1
|
Xie J, Luo M, Chen Q, Zhang Q, Qin L, Wang Y, Zhao Y, He Y. Hypolipidemic effect and gut microbiota regulation of Gypenoside aglycones in rats fed a high-fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118066. [PMID: 38499259 DOI: 10.1016/j.jep.2024.118066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino has traditional applications in Chinese medicine to treat lipid abnormalities. Gypenosides (GPs), the main bioactive components of Gynostemma pentaphyllum, have been reported to exert hypolipidemic effects through multiple mechanisms. The lipid-lowering effects of GPs may be attributed to the aglycone portion resulting from hydrolysis of GPs by the gut microbiota. However, to date, there have been no reports on whether gypenoside aglycones (Agl), the primary bioactive constituents, can ameliorate hyperlipidemia by modulating the gut microbiota. AIM OF THE STUDY This study explored the potential therapeutic effects of gypenoside aglycone (Agl) in a rat model of high-fat diet (HFD)-induced hyperlipidemia. METHODS A hyperlipidemic rat model was established by feeding rats with a high-fat diet. Agl was administered orally, and serum lipid levels were analyzed. Molecular techniques, including RT-polymerase chain reaction (PCR) and fecal microbiota sequencing, were used to investigate the effects of Agl on lipid metabolism and gut microbiota composition. RESULTS Agl administration significantly reduced serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) and mitigated hepatic damage induced by HFD. Molecular investigations have revealed the modulation of key lipid metabolism genes and proteins by Agl. Notably, Agl treatment enriched the gut microbiota with beneficial genera, including Lactobacillus, Akkermansia, and Blautia and promoted specific shifts in Lactobacillus murinus, Firmicutes bacterium CAG:424, and Allobaculum stercoricanis. CONCLUSION This comprehensive study established Agl as a promising candidate for the treatment of hyperlipidemia. It also exhibits remarkable hypolipidemic and hepatoprotective properties. The modulation of lipid metabolism-related genes, along with the restoration of gut microbiota balance, provides mechanistic insights. Thus, Agl has great potential for clinical applications in hyperlipidemia management.
Collapse
Affiliation(s)
- Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China; Department of Medical Genetics, Zunyi Medical University, Zunyi, 563000, China.
| | - Mingxia Luo
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qiuyi Chen
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuhe Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
2
|
Chen Y, Ma L, Wang Y, Zhang J, Pei T, Wang M. Label-free proteomic analysis reveals the hepatoprotective mechanism of gypenosides in liver injury rats. Front Pharmacol 2024; 15:1417575. [PMID: 38994199 PMCID: PMC11236725 DOI: 10.3389/fphar.2024.1417575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Chronic liver disease, a long-term condition resulting from various causes such as alcohol abuse, metabolic disorders, and viral hepatitis, is becoming a significant global health challenge. Gypenosides (GPs), derived from the traditional Chinese medicine Gynostemma pentaphyllum (Thunb.) Makino, exhibited hepatoprotective properties in recent years, yet the precise therapeutic mechanism remains unclear. In this study, label-free and parallel reaction monitoring (PRM) proteomics were used to elucidate the hepatoprotective mechanism of GPs in liver injury rats. Through label-free proteomics, we identified 2104 differentially expressed proteins (DEPs) associated with liver injury, along with 1974 DEPs related to the effects of GPs. Bioinformatics analysis revealed that GPs primarily restored metabolic processes involving valine, leucine, and isoleucine degradation, as well as propanoate and butanoate metabolism, and steroid hormone biosynthesis during liver injury. Subsequently, overlapping the two groups of DEPs identified 1508 proteins reversed following GPs treatment, with key targets further validated by PRM. Eight target proteins were identified for GPs treatment of liver injury, including Lgals3, Psat1, Phgdh, Cyp3a9, Cyp2c11, Cyp4a2, Glul, and Ces1d. These findings not only elucidated the hepatoprotective mechanism of GPs, but may also serve as potential therapeutic targets of chronic liver disease.
Collapse
Affiliation(s)
- Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lizhou Ma
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yibo Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiarui Zhang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhe Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Han L, Wu L, Yin Q, Li L, Zheng X, Du S, Huang X, Bai L, Wang Y, Bian Y. A promising therapy for fatty liver disease: PCSK9 inhibitors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155505. [PMID: 38547616 DOI: 10.1016/j.phymed.2024.155505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.
Collapse
Affiliation(s)
- Lizhu Han
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lian Li
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Du
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xuefei Huang
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Yuan Bian
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
4
|
Cao S, Liu M, Han Y, Li S, Zhu X, Li D, Shi Y, Liu B. Effects of Saponins on Lipid Metabolism: The Gut-Liver Axis Plays a Key Role. Nutrients 2024; 16:1514. [PMID: 38794751 PMCID: PMC11124185 DOI: 10.3390/nu16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut-liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives-short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut-liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders.
Collapse
Affiliation(s)
- Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| |
Collapse
|
5
|
Xie P, Luo HT, Pei WJ, Xiao MY, Li FF, Gu YL, Piao XL. Saponins derived from Gynostemma pentaphyllum regulate triglyceride and cholesterol metabolism and the mechanisms: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117186. [PMID: 37722515 DOI: 10.1016/j.jep.2023.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) can be used for both medicinal and tea and has lipid-lowering properties. Modern research has shown that its main bioactive components are flavonoids and saponins. It has many beneficial effects such as hypolipidemic, anti-cancer, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic and anti-inflammatory. AIMS OF THE REVIEW This review aimed to summarize its anti-glycolipid metabolic models and mechanisms are reviewed to facilitate a deeper understanding of the mechanism in lowering lipids. MATERIALS AND METHODS Information related to lipid lowering in G. pentaphyllum was collated by reviewing the relevant literature in the PubMed database from 1985 to 2023. RESULTS Only 101 G. pentaphyllum compounds have been initially explored for their hypolipidemic activity. There are cell models, animal models and human subjects for lipid-lowering of it. It reduced triglyceride level via PPAR/UCP-1/PGC-1α/PRDM16 and (SREBP-1c)-ACC/FAS-CPT1 signal pathways. Cholesterol-lowering effects via (SREBP-2)-HMGCR, PCSK9-LDLR and bile acid biosynthetic pathways. Activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) is a key factor in the regulation of glycolipid metabolism in G. pentaphyllum. Other pathways of action of G. pentaphyllum in regulating glucolipid metabolism are also discussed in this paper. CONCLUSION To date, more than 328 saponins have been isolated and identified in Gynostemma. Further studies on these components, including molecular mechanisms and in vivo metabolic regulation, need to be further confirmed. G. pentaphyllum has the potential to be developed into drugs or functional foods, but further research is needed.
