In this study, we evaluated magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy to both, qualitatively and quantitatively assess these key elements of FCAVD pathogenesis. NMR spectra showed collagen, elastin, triacylglycerols, and phospholipids in human control and FCAVD tissue samples (n = 5). Calcification, measured by the hydroxyapatite content, was detectable in FCAVD tissues and in valve interstitial cells under procalcifying media conditions. Hydroxyapatite was significantly higher in FCAVD tissues than in controls (p < 0.05) as measured by 31P MAS NMR. The relative collagen content was lower in FCAVD tissues vs. controls (p < 0.05). Overall, we demonstrate the versatility of NMR spectroscopy as a diagnostic tool in preclinical FCAVD assessment.
Collapse
Affiliation(s)
- Lukas Feistner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Anja Penk
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Julia Böttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Florian Schlotter
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
3
|
Ren S, Wen Y, Ma G, Miao Q. Native bicuspid aortic valve thrombus in a patient with an ascending aorta aneurysm: A case report. Heliyon 2023; 9:e18463. [PMID: 37534009 PMCID: PMC10391927 DOI: 10.1016/j.heliyon.2023.e18463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
Thrombus formation on a well-conserved bicuspid aortic valve is rare. We encountered a patient with organized thrombus formation on a native bicuspid aortic valve without calcification or stenosis, which was found occasionally during an elective operation for ascending aorta replacement surgery. The location of the thrombus was just at the orifice of left coronary artery, which produced the atherosclerosis-like symptoms such like exertional chest tightness and dyspnea. And these are no apparent predisposing causes of thrombosis could be ascertained postoperatively. The patient is in excellent condition 6 months after the operation. The lesson we learned from our case is that when the patient's symptom can't correspond with his or her diagnosis, we should ask more questions, evaluate the patient thoroughly and make the differential diagnosis as possible as we can. And the surgery can be performed aggressively when patient's symptoms cannot be figured out by physical examination, not only for pathologic confirmation but also for the prevention of life-threatening complications that can caused by either condition.
Collapse
Affiliation(s)
- Shuofang Ren
- Corresponding author. Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | | | | | | |
Collapse
|
4
|
Zheng Y, Wen S, Jiang S, He S, Qiao W, Liu Y, Yang W, Zhou J, Wang B, Li D, Lin J. CircRNA/lncRNA-miRNA-mRNA network and gene landscape in calcific aortic valve disease. BMC Genomics 2023; 24:419. [PMID: 37491214 PMCID: PMC10367311 DOI: 10.1186/s12864-023-09441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a common valve disease with an increasing incidence, but no effective drugs as of yet. With the development of sequencing technology, non-coding RNAs have been found to play roles in many diseases as well as CAVD, but no circRNA/lncRNA-miRNA-mRNA interaction axis has been established. Moreover, valve interstitial cells (VICs) and valvular endothelial cells (VECs) play important roles in CAVD, and CAVD differed between leaflet phenotypes and genders. This work aims to explore the mechanism of circRNA/lncRNA-miRNA-mRNA network in CAVD, and perform subgroup analysis on the important characteristics of CAVD, such as key cells, leaflet phenotypes and genders. RESULTS We identified 158 differentially expressed circRNAs (DEcircRNAs), 397 DElncRNAs, 45 DEmiRNAs and 167 DEmRNAs, and constructed a hsa-circ-0073813/hsa-circ-0027587-hsa-miR-525-5p-SPP1/HMOX1/CD28 network in CAVD after qRT-PCR verification. Additionally, 17 differentially expressed genes (DEGs) in VICs, 9 DEGs in VECs, 7 DEGs between different leaflet phenotypes and 24 DEGs between different genders were identified. Enrichment analysis suggested the potentially important pathways in inflammation and fibro-calcification during the pathogenesis of CAVD, and immune cell patterns in CAVD suggest that M0 macrophages and memory B cells memory were significantly increased, and many genes in immune cells were also differently expressed. CONCLUSIONS The circRNA/lncRNA-miRNA-mRNA interaction axis constructed in this work and the DEGs identified between different characteristics of CAVD provide a direction for a deeper understanding of CAVD and provide possible diagnostic markers and treatment targets for CAVD in the future.
