1
|
Preeti, Sambhakar S, Malik R, Bhatia S, Harrasi AA, Saharan R, Aggarwal G, Kumar S, Sehrawat R, Rani C. Lipid Horizons: Recent Advances and Future Prospects in LBDDS for Oral Administration of Antihypertensive Agents. Int J Hypertens 2024; 2024:2430147. [PMID: 38410720 PMCID: PMC10896658 DOI: 10.1155/2024/2430147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
The lipid-based drug delivery system (LBDDS) is a well-established technique that is anticipated to bring about comprehensive transformations in the pharmaceutical field, impacting the management and administration of drugs, as well as treatment and diagnosis. Various LBDDSs verified to be an efficacious mechanism for monitoring hypertension systems are SEDDS (self-nano emulsifying drug delivery), nanoemulsion, microemulsions, vesicular systems (transferosomes and liposomes), and solid lipid nanoparticles. LBDDSs overcome the shortcomings that are associated with antihypertensive agents because around fifty percent of the antihypertensive agents experience a few drawbacks including short half-life because of hepatic first-pass metabolism, poor aqueous solubility, low permeation rate, and undesirable side effects. This review emphasizes antihypertensive agents that were encapsulated into the lipid carrier to improve their poor oral bioavailability. Incorporating cutting-edge technologies such as nanotechnology and targeted drug delivery, LBDDS holds promise in addressing the multifactorial nature of hypertension. By fine-tuning drug release profiles and enhancing drug uptake at specific sites, LBDDS can potentially target renin-angiotensin-aldosterone system components, sympathetic nervous system pathways, and endothelial dysfunction, all of which play crucial roles in hypertension pathophysiology. The future of hypertension management using LBDDS is promising, with ongoing reviews focusing on precision medicine approaches, improved biocompatibility, and reduced toxicity. As we delve deeper into understanding the intricate mechanisms underlying hypertension, LBDDS offers a pathway to develop next-generation antihypertensive therapies that are safer, more effective, and tailored to individual patient needs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
- SRM Modinagar College of Pharmacy, SRMIST, Delhi-NCR Campus, Ghaziabad, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
| | - Renu Saharan
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Maharishi Markandeshwar Deemed to be University, Mullana, Ambala 133203, Haryana, India
| | - Geeta Aggarwal
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra 136132, Haryana, India
| | - Renu Sehrawat
- School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Chanchal Rani
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| |
Collapse
|
2
|
Kassem AA, Abd El-Alim SH, Salman AM, Mohammed MA, Hassan NS, El-Gengaihi SE. Improved hepatoprotective activity of Beta vulgaris L. leaf extract loaded self-nanoemulsifying drug delivery system (SNEDDS): in vitro and in vivo evaluation. Drug Dev Ind Pharm 2020; 46:1589-1603. [PMID: 32811211 DOI: 10.1080/03639045.2020.1811303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Beta vulgaris L. (beetroot) is a vegetable plant rich in phytochemical compounds such as phenolic acids, carotenoids and flavonoids. The objective of the current study is the development and optimization of self-nanoemulsifying drug delivery systems (SNEDDSs) to enhance the hepatoprotective activity of beet leaf (BL) extract. METHODS Total flavonoids content was estimated in the BL extract and its solubility was evaluated in various vehicles to select proper component combinations. Pseudo-ternary phase diagrams were constructed employing olive, linseed, castor and sesame oils (oil phase), Tween® 20 (Tw20) and Tween® 80 (Tw80) (surfactants (SAs)) as well as dimethyl sulfoxide (DMSO) and propylene glycol (PG) (co-surfactants (Co-SAs)). Optimization of formulations from the phase diagrams took place through testing their thermodynamic stability, dispersibility and robustness to dilution. RESULTS Four optimized BL-SNEDDS formulations, comprising linseed oil or olive oil, Tw80 and DMSO at two SA/Co-SA ratios (2:1 or 3:1) were chosen. They exhibited high cloud point and percentage transmittance values with spherical morphology of mean droplet sizes ranging from 14.67 to 16.06 nm and monodisperse distribution with negatively charged zeta potential < -9.51 mV. The in vitro release profiles of the optimized formulations in pH 1.2 and 6.8 were nearly similar, with a non-Fickian release mechanism. In vivo evaluation of BL-SNEDDSs hepatoprotective activity in a thioacetamide-induced hepatotoxicity rat model depicted promoted liver functions, inflammatory markers and histopathological findings, most prominently in the group treated by F7. CONCLUSION The results indicate that SNEDDS, as a nanocarrier system, has potential to improve the hepatoprotective activity of the BL extract.