Collapse
Affiliation(s)
- Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
6
|
Xiao MY, Li FF, Xie P, Qi YS, Xie JB, Pei WJ, Luo HT, Guo M, Gu YL, Piao XL. Gypenosides suppress hepatocellular carcinoma cells by blocking cholesterol biosynthesis through inhibition of MVA pathway enzyme HMGCS1. Chem Biol Interact 2023; 383:110674. [PMID: 37604220 DOI: 10.1016/j.cbi.2023.110674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Targeting abnormal cholesterol metabolism is a potential therapeutic direction. Therefore, more natural drugs targeting cholesterol in HCC need to be developed. Gypenosides (Gyp), the major constituent of Gynostemma pentaphyllum, has been demonstrated to have pharmacological properties on anti-cancer, anti-obesity, and hepatoprotective. We investigated whether Gyp, isolated and purified by our lab, could inhibit HCC progression by inhibiting cholesterol synthesis. The present research showed that Gyp inhibited proliferation and migration, and induced apoptosis in Huh-7 and Hep3B cells. Metabolomics, transcriptomics, and target prediction all suggested that lipid metabolism and cholesterol biosynthesis were the mechanisms of Gyp. Gyp could limit the production of cholesterol and target HMGCS1, the cholesterol synthesis-related protein. Downregulation of HMGCS1 could suppress the progression and abnormal cholesterol metabolism of HCC. In terms of mechanism, Gyp suppressed mevalonate (MVA) pathway mediated cholesterol synthesis by inhibiting HMGCS1 transcription factor SREBP2. And the high expression of HMGCS1 in HCC human specimens was correlated with poor clinical prognosis. The data suggested that Gyp could be a promising cholesterol-lowering drug for the prevention and treatment of HCC. And targeting SREBP2-HMGCS1 axis in MVA pathway might be an effective HCC therapeutic strategy.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yan-Shuang Qi
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jin-Bo Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Mei Guo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
7
|
Syed Abd Halim SA, Abd Rashid N, Woon CK, Abdul Jalil NA. Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals (Basel) 2023; 16:ph16050739. [PMID: 37242521 DOI: 10.3390/ph16050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review aimed to summarize the effects of natural products targeting phosphoinositide-3-kinases/serine/threonine kinase (PI3K/AKT) in myocardial ischemia-reperfusion injury (MIRI). The review details various types of natural compounds such as gypenoside (GP), gypenoside XVII (GP-17), geniposide, berberine, dihydroquercetin (DHQ), and tilianin which identified to reduce MIRI in vitro and in vivo by regulating the PI3K/AKT signaling pathway. In this study, 14 research publications that met the inclusion criteria and exclusion criteria were shortlisted. Following the intervention, we discovered that natural products effectively improved cardiac functions through regulation of antioxidant status, down-regulation of Bax, and up-regulation of Bcl-2 and caspases cleavage. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed if MIRI is associated with multiple pathological condition such as oxidative stress, ERS, mitochondrial injury, inflammation, and apoptosis. This brief review provides evidence to support the huge potential of natural products used in the treatment of MIRI due to their various biological activities and drug-like properties.
Collapse
Affiliation(s)
| | - Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Xie P, Xie JB, Xiao MY, Guo M, Qi YS, Li FF, Piao XL. Liver lipidomics analysis reveals the anti-obesity and lipid-lowering effects of gypnosides from heat-processed Gynostemma pentaphyllum in high-fat diet fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154834. [PMID: 37094422 DOI: 10.1016/j.phymed.2023.154834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In traditional Chinese medicine, Gynostemma pentaphyllum (G. pentaphyllum) is widely used to treat conditions associated with hyperlipidemia, and its therapeutic potential has been demonstrated in numerous studies. However, the mechanism of lipid metabolism in hyperlipidemic by G. pentaphyllum, especially heat-processed G. pentaphyllum is not yet clear. PURPOSE The aim of this study was to investigate the therapeutic mechanism of gypenosides from heat-processed G. pentaphyllum (HGyp) in hyperlipidemic mice by means of a lipidomics. METHODS The content of the major components of HGyp was determined by ultra-performance liquid chromatography-electrospray ionization ion trap mass spectrometry (UPLC-ESI-MS). An animal model of hyperlipidaemia was constructed using C57BL/6J mice fed with high-fat diet. HGyp was also administered at doses of 50, 100 and 200 mg/kg, all for 12 weeks. Serum parameters were measured, histological sections were prepared and liver lipidome analysis using UPLC-MS coupled with multivariate statistical analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to analyze the genes and proteins associated with lipid lowering in HGyp. RESULTS HGyp reduced body weight, serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) and hepatic lipid accumulation in hyperlipidemic obese mice. To explore specific changes in lipid metabolism in relation to HGyp administration, lipid analysis of the liver was performed. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots showed that HGyp altered lipid metabolism in HFD mice. In particular, fatty acids (FA), triglycerides (DG), TG and ceramides (CER) were significantly altered. Eleven lipids were identified as potential lipid biomarkers, namely TG (18:2/20:5/18:2), TG (18:2/18:3/20:4), DG (18:3/20:0/0:0), Cer (d18:1/19:0), Cer (d16:1/23:0), Ceramide (d18:1/9Z-18:1), PS (19:0/18:3), PS (20:2/0:0), LysoPC (22:5), LysoPE (0:0/18:0), PE (24:0/16:1). Western blot and qRT-PCR analysis showed that these metabolic improvements played a role by down-regulating genes and proteins related to fat production (SREBP1, ACC1, SCD1), up-regulating genes and proteins related to lipid oxidation (CPTA1, PPARα) and lipid transport decomposition in the bile acid pathway (LXRα, PPARγ, FXR, BSEP). CONCLUSION The lipid-lowering effect of gypenosides from heat-processed G. pentaphyllum is regulate lipid homeostasis and metabolism.