Collapse
Affiliation(s)
- Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Xie K, Zeng J, Wen L, Peng X, Lin Z, Xian G, Guo Y, Yang X, Li P, Xu D, Zeng Q. Abnormally elevated EZH2-mediated H3K27me3 enhances osteogenesis in aortic valve interstitial cells by inhibiting SOCS3 expression. Atherosclerosis 2023; 364:1-9. [PMID: 36455343 DOI: 10.1016/j.atherosclerosis.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/22/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The osteogenic transition of aortic valve interstitial cells (AVICs) plays a critical role for the progression of calcific aortic valve disease (CAVD). Enhancer of zeste homolog 2 (EZH2) is an important methyltransferase for histone H3 Lys27 (H3K27) that has been found to be involved in osteogenesis. Here, we investigated the effect and mechanism of EZH2 in CAVD progression. METHODS High throughout mRNA sequencing, qRT-PCR and immunoblot were performed to screen differentially expressed genes in non-CAVD and CAVD aortic valves. To investigate the role of EZH2 and SOCS3 in osteogenesis, AVICs were treated with siRNA, adenovirus and specific inhibitors, then osteogenic markers and mineralized deposits were examined. In vivo, the morphology and function of aortic valves were investigated by HE stain and echocardiography in ApoE-/- mice fed a long-term western diet (WD). RESULTS We discovered that EZH2 was upregulated and SOCS3 was downregulated in calcified aortic valves. In AVICs, inhibition or silencing of EZH2 attenuated the osteogenic responses. On the other hand, demethylases inhibitor (GSK-J4) enhanced osteogenic transition of AVICs. Moreover, SOCS3 knockdown enhanced the expression of osteogenic markers, while SOCS3 overexpression suppressed osteogenesis and calcification. The chromatin immunoprecipitation and restored experiments indicated that EZH2 directly targeted SOCS3 to promote osteogenic responses of AVICs. In vivo, treatment with EZH2 inhibitor through intraperitoneal injection attenuated aortic valve thickening, calcification and dysfunction induced by WD. CONCLUSIONS Collectively, we found that EZH2-mediated H3K27me3 enhanced osteogenesis and microcalcification of AVICs via inhibiting SOCS3 expression, which provides potential targets for future therapeutic interventions of CAVD.
Collapse
Affiliation(s)
- Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Jingxin Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xin Peng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China; Huazhong University of Science and Technology Union Shenzhen Hospital, 518052, Shenzhen, China
| | - Zhibin Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yuyang Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xi Yang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Peixin Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| |
Collapse
|
6
|
Dutta P, Sengupta A, Chakraborty S. Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62093-62110. [PMID: 34601672 DOI: 10.1007/s11356-021-15718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Collapse
Affiliation(s)
- Parna Dutta
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India
| | - Arunima Sengupta
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
7
|
Bian W, Wang Z, Sun C, Zhang DM. Pathogenesis and Molecular Immune Mechanism of Calcified Aortic Valve Disease. Front Cardiovasc Med 2022; 8:765419. [PMID: 35004882 PMCID: PMC8734655 DOI: 10.3389/fcvm.2021.765419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Calcified aortic valve disease (CAVD) was previously regarded as a passive process associated with valve degeneration and calcium deposition. However, recent studies have shown that the occurrence of CAVD is an active process involving complex changes such as endothelial injury, chronic inflammation, matrix remodeling, and neovascularization. CAVD is the ectopic accumulation of calcium nodules on the surface of the aortic valve, which leads to aortic valve thickening, functional stenosis, and ultimately hemodynamic disorders. CAVD has become an important cause of death from cardiovascular disease. The discovery of therapeutic targets to delay or block the progression of CAVD and the clinical application of transcatheter aortic valve implantation (TAVI) provide new ideas for the prevention and treatment of CAVD. This article summarizes the pathogenesis of CAVD and provides insight into the future directions of CAVD diagnosis and treatment.
Collapse
Affiliation(s)
- Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chongxiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
9
|
Jiang Y, Chen J, Wei F, Wang Y, Chen S, Li G, Dong N. Micromechanical force promotes aortic valvular calcification. J Thorac Cardiovasc Surg 2021; 164:e313-e329. [PMID: 34507817 DOI: 10.1016/j.jtcvs.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Calcified aortic valvular disease is known as an inflammation-related process related to force. The purpose of this study was to determine whether micromechanical force could induce valve calcification of porcine valvular interstitial cells and to examine the role of integrin αvβ3 in valvular calcification by using a novel method: magnetic twisting cytometry. METHODS Porcine valvular interstitial cells were cultured in vitro, and micromechanical force was applied to porcine valvular interstitial cells using magnetic twisting cytometry. Changes in calcification-related factors osteopontin and RUNX2 were detected. By using the calcification medium, the optimal magnetic twisting cytometry parameters for inducing valvular interstitial cell calcification were determined, and a magnetic twisting cytometry calcification promotion model was established. The role of αvβ3 in calcification was studied by using αvβ3 antagonists to block the function of αvβ3. RESULTS Reverse transcription polymerase chain reaction assays showed that the expression of osteopontin was enhanced 30 minutes after 25G-1Hz 5 minutes of stimulation. Western blotting assays showed that the expression of osteopontin and RUNX2 was upregulated 24 hours after 25G-1Hz 5 minutes of stimulation. The optimal magnetic twisting cytometry parameter for inducing porcine valvular interstitial cell calcification was 25G-2Hz for 10 minutes. The expression of osteopontin and RUNX2 decreased significantly after the addition of αvβ3 antagonist. Clinically, patients with bicuspid aortic valves had high expression of RUNX2 and β3 in the aortic valve, and β3 significantly correlated with RUNX2. CONCLUSIONS By using magnetic twisting cytometry, we established a porcine valvular interstitial cell calcification model by micromechanical force stimulation and obtained the optimal parameters. Integrin αvβ3 plays a key role in the aortic valve calcification process.