Collapse
Affiliation(s)
- Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | | | - Asmaa Mohamed Salman
- Pharmaceutical and Medicinal Chemistry Department, National Research Centre, Cairo, Egypt
| | - Mona Arafa Mohammed
- Medicinal and Aromatic Plants Research Department, National Research Centre, Cairo, Egypt
| | | | | |
Collapse
|
3
|
Full Factorial Design and Optimization of Olmesartan Medoxomil–Loaded Oily-Core Polymeric Nanocapsules with Improved In-Vitro Stability. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Komesli Y, Burak Ozkaya A, Ugur Ergur B, Kirilmaz L, Karasulu E. Design and development of a self-microemulsifying drug delivery system of olmesartan medoxomil for enhanced bioavailability. Drug Dev Ind Pharm 2019; 45:1292-1305. [DOI: 10.1080/03639045.2019.1607868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yelda Komesli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ali Burak Ozkaya
- Department of Medical Biochemistry, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Bekir Ugur Ergur
- Department of Basic Medicine Sciences, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Levent Kirilmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ercument Karasulu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
5
|
Gupta P, Garcia E, Sarkar A, Kapoor S, Rafiq K, Chand HS, Jayant RD. Nanoparticle Based Treatment for Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2019; 19:33-44. [PMID: 29737265 DOI: 10.2174/1871529x18666180508113253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained increased attention for delivering therapeutic agents effectively to the cardiovascular system. Heart targeted nanocarrier based drug delivery is a new, effective and efficacious approach for treating various cardiac related disorders such as atherosclerosis, hypertension, and myocardial infarction. Nanocarrier based drug delivery system circumvents the problems associated with conventional drug delivery systems, including their nonspecificity, severe side effects and damage to the normal cells. Modification of physicochemical properties of nanocarriers such as size, shape and surface modifications can immensely alter its invivo pharmacokinetic and pharmacodynamic data and will provide better treatment strategy. Several nanocarriers such as lipid, phospholipid nanoparticles have been developed for delivering drugs to the target sites within the heart. This review summarizes and increases the understanding of the advanced nanosized drug delivery systems for treating cardiovascular disorders with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Purnima Gupta
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Evelyn Garcia
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Amrita Sarkar
- Department of Medicine, Center of Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sumit Kapoor
- Beckman Coulter, Inc., 11800 SW 147th Ave, Miami, FL-33196, United States
| | - Khadija Rafiq
- Department of Medicine, Center of Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hitendra S Chand
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Rahul Dev Jayant
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| |
Collapse
|
6
|
Beg S, Choudhry H, Zamzami MA, Alharbi KS, Rahman M, Singh B. Nanocolloidal lipidic carriers of olmesartan medoxomil surface-tailored with Concavalin-A for lectin receptor targeting. Nanomedicine (Lond) 2018; 13:3107-3128. [PMID: 30474494 DOI: 10.2217/nnm-2018-0188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The present work involves the development of Concavalin A-conjugated nanostructured lipidic carriers (NLCs) of olmesartan medoxomil for lectin receptor targeting. Materials & methods: Excipient selection was performed by drug solubility in solid and liquid lipids. Factor screening was carried out by evaluating the impact of formulation and process variables on the critical quality attributes. Surface modification of NLCs was carried out using Concavalin A and extensively characterized. Results & conclusion: NLCs exhibited the particle size of 273.6 nm, ζ-potential of -30.2 nm, encapsulation efficiency of 73.3% and sustained drug release profile. Nearly 4.2-fold improvement in cell uptake, four- to eightfold increase in Cmax and AUC, and 37% reduction in blood pressure was observed from NLCs over the pure drug.