Collapse
Affiliation(s)
- Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jin-Bo Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Mei Guo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yan-Shuang Qi
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
9
|
Therapeutic Effect of Gypenosides on Antioxidant Stress Injury in Orbital Fibroblasts of Graves’ Orbitopathy. J Immunol Res 2022; 2022:4432584. [PMID: 36157877 PMCID: PMC9499793 DOI: 10.1155/2022/4432584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To examine the impact of gypenosides (Gyps) on oxidative stress damage of orbital fibroblasts (OFs) from Graves' ophthalmopathy (GO) patients. Methods The relationship between Gyps and GO oxidative stress was understood by bioinformatics analysis. Orbital connective tissues of GO and non-GO patients were obtained for primary OF culture. The proliferation level of OFs was measured by Cell Counting Kit-8 method, and the appropriate intervention concentration of Gyps and H2O2 was obtained. The expression of apoptosis-related protein mRNA was analyzed by RT-qPCR technique. ROS and SOD test suites were employed to detect the oxidative stress level in OFs. Flow cytometry apoptosis detection, TUNEL detection, and lactate dehydrogenase detection were used to analyze the level of apoptosis. Western blotting detection was utilized to examine the regulatory pathway of oxidative stress, apoptosis, and autophagy-related proteins. The changes of cell morphology, autophagosome, and autophagy lysosome were observed by transmission electron microscope. Results The suitable intervention concentration of Gyps is 100 μg/mL, and the suitable intervention concentration of high concentration H2O2 is 350 μM. In comparison with the blank control group, the H2O2 intervention group enhanced the expression of apoptosis-related mRNA, the expression of ROS and SOD, the apoptosis rate, the expression of autophagy activation-related protein and Nrf2/ERK/HO-1 protein, and the number of autophagosomes and autophagy lysosomes. Compared with H2O2 intervention group, the expression of apoptosis-related mRNA decreased, ROS expression decreased, SOD expression increased, apoptosis rate decreased, autophagy activation-related protein expression decreased, Nrf2/ERK/HO-1 protein expression increased, and the quantity of autophagosomes and autophagy lysosomes decreased in H2O2 + Gyps intervention group. Conclusion Gyps can decrease the oxidative stress level of OFs generated by H2O2, reduce cell autophagy, and reduce apoptosis. Gyps may regulate the oxidative stress response of OFs in GO patients via the Nrf2/ERK/HO-1 signaling pathway.
Collapse
|
10
|
Huang G, Yasir M, Zheng Y, Khan I. Prebiotic properties of jiaogulan in the context of gut microbiome. Food Sci Nutr 2022; 10:731-739. [PMID: 35282005 PMCID: PMC8907712 DOI: 10.1002/fsn3.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Jiaogulan (Gynostemma pentaphyllum) is a traditional Chinese medicinal herb that has been widely used in food and supplemental products. In the last 20 years, extensive research has been conducted to investigate the medicinal prospects of jiaogulan, and in this regard, more than 200 compounds have been isolated with various medicinal properties such as anticancer, anti-obesity, anti-inflammation, and antioxidation. In respect of potential benefits, jiaogulan market is likely growing, and various food items comprised of jiaogulan (beverage, sport drinks, cola, beer, tea, bread, and noodles) have been commercialized in the United States of America, China, and other Asian countries. More recently, there has been growing interest in the prebiotic potential of jiaogulan, especially at the interface of the gut microbiota. This review focuses on the prebiotic and therapeutic aspects of saponins and polysaccharides of jiaogulan tea by summarizing the literature on cancer, obesity, antioxidant activity, and immune-modulatory properties.
Collapse
Affiliation(s)
- Gouxin Huang
- Clinical Research CenterShantou Central HospitalShantouChina
| | - Muhammad Yasir
- Special Infectious Agents UnitKing Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Yilin Zheng
- Clinical Research CenterShantou Central HospitalShantouChina
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaChina
| |
Collapse
|
11
|
Li Y. Gypenoside A attenuates dysfunction of pancreatic β cells by activating PDX1 signal transduction via the inhibition of miR-150-3p both in vivo and in vitro. J Biochem Mol Toxicol 2022; 36:e23004. [PMID: 35191145 DOI: 10.1002/jbt.23004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Saponin gypenoside A (GP) has shown its potential to handle diabetes mellitus. MicroRNA-150-3p (miR-150-3p) is closely related to the dysfunction of pancreatic β cells by targeting PDX1. Given the function of GP is related to its regulation on different miRs, the current study assessed the role of miR-150-3p as a therapeutic target for the hypoglycemic effects of GP. Pancreatic β cell dysfunction was induced in mice using the high-fatty diet (HFD) method and then handled with GP. Changes in insulin release and resistance and the activity of the miR-150-3p/PDX1 axis were detected. The expression of miR-150-3p was induced to confirm its central in the effects of GP. The results of in vivo tests were then validated with in vitro assays. HFD administration suppressed glucose tolerance, delayed insulin release, and induced insulin resistance and pancreas apoptosis in mice, which was indicative of the dysfunction of β pancreatic cells. Changes in pancreatic β function were associated with the increased expression of miR-150-3p and suppressed expression of PDX1. After the administration of GP, the impairments of the pancreas were alleviated and the expression of miR-150-3p was inhibited, contributing to the restored level of PDX1. The injection of miR-150-3p agomir counteracted the protective effects of GP. In in vitro assays, the pretransfection of miR-150-3p mimetics also counteracted the protective effects of GP on pancreatic β cells against palmitic acid. Collectively, miR-150-3p played a key role in the protective effects of GP against pancreatic β cell dysfunction by inhibiting PDX1 expression.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Li T, Zhang S, Zhang J, Song Y, Bao X, Xu F, Zhang J. Analysis of Serum Biochemical Indexes, Egg Quality, and Liver Transcriptome in Laying Hens Fed Diets Supplemented with Gynostemma pentaphyllum Powder. Genes (Basel) 2021; 12:genes12121942. [PMID: 34946891 PMCID: PMC8701024 DOI: 10.3390/genes12121942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
Gynostemma pentaphyllum (GP), known as “southern ginseng”, can reduce the blood pressure and blood lipid levels. In this study, 300 layer chicks of one day old were divided randomly into three groups (control group (base diet), high addition group (base diet with 1% GP), and low addition group (base diet with 0.5% GP)). After 29 weeks, the growth performance, egg quality, and serum index were determined. Additionally, liver mRNA was identified using RNA-seq to investigate the molecular mechanisms. The results indicated that the serum total cholesterol and triglycerides decreased significantly in the GP addition group. The addition of GP increased the egg weight, Haugh unit and redness (a*) of the egg yolk color, and reduced the yolk cholesterol concentration. Moreover, 95 differentially expressed genes (DEGs) were screened between the control and GP addition group. GO and the KEGG analysis showed that the PPAR pathway was significantly enriched. Five fatty acid metabolism-related genes (FABP3, CYP7A1, ANKRD22, SCD1, and PCK1) were validated by qRT-PCR analysis, which confirmed the tendency of the expression. These DEGs in the PPAR pathway may be the key factors of GP affecting fatty acid metabolism. These results may provide a theoretical basis for further research and new insights into GP as a feed additive.