Collapse
Affiliation(s)
- Yefan Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjie Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuxiang Wei
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Yi B, Zeng W, Lv L, Hua P. Changing epidemiology of calcific aortic valve disease: 30-year trends of incidence, prevalence, and deaths across 204 countries and territories. Aging (Albany NY) 2021; 13:12710-12732. [PMID: 33973531 PMCID: PMC8148466 DOI: 10.18632/aging.202942] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022]
Abstract
Calcific aortic valve disease (CAVD) is associated with increased morbidity and mortality. We aimed to elucidate the 30-year epidemiology of CAVD globally. Global CAVD incidence, prevalence, and deaths increased 3.51-, 4.43-, and 1.38-fold from 1990 to 2019, respectively, without any decreasing trends, even after age standardization. In 2019, Slovenia had the highest age-standardized rate (ASR) of CAVD incidence (62.21/100,000 persons) and prevalence (1,080.06/100,000) whereas Cyprus had the highest ASR of deaths (8.20/100,000). Population aging was an important contributor to incidence. Compared with women, more men had CAVD and men had earlier peaks in disease prevalence. High systolic blood pressure, diet high in sodium, and lead exposure were the main risk factors for deaths owing to CAVD. The estimated annual percentage change, a measure to estimate the variation of ASR, was significantly associated with the ASR and sociodemographic index (SDI) in 2019 for incidence and prevalence across all 204 countries and territories (all p<0.0001). With increased lifespan and risk factors, the overall burden of CAVD is high and remains on the rise, with differences by sex, age, and SDI level. Our findings serve to sound the alarm for organizations, institutions, and resources whose primary purpose is to improve human health.
Collapse
Affiliation(s)
- Bin Yi
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lei Lv
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ping Hua
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
11
|
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect, found in up to 2% of the population and associated with a 30% lifetime risk of complications. BAV is inherited as an autosomal dominant trait with incomplete penetrance and variable expressivity due to a complex genetic architecture that involves many interacting genes. In this review, we highlight the current state of knowledge about BAV genetics, principles and methods for BAV gene discovery, clinical applications of BAV genetics, and important future directions.
Collapse
|
12
|
Petrkova J, Borucka J, Kalab M, Klevcova P, Michalek J, Taborsky M, Petrek M. Increased Expression of miR-146a in Valvular Tissue From Patients With Aortic Valve Stenosis. Front Cardiovasc Med 2019; 6:86. [PMID: 31294031 PMCID: PMC6606704 DOI: 10.3389/fcvm.2019.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
miR-146a has been implicated in the regulation of the immune response as well as in inflammatory process of atherosclerosis. In the present study, we have investigated the expression of miR-146a and its targets, TLR4 a IRAK1, in aortic valve stenosis. A total of 58 patients with aortic stenosis (non- and atherosclerotic; tissue obtained during standard aortic valve replacement) were enrolled. The relative expression of mir-146a was higher in valvular tissue from patients with atherosclerosis compared to those without atherosclerosis (p = 0.01). Number of the IRAK1 and TLR4 transcripts did not differ between the investigated groups. There was a trend toward elevation of miR-146a expression in context of inflammatory infiltrate observed in the valvular tissue from patients with atherosclerosis (p = 0.06). In conclusion, in line with the acknowledged role of miR-146a in atherosclerotic inflammation, our data suggest it may be extended to the specific location of aortic valves in aortic stenosis.
Collapse
Affiliation(s)
- Jana Petrkova
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Internal Medicine I - Cardiology, Palacky University and University Hospital, Olomouc, Czechia
| | - Jana Borucka
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia
| | - Martin Kalab
- Department of Cardiac Surgery, Palacky University and University Hospital, Olomouc, Czechia
| | - Petra Klevcova
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia
| | - Jaroslav Michalek
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Milos Taborsky
- Internal Medicine I - Cardiology, Palacky University and University Hospital, Olomouc, Czechia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia.,Laboratory of Cardiogenomics, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
13
|
Pasipoularides A. Clinical-pathological correlations of BAV and the attendant thoracic aortopathies. Part 2: Pluridisciplinary perspective on their genetic and molecular origins. J Mol Cell Cardiol 2019; 133:233-246. [PMID: 31175858 DOI: 10.1016/j.yjmcc.2019.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
Abstract
Bicuspid aortic valve (BAV) arises during valvulogenesis when 2 leaflets/cusps of the aortic valve (AOV) are fused together. Its clinical manifestations pertain to faulty AOV function, the associated aortopathy, and other complications surveyed in Part 1 of the present bipartite-series. Part 2 examines mainly genetic and epigenetic causes of BAV and BAV-associated aortopathies (BAVAs) and disease syndromes (BAVD). Part 1 explored the heterogeneity among subsets of patients with BAV and BAVA/BAVD, and investigated abnormal fluid dynamic stress and strain patterns sustained by the cusps. Specific BAV morphologies engender systolic outflow asymmetries, associated with abnormal aortic regional wall-shear-stress distributions and the expression/localization of BAVAs. Understanding fluid dynamic factors besides the developmental mechanisms and underlying genetics governing these congenital anomalies is necessary to explain patient predisposition to aortopathy and phenotypic heterogeneity. BAV aortopathy entails complex/multifactorial pathophysiology, involving alterations in genetics, epigenetics, hemodynamics, and in cellular and molecular pathways. There is always an interdependence between organismic developmental signals and genes-no systemic signals, no gene-expression; no active gene, no next step. An apposite signal induces the expression of the next developmental gene, which needs be expressed to trigger the next signal, and so on. Hence, embryonic, then post-partum, AOV and thoracic aortic development comprise cascades of developmental genes and their regulation. Interdependencies between them arise, entailing reciprocal/cyclical mutual interactions and adaptive feedback loops, by which developmental morphogenetic processes self-correct responding to environmental inputs/reactions. This Survey can serve as a reference point and driver for further pluridisciplinary BAV/BAVD studies and their clinical translation.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke/NSF Center for Emerging Cardiovascular Technologies, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC, USA.