Collapse
Affiliation(s)
- Sarwar Beg
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
- Product Development Research, Jubilant Generics Limited, Noida 201301, UP, India
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, UP, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
- UGC – Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites Biomedical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
Khan MA, Raza A, Ovais M, Sohail MF, Ali S. Current state and prospects of nano-delivery systems for sorafenib. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1429434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Muhammad Adeeb Khan
- School of Material Science and Engineering (MSE), Nanyang Technological University, Nanyang, Singapore
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
- NILOP Nanomedicine Research Labs, National Institute of Lasers & Optronics (NILOP), Islamabad, Pakistan
| | - Abida Raza
- NILOP Nanomedicine Research Labs, National Institute of Lasers & Optronics (NILOP), Islamabad, Pakistan
| | - Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Farhan Sohail
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
8
|
Kaur G, Mehta S. Developments of Polysorbate (Tween) based microemulsions: Preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Nagaraj K, Narendar D, Kishan V. Development of olmesartan medoxomil optimized nanosuspension using the Box-Behnken design to improve oral bioavailability. Drug Dev Ind Pharm 2017; 43:1186-1196. [PMID: 28271908 DOI: 10.1080/03639045.2017.1304955] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of the present investigation was to enhance the oral bioavailability of olmesartan medoxomil by improving its solubility and dissolution rate by preparing nanosuspension (OM-NS), using the Box-Behnken design. In this, four factors were evaluated at three levels. Independent variables include: concentration of drug (X1), concentration of surfactant (X2), concentration of polymer (X3) and number of homogenization cycles (X4). Based on preliminary studies, the size (Y1), zeta potential (ZP) (Y2) and % drug release at 5 min (Y3) were chosen as dependent responses. OM-NS was prepared by high pressure homogenization method. The size, PDI, ZP, assay, in vitro release and morphology of OM-NS were characterized. Further, the pharmacokinetic (PK) behavior of OM-NS was evaluated in male wistar rats. Statistically optimized OM-NS formulation exhibited mean particle size of 492 nm, ZP of -27.9 mV and 99.29% release in 5 min. OM-NS showed more than four times increase in its solubility than pure OM. DSC and XRD analyses indicated that the drug incorporated into OM-NS was in amorphous form. The morphology of OM-NS was found to be nearly spherical with high dispersity by scanning electron microscopic studies. The PK results showed that OM lyophilized nanosuspension (NS) exhibited improved PK properties compared to coarse powder suspension and marketed tablet powder suspension (TS). Oral bioavailability of lyophilized NS was increased by 2.45 and 2.25 folds when compared to marketed TS and coarse powder suspension, respectively. Results of this study lead to conclusion that NS approach was effective in preparing OM formulations with enhanced dissolution and improved oral bioavailability.