Collapse
Affiliation(s)
- Tao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Shuya Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Yiping Song
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Xiuyu Bao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Fengwen Xu
- Animal Husbandry and Veterinary Center of Ankang City, Ankang 725000, China;
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
- Correspondence:
| |
Collapse
|
13
|
Su C, Li N, Ren R, Wang Y, Su X, Lu F, Zong R, Yang L, Ma X. Progress in the Medicinal Value, Bioactive Compounds, and Pharmacological Activities of Gynostemma pentaphyllum. Molecules 2021; 26:6249. [PMID: 34684830 PMCID: PMC8540791 DOI: 10.3390/molecules26206249] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (GP), also named Jiaogulan in Chinese, was known to people for its function in both health care and disease treatment. Initially and traditionally, GP was a kind of tea consumed by people for its pleasant taste and weight loss efficacy. With the passing of the centuries, GP became well known as more than just a tea. Until now, numbers of bioactive compounds, including saponins (also named gypenosides, GPS), polysaccharides (GPP), flavonoids, and phytosterols were isolated and identified in GP, which implied the great medicinal worth of this unusual tea. Both in vivo and in vitro tests, ranging from different cell lines to animals, indicated that GP possessed various biological activities including anti-cancer, anti-atherogenic, anti-dementia, and anti-Parkinson's diseases, and it also had lipid-regulating effects as well as neuroprotection, hepatoprotective, and hypoglycemic properties. With the further development and utilization of GP, the research on the chemical constituents and pharmacological properties of GP were deepening day by day and had made great progress. In this review, the recent research progress in the bioactive compounds, especially gypenosides, and the pharmacological activities of GP were summarized, which will be quite useful for practical applications of GP in the treatment of human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China; (C.S.); (N.L.); (R.R.); (Y.W.); (X.S.); (F.L.); (R.Z.)
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China; (C.S.); (N.L.); (R.R.); (Y.W.); (X.S.); (F.L.); (R.Z.)
| |
Collapse
|
14
|
Skinner RC, Hagaman JA. The interplay of Western diet and binge drinking on the onset, progression, and outlook of liver disease. Nutr Rev 2021; 80:503-512. [PMID: 33969426 DOI: 10.1093/nutrit/nuab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease and alcoholic liver disease, the two most prevalent liver diseases worldwide, share a common pathology but have largely been considered disparate diseases. Liver diseases are widely underestimated, but their prevalence is increasing worldwide. The Western diet (high-fat, high-sugar) and binge drinking (rapid consumption of alcohol in a short period of time) are two highly prevalent features of standard life in the United States, and both are linked to the development and progression of liver disease. Yet, few studies have been conducted to elucidate their potential interactions. Data shows binge drinking is on the rise in several age groups, and poor dietary trends continue to be prevalent. This review serves to summarize the sparse findings on the hepatic consequences of the combination of binge drinking and consuming a Western diet, while also drawing conclusions on potential future impacts. The data suggest the potential for a looming liver disease epidemic, indicating that more research on its progression as well as its prevention is needed on this critical topic.
Collapse
Affiliation(s)
- R Chris Skinner
- R. C. Skinner and J. A. Hagaman are with the Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas, USA
| | - Joel A Hagaman
- R. C. Skinner and J. A. Hagaman are with the Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas, USA
| |
Collapse
|
15
|
Nguyen NH, Ha TKQ, Yang JL, Pham HTT, Oh WK. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113574. [PMID: 33186700 DOI: 10.1016/j.jep.2020.113574] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE G. pentaphyllum, also known as Jiao-Gu-Lan, has been used traditionally as folk remedies for many diseases, including diabetes mellitus, metabolic syndrome, aging, and neurodegenerative diseases in China and some countries in East and Southeast Asia. It is considered as an "immortality herb" in Guizhou Province, because it was consumed regularly by the elderly native inhabitants. Other species of the same genus Gynostemma such as G. longipes and G. laxum have been used as alternatives to G. pentaphyllum in ethno-medicine in Vietnam and other Asian countries. AIM OF THE REVIEW The review aims to summarize up-to-date study results on Gynostemma species, including traditional usage, phytochemical profile, pharmacological activities, and toxicological studies, in order to suggest future research orientation and therapeutic applications on acute and chronic diseases. MATERIALS AND METHODS The relevant literature on the genus Gynostemma was gathered from secondary databases (Web of Science and PubMed), books, and official websites. The latest literature cited in this review was published in February 2020. RESULTS The genus Gynostemma has been widely used in traditional medicine, mainly for treatment of diabetes, hypertension, obesity, and hepatosteatosis. To date, 328 dammarane-type saponins were isolated and structurally elucidated from Gynostemma species. Crude extracts, saponin-rich fractions (gypenosides), and pure compounds were reported to show a wide range of pharmacological activities in both in vitro and in vivo experiments. The most notable pharmacological effects were anti-cancer, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic, anti-obesity, and anti-inflammatory activities. Toxicological studies were conducted only on G. pentaphyllum, showing that the plant extracts were relatively safe in both acute and long-term toxicity experiments at the given dosage while no toxicological studies were reported for the other species. CONCLUSIONS The review summarizes current studies on traditional uses, phytochemistry, biological properties, and toxicology of medicinal Gynostemma species. Till now, the majority of publications still focused only on G. pentaphyllum. However, the promising preliminary data of other Gynostemma species indicated the research potential of this genus, both in phytochemical and pharmacological aspects. Furthermore, clinical data are required to evaluate the efficacy and undesired effects of crude extracts, standard saponin fractions, and pure compounds prepared from Gynostemma medicinal plants.