| |
Collapse
|
14
|
Pasipoularides A. Clinical-pathological correlations of BAV and the attendant thoracic aortopathies. Part 1: Pluridisciplinary perspective on their hemodynamics and morphomechanics. J Mol Cell Cardiol 2019; 133:223-232. [PMID: 31150733 DOI: 10.1016/j.yjmcc.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Clinical BAV manifestations pertain to faulty aortic valve (AOV) function, the associated aortopathy, and other complications such as endocarditis, thrombosis and thromboembolism. BAV arises during valvulogenesis when 2 of the 3 leaflets/cusps of the AOV are fused together. Ensuing asymmetric BAV morphologies alter downstream ejection jet flow-trajectories. Based on BAV morphologies, ejection-flows exhibit different wall-impingement and scouring patterns in the proximal aorta, with excessive hydrodynamic wall-shear that correlates closely with mural vascular smooth muscle cell and extracellular matrix disruptions, revealing hemodynamic participation in the pathogenesis of BAV-associated aortopathies. Since the embryologic regions implicated in both BAV and aortopathies derive from neural crest cells and second heart field cells, there may exist a common multifactorial/polygenic embryological basis linking the abnormalities. The use of Electronic Health Records - encompassing integrated NGS variant panels and phenotypic data - in clinical studies could speed-up comprehensive understanding of multifactorial genetic-phenotypic and environmental factor interactions. This Survey represents the first in a 2-article pluridisciplinary work. Taken in toto, the series covers hemodynamic/morphomechanical and environmental (milieu intérieur) aspects in Part 1, and molecular, genetic and associated epigenetic aspects in Part 2. Together, Parts 1-2 should serve as a reference-milestone and driver for further pluridisciplinary research and its urgent translations in the clinical setting.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke/NSF Center for Emerging Cardiovascular Technologies, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC, USA.
| |
Collapse
|
15
|
Li Y, Zhang Y, Ding JL, Liu JC, Xu JJ, Tang YH, Yi YP, Xu WC, Yu WP, Lu C, Yang W, Yang JS, Gong Y, Zhou JL. Biofunctionalization of decellularized porcine aortic valve with OPG-loaded PCL nanoparticles for anti-calcification. RSC Adv 2019; 9:11882-11893. [PMID: 35517024 PMCID: PMC9063478 DOI: 10.1039/c9ra00408d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022] Open
Abstract
Decellularized valve stents are widely used in tissue-engineered heart valves because they maintain the morphological structure of natural valves, have good histocompatibility and low immunogenicity. However, the surface of the cell valve loses the original endothelial cell coverage, exposing collagen and causing calcification and decay of the valve in advance. In this study, poly ε-caprolactone (PCL) nanoparticles loaded with osteoprotegerin (OPG) were bridged to a decellularized valve using a nanoparticle drug delivery system and tissue engineering technology to construct a new anti-calcification composite valve with sustained release function. The PCL nanoparticles loaded with OPG were prepared via an emulsion solvent evaporation method, which had a particle size of 133 nm and zeta potential of -27.8 mV. Transmission electron microscopy demonstrated that the prepared nanoparticles were round in shape, regular in size, and uniformly distributed, with an encapsulation efficiency of 75%, slow release in vitro, no burst release, no cytotoxicity to BMSCs, and contained OPG nanoparticles in vitro. There was a delay in the differentiation of BMSCs into osteoblasts. The decellularized valve modified by nanoparticles remained intact and its collagen fibers were continuous. After 8 weeks of subcutaneous implantation in rats, the morphological structure of the valve was almost complete, and the composite valve showed anti-calcification ability to a certain extent.
Collapse
Affiliation(s)
- Yang Li
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Yu Zhang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University Shanghai China
| | - Jing-Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Jian-Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Yan-Hua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Ying-Ping Yi
- Department of Science and Education, The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Wei-Chang Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Wen-Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Jue-Sheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| | - Jian-Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1, Mingde Road Nanchang 330000 China +86 13767117511
| |
Collapse
|
16
|
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder in human populations. Nevertheless, there are presently no effective means for its prevention and treatment. It is therefore critical to comprehensively define key mechanisms of the disease. A major focus of cardiovascular research has been characterization of how regulation of gene expression maintains healthy physiologic status of the component tissues of the system and how derangements of gene regulation may become pathological. Recently, substantial evidence has emerged that noncoding RNAs, which are an enormous and versatile class of regulatory elements, such as microRNAs and long noncoding RNAs, have roles in onset and prognosis of CAVD. Authors of the present report have therefore here provided a summary of the current understanding of contributions made by noncoding RNAs major features of CAVD. It is anticipated that this article will serve as a valuable guide to research strategy in this field and may additionally provide both researchers and clinicians with an expanded range of CAVD-associated biomarkers.