Collapse
Affiliation(s)
- K Nagaraj
- a Department of Pharmaceutical Sciences , Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| | - D Narendar
- a Department of Pharmaceutical Sciences , Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| | - V Kishan
- a Department of Pharmaceutical Sciences , Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| |
Collapse
|
10
|
Haq N, Iqbal M, Alanazi FK, Alsarra IA, Shakeel F. Applying green analytical chemistry for rapid analysis of drugs: Adding health to pharmaceutical industry. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2012.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Surampalli G, Satla M, Nanjwade BK, Patil PA. In vitro and in vivo effects of morin on the intestinal absorption and pharmacokinetics of olmesartan medoxomil solid dispersions. Drug Dev Ind Pharm 2016; 43:812-829. [PMID: 27487480 DOI: 10.1080/03639045.2016.1220569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE In-situ evaluation to corroborate morin effects on the intestinal absorption and pharmacokinetic behavior of freeze-dried OLM-loaded solid dispersions with Caco-2 and in-vivo studies Methods: Intestinal transport and absorption studies were examined by Caco-2 permeability, in-situ single pass perfusion and closed-loop models along with in-vivo pharmacokinetic studies to evaluate and confirm the effect of P-gp-mediated activity of morin. We evaluated the intestinal membrane damage in the presence of morin by measuring the release of protein and lactate dehydrogenase (LDH) followed by using qualitative and quantitative morphometric analysis to describe the surface characteristics of intestinal epithelium. RESULTS Morin showed the highest Peff value 13.8 ± 0.34 × 10-6 cm/s in jejunum than ileum (p < .01) at 100 µM with absorption enhancement of 1.31-fold together with enhanced (p < .01) secretory transport of 6.27 ± 0.27 × 10 -6 cm/s in Caco-2 monolayer cells. Our findings noticed 2.37 (in-situ); 2.39 (in-vivo) and 1.43 (in-situ); 1.36 (in-vivo) fold increase in AUC0-t with elevated Cmax and shortened Tmax for freeze-dried solid dispersion in the presence of morin as compared to pure OLM and freeze-dried solid dispersions without morin, respectively. CONCLUSIONS Our study demonstrated that increased solubilization through freeze-dried OLM-loaded solid dispersion together with efflux inhibition improved intestinal permeability to one system that might lead to novel solubilization and efflux pump inhibition as a novel alternative potential to increase oral absorption and bioavailability of OLM.
Collapse
Affiliation(s)
- Gurunath Surampalli
- a Department of Pharmacology and Toxicology , Vaagdevi Institute of Pharma Sciences , Telangana, Warangal , India
| | - Madhuchander Satla
- b Department of Obstetrics and Gynecology , Kakatiya Medical College , Warangal, Telangana , India
| | - Basavaraj K Nanjwade
- c Department of Pharmacy Practice , The Oxford College of Pharmacy , Bengaluru , Karnataka , India
| | - Paragouda A Patil
- d Department of Pharmacology , USM-KLE, International Medical Program , Belgaum , Karnataka , India
| |
Collapse
|
12
|
Cirri M, Roghi A, Valleri M, Mura P. Development and characterization of fast-dissolving tablet formulations of glyburide based on solid self-microemulsifying systems. Eur J Pharm Biopharm 2016; 104:19-29. [DOI: 10.1016/j.ejpb.2016.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 11/25/2022]
|
13
|
Anwer MK, Jamil S, Ansari MJ, Iqbal M, Imam F, Shakeel F. Development and evaluation of olmesartan medoxomil loaded PLGA nanoparticles. ACTA ACUST UNITED AC 2016. [DOI: 10.1179/1433075x15y.0000000049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- M. K. Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - S. Jamil
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - M. J. Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - M. Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - F. Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - F. Shakeel
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: Systematic development, in vitro, ex vivo and in vivo evaluation. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Wang H, Li Q, Deng W, Omari-Siaw E, Wang Q, Wang S, Wang S, Cao X, Xu X, Yu J. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Dev Res 2015; 76:82-93. [PMID: 25847843 DOI: 10.1002/ddr.21244] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022]
Abstract
The objective of this study was to formulate a self-nanoemulsifying oral drug delivery system (SNEDDS) for the poorly water-soluble trans-Cinnamic acid (t-CA SNEDDS) that could be evaluated for its antihyperglycemic efficacy in comparison to the parent t-CA in an alloxan-induced diabetic rat model. A SNEDDS formulation consisting of 60% surfactant (Kolliphor EL), 10% co-surfactant (PEG 400) and 30% oil (isopropyl myristate) proved to be optimal. t-CA SNEDDS (80 mg/kg, p.o.), t-CA suspension (80 mg/kg, p.o.), and Metformin Hydrochloride Tablets (230 mg/kg, p.o.) were administer qdfor 30 days to diabetic rats. After treatment the body weight of diabetic rats was increased, blood glucose levels, total cholesterol, and triglyceride in the serum tended to be normalized, while the levels of alanine aminotransferase and aspartate aminotransferase were markedly decreased. The effects of t-CA SNEDDS were superior to that of the t-CA suspension. The present study demonstrated that t-CA was effective in attenuating the effects of alloxan treatment and that t-CA SNEDDS with a more favorable absorption and enhanced bioavailability is more effective than t-CA.