Collapse
Affiliation(s)
- Ngoc-Hieu Nguyen
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No. 167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi, 11313, Viet Nam
| | - Thi Kim Quy Ha
- College of Natural Sciences, Cantho University, Campus II, Cantho City, Viet Nam
| | - Jun-Li Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Ha Thanh Tung Pham
- Department of Botany, Hanoi University of Pharmacy, Hanoi, 100000, Viet Nam
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Tan J, Luo J, Meng C, Jiang N, Cao J, Zhao J. Syringin exerts neuroprotective effects in a rat model of cerebral ischemia through the FOXO3a/NF-κB pathway. Int Immunopharmacol 2020; 90:107268. [PMID: 33316740 DOI: 10.1016/j.intimp.2020.107268] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/29/2020] [Indexed: 01/31/2023]
Abstract
Inflammation plays an important role in the pathogenesis of cerebral ischemia. Syringin (SYR) is an active substance isolated from Acanthopanax senticosus plants, and possesses anti-inflammatory and neuroprotective properties. However, its effects on cerebral ischemic injury, as well as the underlying molecular events, are still unclear. The purpose of this study was to investigate the effect of SYR in a rat model of cerebral ischemia and address the related molecular mechanism. A middle cerebral artery occlusion/reperfusion model (MCAO) was used to simulate ischemic injury. SYR treatment clearly reduced the infarct volume, decreased cerebral water content, improved the neurological score, and attenuated neuronal death. Moreover, SYR decreased the expression of NF-κB, IL-1β, IL-6, TNF-α, and MPO, promoted FOXO3a phosphorylation and cytoplasmic retention, and inhibited the nuclear translocation of NF-κB. FOXO3a knockdown by RNA interference significantly prevented SYR-induced inhibition of NF-κB-mediated inflammation. Confocal microscopy revealed that SYR reduced NF-κB translocation to the nucleus, and FOXO3a silencing reversed this effect. Finally, immunofluorescence and CO-IP experiments showed that SYR promoted the interaction between FOXO3a and NF-κB. In conclusion, SYR exerted a protective effect against brain I/R injury by reducing the inflammation accompanying cerebral ischemia. This effect was mediated by the FOXO3a /NF-κB pathway.
Collapse
Affiliation(s)
- Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Changchang Meng
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Cao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
17
|
Hussain SS, Zhang F, Zhang Y, Thakur K, Naudhani M, Cespedes-Acuña CL, Wei Z. Stevenleaf from Gynostemma Pentaphyllum inhibits human hepatoma cell (HepG2) through cell cycle arrest and apoptotic induction. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Chang L, Shi R, Wang X, Bao Y. Gypenoside A protects ischemia/reperfusion injuries by suppressing miR-143-3p level via the activation of AMPK/Foxo1 pathway. Biofactors 2020; 46:432-440. [PMID: 31889343 DOI: 10.1002/biof.1601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/28/2019] [Indexed: 11/06/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a major side effect associated with coronary heart disease (CHD). Gypenoside A (GP) is one of the dominant active components of Gynostemma pentaphyllum and has the potential to attenuate myocardial I/R injuries. The major purpose of this study was to explore the mechanism driving the protective effect of GP on myocardial tissue by focusing on the interaction between GP and miR-143-3p. Cardiomyocytes were pre-treated with GP and subjected to oxygen-glucose deprivation/re-oxygenation (OGD/R). Changes in cell viability, apoptosis, and expression levels of factors involved in the adenosine monophosphate activated protein kinase (AMPK)/Foxo1-mediated miR-143-3p pathway were detected. The levels of AMPK and miR-143-3p were then modulated using an inhibitor and a mimic, respectively, to confirm their central roles in the effect of GP. The administration of GP attenuated OGD/R-induced injuries by increasing cell viability and suppressing apoptosis, which was associated with the activation of AMPK/Foxo1 signaling and the decreased level of miR-143-3p. The down-regulation of AMPK and up-regulation of miR-143-3p both counteracted the function of GP on cardiomyocytes. The role of miR-143-3p suppression in the anti-I/R effect of GP was also verified with rat model. The injection of miR-143-3p agomir inhibited the cardio-protective effect of GP in a manner similar to that in the in vitro assays. Our results confirm the cardio-protective effect of GP, which is exerted by suppressing the level of miR-143-3p via the activation of AMPK signaling.