Collapse
|
17
|
Pasipoularides A. Morphomechanic phenotypic variability of sarcomeric cardiomyopathies: A multifactorial polygenic perspective. J Mol Cell Cardiol 2018; 126:23-35. [PMID: 30423317 DOI: 10.1016/j.yjmcc.2018.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
Abstract
Morphology underlies subdivision of the primary/heritable sarcomeric cardiomyopathies (CMs) into hypertrophic (HCM) and dilated (DCM). Next-generation DNA-sequencing (NGS) has identified important disease-variants, improving CM diagnosis, management, genetic screening, and prognosis. Although monogenic (Mendelian) analyses directly point at downstream studies, they disregard coexisting genomic variations and gene-by-gene interactions molding detailed CM-phenotypes. In-place of polygenic models, in accounting for observed defective genotype-phenotype correlations, fuzzy concepts having gradations of significance and unsharp domain-boundaries are invoked, including pleiotropy, genetic-heterogeneity, incomplete penetrance, and variable expressivity. HCM and DCM undoubtedly entail cooperativity of unidentified/elusive causative genomic-variants. Modern genomics can exploit comprehensive electronic/digital health records, facilitating consideration of multifactorial variant-models. Genome-wide association studies entailing high-fidelity solid-state catheterization, multimodal-imaging, molecular cardiology, systems biology and bioinformatics, will decipher accurate genotype-phenotype correlations and identify novel therapeutic-targets, fostering personalized medicine/cardiology. This review surveys successes and challenges of genetic/genomic approaches to CMs, and their impact on current and future clinical care.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke/NSF Center for Emerging Cardiovascular Technologies, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC, USA.
| |
Collapse
|
18
|
Pasipoularides A. Know Me! Unraveling the Riddle of Calcific Aortic Valve Disease by Bioinformatics. TOHOKU J EXP MED 2018; 243:255-261. [PMID: 29212966 DOI: 10.1620/tjem.243.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ares Pasipoularides
- Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School
| |
Collapse
|
19
|
Pasipoularides A. The new era of whole-exome sequencing in congenital heart disease: brand-new insights into rare pathogenic variants. J Thorac Dis 2018; 10:S1923-S1929. [PMID: 30023082 PMCID: PMC6036033 DOI: 10.21037/jtd.2018.05.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC, USA
| |
Collapse
|
20
|
Venardos N, Deng XS, Yao Q, Weyant MJ, Reece TB, Meng X, Fullerton DA. Simvastatin reduces the TLR4-induced inflammatory response in human aortic valve interstitial cells. J Surg Res 2018; 230:101-109. [PMID: 30100024 DOI: 10.1016/j.jss.2018.04.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Calcific aortic stenosis is a chronic inflammatory disease. Proinflammatory stimulation via toll-like receptor 4 (TLR4) causes the aortic valve interstitial cell (AVIC) to undergo phenotypic change. The AVIC first assumes an inflammatory phenotype characterized by the production of inflammatory mediators such as intercellular adhesion molecule-1 (ICAM-1), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). This change has been linked with an osteogenic phenotypic response. Statins have recently been shown to have anti-inflammatory properties. We therefore hypothesized that statins may have an anti-inflammatory effect on human AVICs by downregulation of TLR4-stimulated inflammatory responses. Our purposes were (1) to determine the effect of simvastatin on TLR4-induced expression of inflammatory mediators in human AVICs and (2) to determine the mechanism(s) through which simvastatin exert this effect. MATERIALS AND METHODS Human AVICs were isolated from the explanted hearts of four patients undergoing cardiac transplantation. Cells were treated with simvastatin (50 μM) for 1 h before stimulation with TLR4 agonist lipopolysaccharide (LPS, 0.2 μg/mL). Immunoblotting (IB) was used to analyze cell lysates for ICAM-1 expression, and enzyme-linked immunosorbent assay was used to detect IL-8 and MCP-1 in cell culture media. Likewise, lysates were analyzed for TLR4 and nuclear factor-kappa B activation (IB). After simvastatin treatment, lysates were analyzed for TLR4 levels (IB). Statistics were by analysis of variance (P < 0.05). RESULTS Simvastatin reduced TLR4-induced ICAM-1, IL-8, and MCP-1 expression in AVICs. Simvastatin down-regulated TLR4 levels and suppressed TLR4-induced phosphorylation of nuclear factor-kappa B. CONCLUSIONS These data demonstrate the potential of a medical therapy (simvastatin) to impact the pathogenesis of aortic stenosis.