Collapse
Affiliation(s)
- Houyong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: A study in diet induced hyperlipidemic rabbits. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Surampalli G, K. Nanjwade B, Patil PA. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions usingin-siturat models. Drug Dev Ind Pharm 2014; 41:1057-65. [DOI: 10.3109/03639045.2014.925918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Perspective and potential of oral lipid-based delivery to optimize pharmacological therapies against cardiovascular diseases. J Control Release 2014; 193:174-87. [PMID: 24852093 DOI: 10.1016/j.jconrel.2014.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) remain the major cause of morbidity and mortality globally. Despite the large number of cardiovascular drugs available for pharmacological therapies, factors limiting the efficient oral use are identified, including low water solubility, pre-systemic metabolism, food intake effects and short half-life. Numerous in vivo proof-of-concepts studies are presented to highlight the viability of lipid-based delivery to optimize the oral delivery of cardiovascular drugs. In particular, the key performance enhancement roles of oral lipid-based drug delivery systems (LBDDSs) are identified, which include i) improving the oral bioavailability, ii) sustaining/controlling drug release, iii) improving drug stability, iv) reducing food intake effect, v) targeting to injured sites, and vi) potential for combination therapy. Mechanisms involved in achieving these features, range of applicability, and limits of available systems are detailed. Future research and development efforts to address these issues are discussed, which is of significant value in directing future research work in fostering translation of lipid-based formulations into clinical applications to reduce the prevalence of CVDs.
Collapse
|
19
|
Abd-El Bary A, D. Louis SS. pOlmesartan medoxomil surface solid dispersion-based orodispersible tablets: formulation and in vitro characterization. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50134-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Gorain B, Choudhury H, Kundu A, Sarkar L, Karmakar S, Jaisankar P, Pal TK. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf B Biointerfaces 2013; 115:286-94. [PMID: 24388859 DOI: 10.1016/j.colsurfb.2013.12.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 01/28/2023]
Abstract
Olmesartan medoxomil (OM) is hydrolyzed to its active metabolite olmesartan by the action of aryl esterase to exert its antihypertensive actions by selectively blocking angiotensin II-AT1 receptor. Poor aqueous solubility and uncontrolled enzymatic conversion of OM to its poorly permeable olmesartan limits its oral bioavailability. The aim of the current study was to formulate a novel nanoemulsion of OM to improve its pharmacokinetics and therapeutic efficacy. The oil-in-water (o/w) nanoemulsion of OM was developed using lipoid purified soybean oil 700, sefsol 218 and solutol HS 15. We have characterized the nanoemulsions by considering their thermodynamic stability, morphology, droplet size, zeta potential and viscosity and in vitro drug release characteristics in fasting state simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.5). The thermodynamically stable nanoemulsions comprises of spherical nanometer sized droplets (<50 nm) with low polydispersity index showed enhanced permeability through the Caco-2 cell monolayer. The concentration of active olmesartan in rat plasma following oral absorption study was determined by our validated LC-MS/MS method. The result of the pharmacokinetic study showed 2.8-fold increased in area under the curve (AUC0-27) of olmesartan upon oral administration of OM nanoemulsion and sustained release profile. Subsequent, in vivo studies with nanoemulsion demonstrated better and prolonged control of experimentally induced hypertension with 3-fold reduction in conventional dose. By analysing the findings of the present investigations based on stability study, Caco-2 permeability, pharmacokinetic profile and pharmacodynamic evaluation indicated that the nanoemulsion of OM (OMF6) could significantly enhance the oral bioavailability of relatively insoluble OM contributing to improved clinical application.