Collapse
Affiliation(s)
- Liping Chang
- Department of Cardiology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun City, Jilin Province, China
| | - Rui Shi
- Department of Cardiology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun City, Jilin Province, China
| | - Xiujiang Wang
- Department of Respiratory, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun City, Jilin Province, China
| | - Yang Bao
- Department of Endocrine Metabolic Diseases, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun City, Jilin Province, China
| |
Collapse
|
19
|
Shen SH, Zhong TY, Peng C, Fang J, Lv B. Structural modulation of gut microbiota during alleviation of non-alcoholic fatty liver disease with Gynostemma pentaphyllum in rats. BMC Complement Med Ther 2020; 20:34. [PMID: 32024509 PMCID: PMC7076883 DOI: 10.1186/s12906-020-2835-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background The current work aimed to assess whether Gynostemma pentaphyllum (GP), a Chinese herbal medicine, structurally modifies the gut microbiota in rats during non-alcoholic fatty liver disease (NAFLD) treatment. Methods High-fat diet (HFD)-induced NAFLD rats were orally administered water decoction of GP or equal amounts of distilled water per day for 4 weeks. Liver tissues were examined by histopathological observation, while intestinal tissues were examined by both histopathological and ultrastructural observations. The levels of fasting blood glucose (FBG), fasting serum insulin (FINS), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT) and aspartate transaminase (AST) were measured by enzymatic method. The levels of toll-like receptor 4 (TLR-4), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and interleukin-6 (IL-6) in both serum and hepatic tissues were measured by RT-qPCR. The protein expression level of TLR-4 in hepatic tissues was detected by western blot. The gut microbiota was assessed by 16S rRNA-based microbiota analysis. Results GP maintained intestinal integrity and reversed gut dysbiosis in high-fat diet (HFD)-induced NAFLD rats. This also reduced the ratio of Firmicutes to Bacteroidetes, enriching the abundance of beneficial bacteria (Lactococcus spp.) and inhibiting the abundance of pathogenic bacteria (Ruminococcus spp.) in the gut. The levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and the expression of TLR4 were downregulated (P < 0.05), while the insulin resistance index, HOMA-IR showed improvement by GP treatment (P < 0.05). Liver function indicators (ALT and AST) were remarkably decreased (P < 0.01). Besides, GP treatment reduced TG and LDL-C levels (P < 0.05), and increased HDL-C level (P < 0.05) compared with NAFLD group. Conclusion The structural alterations of gut microbiota induced by GP are associated with NAFLD alleviation.
Collapse
Affiliation(s)
- Shu-Hua Shen
- Department of Healthcare Management, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Ting-Yan Zhong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cui Peng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Fang
- Laboratory Animal Centre, Zhejiang Academy of Medical Science, Hangzhou, 310000, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Zhejiang, 310006, Hangzhou, China.
| |
Collapse
|
20
|
Biswas L, Zeng Z, Graham A, Shu X. Gypenosides mediate cholesterol efflux and suppress oxidized LDL induced inflammation in retinal pigment epithelium cells. Exp Eye Res 2020; 191:107931. [DOI: 10.1016/j.exer.2020.107931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
|
21
|
Li K, Ma C, Li H, Dev S, He J, Qu X. Medicinal Value and Potential Therapeutic Mechanisms of Gynostemma pentaphyllum (Thunb.) Makino and Its Derivatives: An Overview. Curr Top Med Chem 2020; 19:2855-2867. [PMID: 31724506 DOI: 10.2174/1568026619666191114104718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
:
Gynostemma pentaphyllum (Thunb.) Makino (GpM) and its derivatives, especially gypenosides
(Gyps), are widely used as safe and convenient natural herbal drugs for the treatment of many
diseases for a long time, and Gyps have different oral bioavailability (OB) values and low ability to
cross the blood-brain barrier (BBB). The effects of GpM and isolates on fibrosis, inflammation, oxidation,
proliferation and migration are proved. GpM shows bidirectional regulation effect on proliferation,
oxidation and apoptosis in tumor and non-tumor cells. GpM and its extractions can resist proliferation,
activate oxidation and apoptosis in tumor cells and have opposite effects on non-tumor cells. We succinctly
present some current views of medicinal value and potential therapeutic mechanisms of GpM
and its derivatives.
Collapse
Affiliation(s)
- Kaijun Li
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Haoyu Li
- Graduate School, Guangxi University of Chinese Medicine, Guangxi, China
| | - Sooranna Dev
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369, Fulham Road, London SW10 9NH, United Kingdom
| | - JianFeng He
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaosheng Qu
- National Engineering laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Guangxi, China
| |
Collapse
|
22
|
Zang H, Yang Q, Li J. Eleutheroside B Protects against Acute Kidney Injury by Activating IGF Pathway. Molecules 2019; 24:E3876. [PMID: 31661774 PMCID: PMC6864713 DOI: 10.3390/molecules24213876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023] Open
Abstract
Acute kidney injury (AKI) is a common, complex, and severe clinical syndrome characterized by rapid decline in renal function, combined with tissue damage. Currently, the prevention and treatment of AKI are focused on symptomatic treatment, rather than treating the underlying causes. Therefore, there is no specific treatment to prevent renal injury except for renal dialysis. In this study, we used cisplatin-induced AKI mouse and human kidney-2 (HK-2) cell models to evaluate the renal protective effect of eleutheroside B, an active compound in traditional Chinese medicines. MTT assay was used to detect the effect of eleutheroside B on proliferation of human HK-2 cells in presence and in absence of cisplatin. Western blot and immunostaining were used to detect the protein level of kidney injury molecule-1 (KIM-1), cleaved caspase-3, receptor-interacting protein kinase (RIPK)-1, and RIPK-3. Real-time PCR was used to detect the mRNA levels of chemokines (like monocyte chemotactic protein 1, MCP-1) and pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-α). Flow cytometry assay was used to detect apoptosis of HK-2 cells. In vivo results showed that eleutheroside B reduced the increase in serum creatinine and blood urea nitrogen (BUN) levels in the AKI model. Periodic acid-Schiff staining and Western blot analysis of KIM-1 showed that eleutheroside B alleviated tubular cell injury. Further, eleutheroside B reduced macrophage infiltration and production of inflammatory cytokines, inhibited the activation of nuclear factor (NF)-κB, and inhibited apoptosis and programmed necrosis. The mechanism may be that eleutheroside B can activate the insulin-like growth factor (IGF) pathway and its downstream pathway by downregulating the expression of IGFBP-7, thus promoting cell proliferation. Therefore, our results suggest that eleutheroside B is a potential drug for AKI treatment.