Collapse
Affiliation(s)
- Neil Venardos
- The Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Xin-Sheng Deng
- The Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Quinzhou Yao
- The Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Weyant
- The Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - T Brett Reece
- The Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Xianzhong Meng
- The Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - David A Fullerton
- The Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
21
|
Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:325-334. [PMID: 29047096 DOI: 10.1007/978-3-319-63245-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia is recognized as a contributor to pulmonary vascular diseases such as pulmonary hypertension. Hypoxia-induced inflammatory changes can enhance structural and functional changes in pulmonary artery (PA) in the context of PH. Accordingly, understanding how hypoxia and inflammation are linked in the context of pulmonary artery structure and function could be relevant towards development of novel therapies for PH. In this regard, factors such as thymic stromal lymphopoietin (TSLP), an inflammatory cytokine, and brain-derived neurotrophic factor (BDNF), a neurotrophin, have been found critical for nonvascular systems such as airway and asthma. While TSLP canonically affects the immune system, in nonvascular systems, noncanonical effects such as altered [Ca2+]i and cell proliferation have been noted: aspects also relevant to the PA, where there is currently little to no data. Similarly, better known in the nervous system, there is increasing evidence that BDNF is locally produced by structural cells of the airway and can contribute to asthma pathophysiology. In this chapter, we summarize the potential relevance of factors such as TSLP and BDNF to the PA and in the context of hypoxia influences towards development of PH. We focus on cell sources and targets such as PA endothelial cells (PAECs) and smooth muscle cells (PASMCs), and the effects of TSLP or BDNF on intracellular Ca2+ responses to vasoconstrictor agonist, cell proliferation, and potential signaling cascades involved.
Collapse
|
22
|
Weber A, Barth M, Selig JI, Raschke S, Dakaras K, Hof A, Hesse J, Schrader J, Lichtenberg A, Akhyari P. Enzymes of the purinergic signaling system exhibit diverse effects on the degeneration of valvular interstitial cells in a 3-D microenvironment. FASEB J 2018; 32:4356-4369. [PMID: 29558203 DOI: 10.1096/fj.201701326r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calcific aortic valve disease is an active disease process with lipoprotein deposition, chronic inflammation, and progressive leaflet degeneration. Expression of ectonucleotidases, a group of membrane-bound enzymes that regulate the metabolism of ATP and its metabolites, may coregulate the degeneration process of valvular interstitial cells (VICs). The aim of this study was to investigate the role of the enzymes of the purinergic system in the degeneration process of VICs. Ovine VICs were cultivated in vitro under different prodegenerative conditions and treated with inhibitors of ectonucleoside triphosphate diphosphohydrolase 1 (CD39)/ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), and 5'-nucleotidase (CD73), as well as with adenosine and adenosine receptor agonists. Experiments were performed both in 2-dimensional (2-D) and 3-dimensional (3-D) cell-culture models. Our main findings were that VICs continuously release ATP. Inhibition of ATP hydrolyzing enzymes (CD39 and ENPP1) resulted in profound prodegenerative effects with a vigorous up-regulation of CD39, ENPP1, and CD73, as well as TGF-β1 and osteopontin at the gene level. In our 3-D model, the effect was more pronounced than in 2-D monolayers. Increasing adenosine levels, as well as stimulating the adenosine receptors A2A and A2B, exhibited strong prodegenerative effects, whereas conversely, lowering adenosine levels by inhibition of CD73 resulted in protective effects against degeneration. Dysregulation of any one of these enzymes plays an important role in the degeneration process of VICs. Stimulation of ATP and adenosine has prodegenerative effects, whereas lowering the adenosine levels exerts a protective effect.-Weber, A., Barth, M., Selig, J. I., Raschke, S., Dakaras, K., Hof, A., Hesse, J., Schrader, J., Lichtenberg, A., Akhyari, P. Enzymes of the purinergic signaling system exhibit diverse effects on the degeneration of valvular interstitial cells in a 3-D microenvironment.