Collapse
Affiliation(s)
- Bapi Gorain
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Hira Choudhury
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Amit Kundu
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Lipi Sarkar
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sanmoy Karmakar
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - P Jaisankar
- Department of Chemistry, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Tapan Kumar Pal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
21
|
Zhang L, Zhang L, Zhang M, Pang Y, Li Z, Zhao A, Feng J. Self-emulsifying drug delivery system and the applications in herbal drugs. Drug Deliv 2013; 22:475-86. [DOI: 10.3109/10717544.2013.861659] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
22
|
Impact of various nonionic surfactants on self-nanoemulsification efficiency of two grades of Capryol (Capryol-90 and Capryol-PGMC). J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Gurunath S, Nanjwade BK, Patila PA. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm J 2013; 22:246-57. [PMID: 25067902 DOI: 10.1016/j.jsps.2013.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/24/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. METHODS In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2-2%). Gibbs free energy [Formula: see text] values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. RESULTS FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. CONCLUSION Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability.
Collapse
Affiliation(s)
- S Gurunath
- Department of Pharmacology, KLE University, Belgaum - Karnataka, India
| | | | - P A Patila
- Department of Pharmacology, KLE University, Belgaum - Karnataka, India
| |
Collapse
|
24
|
El-Gamal MI, Anbar HS, Chung HJ, Kim HI, Cho YJ, Lee BS, Lee SA, Moon JY, Lee DJ, Kwon D, Choi WJ, Jeon HR, Oh CH. Discovery of olmesartan hexetil: A new potential prodrug of olmesartan. Bioorg Med Chem Lett 2013; 23:1347-50. [DOI: 10.1016/j.bmcl.2012.12.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/10/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
|
25
|
Choudhury H, Gorain B, Karmakar S, Pal TK. Development and Validation of RP-HPLC Method: Scope of Application in the Determination of Oil Solubility of Paclitaxel. J Chromatogr Sci 2013; 52:68-74. [DOI: 10.1093/chromsci/bms206] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Gorain B, Choudhury H, Biswas E, Barik A, Jaisankar P, Pal TK. A novel approach for nanoemulsion components screening and nanoemulsion assay of olmesartan medoxomil through a developed and validated HPLC method. RSC Adv 2013. [DOI: 10.1039/c3ra41452c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Singh S, Pathak K, Bali V. Product development studies on surface-adsorbed nanoemulsion of olmesartan medoxomil as a capsular dosage form. AAPS PharmSciTech 2012; 13:1212-21. [PMID: 22965661 DOI: 10.1208/s12249-012-9847-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022] Open
Abstract
The present study aimed at development of capsular dosage form of surface-adsorbed nanoemulsion (NE) of olmesartan medoxomil (OLM) so as to overcome the limitations associated with handling of liquid NEs without affecting their pharmaceutical efficacy. Selection of oil, surfactant, and cosurfactant for construction of pseudoternary phase diagrams was made on the basis of solubility of drug in these excipients. Rationally selected NE formulations were evaluated for percentage transmittance, viscosity, refractive index, globule size, zeta potential, and polydispersity index (PDI). Formulation (F3) comprising of Capmul MCM® (10% v/v), Tween 80® (11.25% v/v), polyethylene glycol 400 (3.75% v/v), and double-distilled water (75% v/v) displayed highest percentage cumulative drug release (%CDR; 96.69 ± 1.841), least globule size (17.51 ± 5.87 nm), low PDI (0.203 ± 0.032), high zeta potential (-58.93 ± 0.98 mV), and hence was selected as the optimized formulation. F3 was adsorbed over colloidal silicon dioxide (2 ml/400 mg) to produce free-flowing solid surface-adsorbed NE that presented a ready-to-fill capsule composition. Conversion of NE to surface-adsorbed NE and its reconstitution to NE did not affect the in vitro release profile of OLM as the similarity factor with respect to NE was found to be 66% and 73% respectively. The %CDR after 12 h for optimized NE, surface-adsorbed NE, and reconstituted NE was found to be 96.69 ± 0.54, 96.07 ± 1.76, and 94.78 ± 1.57, respectively (p > 0.05). The present study established capsulated surface-adsorbed NE as a viable delivery system with the potential to overcome the handling limitations of NE.