Collapse
Affiliation(s)
- Hongmei Zang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
- Anhui Institute of Innovative Drugs, Hefei 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Qin Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
- Anhui Institute of Innovative Drugs, Hefei 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
23
|
Zhang W, Zhao T, Zhao Y, Gui D, Xu Y. Advanced Glycation End Products in Chinese Medicine Mediated Aging Diseases: A Review. Curr Vasc Pharmacol 2019; 18:322-333. [PMID: 31060489 DOI: 10.2174/1570161117666190507112157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Aging has become a worldwide problem. During this process, the incidence of related diseases such as diabetes and atherosclerosis increases dramatically. Studies within the most recent two decades suggest a pivotal role of Advanced Glycation End Products (AGEs) in the aging process. This review aims to systemically summarize the effects and potential mechanism of Chinese Medicines on inhibiting AGEs-related aging diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Yonghua Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| |
Collapse
|
24
|
Tian H, Liu L, Li Z, Liu W, Sun Z, Xu Y, Wang S, Liang C, Hai Y, Feng Q, Zhao Y, Hu Y, Peng J. Chinese medicine CGA formula ameliorates liver fibrosis induced by carbon tetrachloride involving inhibition of hepatic apoptosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:227-235. [PMID: 30471378 DOI: 10.1016/j.jep.2018.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL REVELVANCE CGA consisting of Cordyceps sinensis mycelia polysaccharide, gypenosides and amygdalin, was demonstrated to be the effective components formula in Fuzheng Huayu (FZHY) capsule, a traditional Chinese medicine approved by China food and drug administration for treatment of liver fibrosis and to inhibit transforming growth factor-β1 (TGF-β1) signaling, previously. AIM OF THE STUDY To evaluate the effects of CGA on hepatic apoptosis in liver fibrosis induced by carbon tetrachloride (CCl4). MATERIALS AND METHODS The hepatic injury and histology was detected by serum biomarker assay and hematoxylin-eosin staining. The hepatic collagen was illustrated by Sirius red staining and hydroxyproline (Hyp) concentration. The hepatic stellate cells (HSCs) activation and hepatic apoptosis was visualized by immunohistochemical analysis of α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase-mediated dUPT nick-end labeling (TUNEL) assay respectively. The protein expression of collagen type I (Col-I), α-SMA, TGF-β1, Fas, tumor necrosis factor receptor 1 (TNF-R1), cleaved-caspase-8, cleaved-caspase-10, cleaved-caspase-9, cleaved-caspase-3, mitochondrial Bcl-2, Bcl-2 associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), cytochrome C and cytoplasmic cytochrome C was detected by western-blot. RESULTS CGA or FZHY ameliorated liver histological changes, decreasing serum alanine aminotransferase, aspartate aminotransferase, hepatic Hyp, TUNEL positive-stained area, and down-regulated the protein expression of α-SMA, TGF-β1, Col-I, Fas, TNF-R1, cleaved-caspase-8, cleaved-caspase-10, cleaved-caspase-9, and cleaved-caspase-3, mitochondrial Bax, Bak, and cytoplasmic cytochrome C, while restored the expression of mitochondrial Bcl-2 and cytochrome C. CONCLUSION CGA formula ameliorates liver fibrosis induced by CCl4, which is correlated to its inhibition on hepatic apoptosis.
Collapse
Affiliation(s)
- Huajie Tian
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lin Liu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Liu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yongbin Xu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shunchun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chungeng Liang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yamei Hai
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qin Feng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yu Zhao
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China.
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Bae UJ, Park EO, Park J, Jung SJ, Ham H, Yu KW, Park YJ, Chae SW, Park BH. Gypenoside UL4-RichGynostemma pentaphyllumExtract Exerts a Hepatoprotective Effect on Diet-Induced Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1315-1332. [DOI: 10.1142/s0192415x18500696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) arises from nonalcoholic fatty liver disease (NAFLD) as a consequence of oxidative stress. Gynostemma pentaphyllum extract (GPE) is proven to be beneficial for patients suffering from NAFLD. However, the precise mechanism by which GPE confers these benefits remains largely unknown. The purpose of this study was to investigate the underlying mechanism and to determine whether supplementation with the newly discovered GPE gypenoside UL4 mitigates NASH progression. Male c57BL/6 mice were fed a normal chow diet, a methionine choline-deficient (MCD) diet, or an MCD diet supplemented with various doses of UL4-rich GPE for eight weeks. GPE supplementation suppressed oxidative stress induced by the MCD diet by increasing levels of sirtuin 6 and phase 2 anti-oxidant enzymes in mouse liver and HepG2 cells. Additionally, GPE supplementation prevented diet-induced hepatic fat accumulation, hepatocellular injury, inflammation, and fibrosis in mice fed the MCD diet. These results indicate the possible therapeutic potential of dietary supplementation of UL4-rich GPE in preventing the development of fatty liver and its progression to NASH.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Eun-Ock Park
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - John Park
- Department of Chemistry, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hyeonmi Ham
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Kee-Won Yu
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Young-Jun Park
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Soo-Wan Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
26
|
Gypenosides Altered Hepatic Bile Acids Homeostasis in Mice Treated with High Fat Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8098059. [PMID: 30105069 PMCID: PMC6076974 DOI: 10.1155/2018/8098059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023]
Abstract
Gypenosides extracted from Gynostemma pentaphyllum (Thunb.) Makino have significant role in reducing serum lipid level and treating fatty liver diseases, however, without clear mechanism. As gypenosides share the similar core structures with bile acids (the endogenous ligands of nuclear receptor FXR), we hypothesize that gypenosides may improve hypercholesterolemia via FXR-mediated bile acids signaling. The present study was designed to validate the role of gypenosides in reducing levels of serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), as well as in regulating bile acids homeostasis and related gene expression levels. The C57BL/6 male mice were divided into four groups. Mice in groups ND and HFD were fed with normal diet and high fat diet for 38 weeks, respectively. In groups HFD+GP and HFD+ST, mice were fed with high fat diet for 38 weeks and treated with gypenosides and simvastatin (positive control) from weeks 16 to 38, respectively. Serum TC and LDL-C levels were assayed by commercially available kits. Expression levels of genes were tested by the quantitative real-time PCR. The LC-MS/MS was applied to quantify major bile acids in mice livers. Our results showed that gypenosides significantly decreased serum TC and LDL-C levels. The gene expression level of Shp was downregulated while the levels of Cyp7a1, Cyp8b1, Fxr, Lrh1, Jnk1/2, and Erk1/2 were upregulated by gypenosides. Indicated by LC-MS/MS technology, gypenosides increased the hepatic levels of several free bile acids and most taurine-conjugated bile acids while decreasing glycine-conjugated bile acids levels. In addition, gypenosides decreased the CA/CDCA ratio. Gypenosides may improve the abnormal lipid profile of HFD-fed mice via two pathways: (1) enhancing the bile acids biosynthesis from cholesterol; (2) decreasing the CA/CDCA ratio which is positively related to cholesterol absorption.