Collapse
Affiliation(s)
- Andreas Weber
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Mareike Barth
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Jessica Isabel Selig
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Silja Raschke
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Konstantinos Dakaras
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Alexander Hof
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Julia Hesse
- Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| |
Collapse
|
23
|
Retos y controversias en miocardiopatía hipertrófica: visión integral desde la investigación básica, clínica y genética. Rev Esp Cardiol 2018. [DOI: 10.1016/j.recesp.2017.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Pasipoularides A. Implementing genome-driven personalized cardiology in clinical practice. J Mol Cell Cardiol 2018; 115:142-157. [PMID: 29343412 PMCID: PMC5820118 DOI: 10.1016/j.yjmcc.2018.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
Genomics designates the coordinated investigation of a large number of genes in the context of a biological process or disease. It may be long before we attain comprehensive understanding of the genomics of common complex cardiovascular diseases (CVDs) such as inherited cardiomyopathies, valvular diseases, primary arrhythmogenic conditions, congenital heart syndromes, hypercholesterolemia and atherosclerotic heart disease, hypertensive syndromes, and heart failure with preserved/reduced ejection fraction. Nonetheless, as genomics is evolving rapidly, it is constructive to survey now pertinent concepts and breakthroughs. Today, clinical multimodal electronic medical/health records (EMRs/EHRs) incorporating genomic information establish a continuously-learning, vast knowledge-network with seamless cycling between clinical application and research. It can inform insights into specific pathogenetic pathways, guide biomarker-assisted precise diagnoses and individualized treatments, and stratify prognoses. Complex CVDs blend multiple interacting genomic variants, epigenetics, and environmental risk-factors, engendering progressions of multifaceted disease-manifestations, including clinical symptoms and signs. There is no straight-line linkage between genetic cause(s) or causal gene-variant(s) and disease phenotype(s). Because of interactions involving modifier-gene influences, (micro)-environmental, and epigenetic effects, the same variant may actually produce dissimilar abnormalities in different individuals. Implementing genome-driven personalized cardiology in clinical practice reveals that the study of CVDs at the level of molecules and cells can yield crucial clinical benefits. Complementing evidence-based medicine guidelines from large ("one-size fits all") randomized controlled trials, genomics-based personalized or precision cardiology is a most-creditable paradigm: It provides customizable approaches to prevent, diagnose, and manage CVDs with treatments directly/precisely aimed at causal defects identified by high-throughput genomic technologies. They encompass stem cell and gene therapies exploiting CRISPR-Cas9-gene-editing, and metabolomic-pharmacogenomic therapeutic modalities, precisely fine-tuned for the individual patient. Following the Human Genome Project, many expected genomics technology to provide imminent solutions to intractable medical problems, including CVDs. This eagerness has reaped some disappointment that advances have not yet materialized to the degree anticipated. Undoubtedly, personalized genetic/genomics testing is an emergent technology that should not be applied without supplementary phenotypic/clinical information: Genotype≠Phenotype. However, forthcoming advances in genomics will naturally build on prior attainments and, combined with insights into relevant epigenetics and environmental factors, can plausibly eradicate intractable CVDs, improving human health and well-being.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Consulting Professor of Surgery, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Gošev I, Zeljko M, Đurić Ž, Nikolić I, Gošev M, Ivčević S, Bešić D, Legčević Z, Paić F. Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin Epigenetics 2017; 9:106. [PMID: 29026447 PMCID: PMC5627415 DOI: 10.1186/s13148-017-0406-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Aortic valve stenosis is the most common cardiac valve disease, and with current trends in the population demographics, its prevalence is likely to rise, thus posing a major health and economic burden facing the worldwide societies. Over the past decade, it has become more than clear that our traditional genetic views do not sufficiently explain the well-known link between AS, proatherogenic risk factors, flow-induced mechanical forces, and disease-prone environmental influences. Recent breakthroughs in the field of epigenetics offer us a new perspective on gene regulation, which has broadened our perspective on etiology of aortic stenosis and other aortic valve diseases. Since all known epigenetic marks are potentially reversible this perspective is especially exciting given the potential for development of successful and non-invasive therapeutic intervention and reprogramming of cells at the epigenetic level even in the early stages of disease progression. This review will examine the known relationships between four major epigenetic mechanisms: DNA methylation, posttranslational histone modification, ATP-dependent chromatin remodeling, and non-coding regulatory RNAs, and initiation and progression of AS. Numerous profiling and functional studies indicate that they could contribute to endothelial dysfunctions, disease-prone activation of monocyte-macrophage and circulatory osteoprogenitor cells and activation and osteogenic transdifferentiation of aortic valve interstitial cells, thus leading to valvular inflammation, fibrosis, and calcification, and to pressure overload-induced maladaptive myocardial remodeling and left ventricular hypertrophy. This is especcialy the case for small non-coding microRNAs but was also, although in a smaller scale, convincingly demonstrated for other members of cellular epigenome landscape. Equally important, and clinically most relevant, the reported data indicate that epigenetic marks, particularly certain microRNA signatures, could represent useful non-invasive biomarkers that reflect the disease progression and patients prognosis for recovery after the valve replacement surgery.
Collapse
Affiliation(s)
- Igor Gošev
- Department of Surgery, University of Rochester Medical center, Rochester, NY USA
| | - Martina Zeljko
- Department of Cardiology, Clinical Unit of Internal Medicine, Clinical Hospital Merkur, Zajćeva 19, 10 000 Zagreb, Croatia
| | - Željko Đurić
- Department of Cardiac Surgery, University Hospital Center Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Ivana Nikolić
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115 USA
| | - Milorad Gošev
- School of Medicine, University of Josip Juraj Strossmayer, Trg Svetog trojstva 3, 31 000 Osijek, Croatia
| | - Sanja Ivčević
- Department of Physiology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Dino Bešić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Zoran Legčević
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Frane Paić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
26
|
Pasipoularides A. Challenges and Controversies in Hypertrophic Cardiomyopathy: Clinical, Genomic and Basic Science Perspectives. ACTA ACUST UNITED AC 2017; 71:132-138. [PMID: 28802532 DOI: 10.1016/j.rec.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, United States.