Collapse
|
28
|
Development and characterisation of a self-microemulsifying drug delivery systems (SMEDDSs) for the vaginal administration of the antiretroviral UC-781. Eur J Pharm Biopharm 2012; 83:322-9. [PMID: 23159711 DOI: 10.1016/j.ejpb.2012.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022]
Abstract
UC-781 is highly selective and potent against HIV-1. However, its hydrophobic nature (logP 5.1) and lack of aqueous solubility have limited its development as a HIV microbicide. Self-microemulsifying drug delivery systems (SMEDDSs) have been developed to enhance the water solubility and bioavailability of hydrophobic drugs, such as UC781. In this study, we show the development of UC781-loaded SMEDDS and their enhanced release of UC781 from hard gelatine capsules, when compared to UC781 powder only. The majority of antiretrovirals being evaluated as potential HIV microbicides are hydrophobic. Therefore, a SMEDDS formulation offers an alternative approach to enhancing the vaginal absorption of these microbicidal candidates.
Collapse
|
29
|
Eudraginated polymer blends: a potential oral controlled drug delivery system for theophylline. ACTA PHARMACEUTICA 2012; 62:71-82. [PMID: 22472450 DOI: 10.2478/v10007-012-0001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustained release (SR) dosage forms enable prolonged and continuous deposition of the drug in the gastrointestinal (GI) tract and improve the bioavailability of medications characterized by a narrow absorption window. In this study, a new strategy is proposed for the development of SR dosage forms for theophylline (TPH). Design of the delivery system was based on a sustained release formulation, with a modified coating technique and swelling features aimed to extend the release time of the drug. Different polymers, such as Carbopol 71G (CP), sodium carboxymethylcellulose (SCMC), ethylcellulose (EC) and their combinations were tried. Prepared matrix tablets were coated with a 5 % (m/m) dispersion of Eudragit (EUD) in order to get the desired sustained release profile over a period of 24 h. Various formulations were evaluated for micromeritic properties, drug concentration and in vitro drug release. It was found that the in vitro drug release rate decreased with increasing the amount of polymer. Coating with EUD resulted in a significant lag phase in the first two hours of dissolution in the acidic pH of simulated gastric fluid (SGF) due to decreased water uptake, and hence decreased driving force for drug release. Release became faster in the alkaline pH of simulated intestinal fluid (SIF) owing to increased solubility of both the coating and matrixing agents. The optimized formulation was subjected to in vivo studies in rabbits and the pharmacokinetic parameters of developed formulations were compared with the commercial (Asmanyl(®)) formulation. Asmanyl(®) tablets showed faster absorption (t(max) 4.0 h) compared to the TPH formulation showing a t(max) value of 8.0 h. The C(max) and AUC values of TPH formulation were significantly (p < 0.05) higher than those for Asmanyl(®), revealing relative bioavailability of about 136.93 %. Our study demonstrated the potential usefulness of eudraginated polymers for the oral delivery of the sparingly soluble drug theophylline.