| |
Collapse
|
27
|
Shen W, Zhou J, Wang C, Xu G, Wu Y, Hu Z. High mobility group box 1 induces calcification of aortic valve interstitial cells via toll-like receptor 4. Mol Med Rep 2017; 15:2530-2536. [PMID: 28260034 PMCID: PMC5428883 DOI: 10.3892/mmr.2017.6287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/15/2016] [Indexed: 01/10/2023] Open
Abstract
Chronic inflammation and the calcification of aortic valve interstitial cells (AVICs) are the primary etiologies of calcific aortic valve disease (CAVD). However, the underlying mechanism remains to be elucidated. The present study investigated the importance of high mobility group box 1 (HMGB1) via toll-like receptor 4 (TLR4) for the regulation of inflammation and calcification in AVICs. It was determined that the expression levels of HMGB1 and TLR4 were increased in the calcific region of aortic valves with CAVD. In cultured primary AVICs from wild-type mice, HMGB1 treatment demonstrated a dose-dependent increase in mineralization levels and osteogenic gene expression. These effects were significantly reduced in AVICs obtained from TLR4 knockout mice (TLR4−/−). In addition, calcification was inhibited by TLR4-specific antibodies in primary AVICs. HMGB1 induced the activation of p38 and nuclear factor-κB (NF-κB) in TLR4−/− primary AVICs, and inhibited p38 and NF-κB in wild-type AVICs treated with TLR4-specific antibodies. The present study demonstrated that TLR4 may function as an essential mediator of HMGB1-induced calcification and in the activation of p38 and NF-κB.
Collapse
Affiliation(s)
- Wenjun Shen
- Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 310041, P.R. China
| | - Jianqing Zhou
- Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 310041, P.R. China
| | - Chaoyang Wang
- Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 310041, P.R. China
| | - Guangze Xu
- Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 310041, P.R. China
| | - Ying Wu
- Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 310041, P.R. China
| | - Zhaohui Hu
- Department of Cardiovascular Disease, The Affiliated Tongji Hospital, Tongji University, Shanghai 210062, P.R. China
| |
Collapse
|
28
|
Pasipoularides A. Genomic translational research: Paving the way to individualized cardiac functional analyses and personalized cardiology. Int J Cardiol 2016; 230:384-401. [PMID: 28057368 DOI: 10.1016/j.ijcard.2016.12.097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/27/2016] [Accepted: 12/17/2016] [Indexed: 01/08/2023]
Abstract
For most of Medicine's past, the best that physicians could do to cope with disease prevention and treatment was based on the expected response of an average patient. Currently, however, a more personalized/precise approach to cardiology and medicine in general is becoming possible, as the cost of sequencing a human genome has declined substantially. As a result, we are witnessing an era of precipitous advances in biomedicine and bourgeoning understanding of the genetic basis of cardiovascular and other diseases, reminiscent of the resurgence of innovations in physico-mathematical sciences and biology-anatomy-cardiology in the Renaissance, a parallel time of radical change and reformation of medical knowledge, education and practice. Now on the horizon is an individualized, diverse patient-centered, approach to medical practice that encompasses the development of new, gene-based diagnostics and preventive medicine tactics, and offers the broadest range of personalized therapies based on pharmacogenetics. Over time, translation of genomic and high-tech approaches unquestionably will transform clinical practice in cardiology and medicine as a whole, with the adoption of new personalized medicine approaches and procedures. Clearly, future prospects far outweigh present accomplishments, which are best viewed as a promising start. It is now essential for pluridisciplinary health care providers to examine the drivers and barriers to the clinical adoption of this emerging revolutionary paradigm, in order to expedite the realization of its potential. So, we are not there yet, but we are definitely on our way.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
29
|
Pasipoularides A. Calcific Aortic Valve Disease: Part 2-Morphomechanical Abnormalities, Gene Reexpression, and Gender Effects on Ventricular Hypertrophy and Its Reversibility. J Cardiovasc Transl Res 2016; 9:374-99. [PMID: 27184804 PMCID: PMC4992466 DOI: 10.1007/s12265-016-9695-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
In part 1, we considered cytomolecular mechanisms underlying calcific aortic valve disease (CAVD), hemodynamics, and adaptive feedbacks controlling pathological left ventricular hypertrophy provoked by ensuing aortic valvular stenosis (AVS). In part 2, we survey diverse signal transduction pathways that precede cellular/molecular mechanisms controlling hypertrophic gene expression by activation of specific transcription factors that induce sarcomere replication in-parallel. Such signaling pathways represent potential targets for therapeutic intervention and prevention of decompensation/failure. Hypertrophy provoking signals, in the form of dynamic stresses and ligand/effector molecules that bind to specific receptors to initiate the hypertrophy, are transcribed across the sarcolemma by several second messengers. They comprise intricate feedback mechanisms involving gene network cascades, specific signaling molecules encompassing G protein-coupled receptors and mechanotransducers, and myocardial stresses. Future multidisciplinary studies will characterize the adaptive/maladaptive nature of the AVS-induced hypertrophy, its gender- and individual patient-dependent peculiarities, and its response to surgical/medical interventions. They will herald more effective, precision medicine treatments.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke University School of Medicine, Durham, NC, USA.
- Duke/NSF Research Center for Emerging Cardiovascular Technologies, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|