Collapse
|
30
|
Rao CK, Kumar KK, VijayaLaxmi M, Srinivasulu P, Madhusudhan G, Mukkanti K, Srinivas KSV. Development and Validation of Stability Indicating LC Method for Olmesartan Medoxomil. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajac.2012.32022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Kang MJ, Kim HS, Jeon HS, Park JH, Lee BS, Ahn BK, Moon KY, Choi YW. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system. Drug Dev Ind Pharm 2011; 38:587-96. [PMID: 21988221 DOI: 10.3109/03639045.2011.619194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To characterize the intestinal absorption behavior of olmesartan medoxomil (OLM) and to evaluate the absorption-improving potential of a self-microemulsifying drug delivery system (SMEDDS), we performed in situ single-pass intestinal perfusion (SPIP) and in vivo pharmacokinetic studies in rats. The SPIP study revealed that OLM is absorbed throughout whole intestinal regions, favoring proximal segments, at drug levels of 10-90 μM. The greatest value for effective permeability coefficient (P(eff)) was 11.4 × 10(-6) cm/s in the duodenum (90 μM); the lowest value was 2.9 × 10(-6) cm/s in the ileum (10 μM). A SMEDDS formulation consisting of Capryol 90, Labrasol, and Transcutol, which has a droplet size of 200 nm and self-dispersion time of 21 s, doubled upper intestinal permeability of OLM. The SMEDDS also improved oral bioavailability of OLM in vivo: a 2.7-fold increase in the area under the curve (AUC) with elevated maximum plasma concentration (C(max)) and shortened peak time (T(max)) compared to an OLM suspension. A strong correlation (r(2) = 0.955) was also found between the in situ jejunal P(eff) and the in vivo AUC values. Our study illustrates that the SMEDDS formulation holds great potential as an alternative to increased oral absorption of OLM.
Collapse
Affiliation(s)
- Myung J Kang
- Division of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bioavailability and pharmacokinetics of sorafenib suspension, nanoparticles and nanomatrix for oral administration to rat. Int J Pharm 2011; 419:339-46. [DOI: 10.1016/j.ijpharm.2011.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/08/2011] [Accepted: 08/02/2011] [Indexed: 11/22/2022]
|
33
|
Chang JS, El-Gamal MI, Lee WS, Anbar HS, Chung HJ, Kim HI, Cho YJ, Lee BS, Lee SA, Moon JY, Lee DJ, Jeon HR, Lee J, Choi YW, Oh CH. Design, synthesis, bioconversion, and pharmacokinetics evaluation of new ester prodrugs of olmesartan. Eur J Med Chem 2011; 46:3564-9. [PMID: 21641692 DOI: 10.1016/j.ejmech.2011.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/04/2011] [Accepted: 05/08/2011] [Indexed: 11/29/2022]
Abstract
Synthesis of new ester prodrugs of olmesartan is described. Their in vitro stabilities in simulated gastric juice, rat plasma, and rat liver microsomes were tested. And the pharmacokinetic parameters for olmesartan after their oral administration were also estimated and compared with those in case of olmesartan medoxomil. Compounds 13 and 14 demonstrated high stability in simulated gastric juice and were rapidly metabolized to olmesartan in rat liver microsomes and rat plasma in vitro. In addition, C(max) and AUC(last) parameters were significantly increased in case of compounds 13 and 14 compared with olmesartan medoxomil. These results indicate that compounds 13 and 14 with cyclohexylcarboxyethyl and adamantylcarboxymethyl promoieties, respectively, are promising prodrugs of olmesartan with markedly increased oral bioavailability.
Collapse
Affiliation(s)
- Jeong-Soo Chang
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Park JH, Chang JS, El-Gamal MI, Choi WK, Lee WS, Chung HJ, Kim HI, Cho YJ, Lee BS, Jeon HR, Lee YS, Choi YW, Lee J, Oh CH. Novel amides and esters prodrugs of olmesartan: Synthesis, bioconversion, and pharmacokinetic evaluation. Bioorg Med Chem Lett 2010; 20:5895-9. [DOI: 10.1016/j.bmcl.2010.07.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/06/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|