Collapse
|
27
|
Shi G, Wang X, Zhang H, Zhang X, Zhao Y. New dammarane-type triterpene saponins from Gynostemma pentaphyllum and their anti-hepatic fibrosis activities in vitro. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
28
|
Hong M, Cai Z, Song L, Liu Y, Wang Q, Feng X. Gynostemma pentaphyllum Attenuates the Progression of Nonalcoholic Fatty Liver Disease in Mice: A Biomedical Investigation Integrated with In Silico Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8384631. [PMID: 29743925 PMCID: PMC5884411 DOI: 10.1155/2018/8384631] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common type of liver disease in developed countries. Oxidative stress plays a critical role in the progression of NAFLD. Modern pharmacological study and clinical trials have demonstrated the remarkable antioxidant activity of Gynostemma pentaphyllum (GP) in chronic liver disease. One aim of this study was to explore the potential protective effects and mechanisms of action of GP extract on NAFLD. The in vivo results showed that GP extract could alleviate fatty degeneration and haptic fibrosis in NAFLD mice. For exploring the hepatoprotective mechanisms of GP, we used network pharmacology to predict the potential active components of GP and their intracellular targets in NAFLD. Based on the network pharmacology results, we further utilized biomedical assays to validate this in silico prediction. The results showed that Gypenoside XL could upregulate the protein level of PPARα in NAFLD; the transcription level of several PPARα downstream target genes such as acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase-1 (CPT-1) also increased after Gypenoside XL treatment. The overexpression of ACO and CPT-1 may involve the hepatoprotective effects of GP and Gypenoside XL on NAFLD by regulating mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Zhe Cai
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 665 Kongjiang Rd., Shanghai, China
| |
Collapse
|
29
|
Alhasani RH, Biswas L, Tohari AM, Zhou X, Reilly J, He JF, Shu X. Gypenosides protect retinal pigment epithelium cells from oxidative stress. Food Chem Toxicol 2018; 112:76-85. [DOI: 10.1016/j.fct.2017.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
|
30
|
Wan ZH, Zhao Q. Gypenoside inhibits interleukin-1β-induced inflammatory response in human osteoarthritis chondrocytes. J Biochem Mol Toxicol 2017; 31. [PMID: 28422402 DOI: 10.1002/jbt.21926] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
Gypenoside (GP), the main active ingredient of Gynostemma pentaphyllum, possesses a variety of pharmacological capacities including anti-inflammation, anti-oxidation, and anti-tumor. However, the effects of GP on IL-1β-stimulated human osteoarthritis (OA) chondrocytes are still unknown. Therefore, this study aimed to investigate the anti-inflammatory effects of GP on IL-1β-stimulated human OA chondrocytes and explore the possible mechanism. Our results showed that GP dose-dependently inhibited IL-1β-induced NO and PGE2 production in human OA chondrocytes. In addition, treatment of GP inhibited the expression of MMP3 and MMP13, which was increased by IL-1β. Finally, we found that pretreatment of GP obviously suppressed NF-κB activation in IL-1β-stimulated human OA chondrocytes. Taken together, the results demonstrated that GP has chondro-protective effects, at least in part, through inhibiting the activation of NF-κB signaling pathway in human OA chondrocytes. Thus, these findings suggest that GP may be considered as an alternative therapeutic agent for the management of OA patients.
Collapse
Affiliation(s)
- Zhi-Hong Wan
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, People's Republic of China
| |
Collapse
|
31
|
Metabolomic mechanisms of gypenoside against liver fibrosis in rats: An integrative analysis of proteomics and metabolomics data. PLoS One 2017; 12:e0173598. [PMID: 28291813 PMCID: PMC5349658 DOI: 10.1371/journal.pone.0173598] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/23/2017] [Indexed: 01/04/2023] Open
Abstract
Aims To investigate mechanisms and altered pathways of gypenoside against carbon tetrachloride (CCl4)-induced liver fibrosis based on integrative analysis of proteomics and metabolomics data. Methods CCl4-induced liver fibrosis rats were administrated gypenoside. The anti-fibrosis effects were evaluated by histomorphology and liver hydroxyproline (Hyp) content. Protein profiling and metabolite profiling of rats liver tissues were examined by isobaric tags for relative and absolute quantitation (iTRAQ) approach and gas chromatography-mass spectrometer (GC-MS) technology. Altered pathways and pivotal proteins and metabolites were searched by integrative analysis of proteomics and metabolomics data. The levels of some key proteins in altered pathways were determined by western blot. Results Histopathological changes and Hyp content in gypenoside group had significant improvements (P<0.05). Compared to liver fibrosis model group, we found 301 up-regulated and 296 down-regulated proteins, and 9 up-regulated and 8 down-regulated metabolites in gypenoside group. According to integrative analysis, some important pathways were found, including glycolysis or gluconeogenesis, fructose and mannose metabolism, glycine, serine and threonine metabolism, lysine degradation, arginine and proline metabolism, glutathione metabolism, and sulfur metabolism. Furthermore, the levels of ALDH1B1, ALDH2 and ALDH7A1 were found increased and restored to normal levels after gypenoside treated (P<0.05). Conclusions Gypenoside inhibited CCl4-induced liver fibrosis, which may be involved in the alteration of glycolysis metabolism and the protection against the damage of aldehydes and lipid peroxidation by up-regulating ALDH.
Collapse
|
32
|
Wang Y, Zhao M, Wang M, Zhao C. Profiling analysis of amino acids from hyperlipidaemic rats treated with Gynostemma pentaphyllum and atorvastatin. PHARMACEUTICAL BIOLOGY 2016; 54:2254-2263. [PMID: 26958976 DOI: 10.3109/13880209.2016.1152278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Context Gynostemma pentaphyllum (Thunb.) Makino has been used in traditional medicine for the treatment of hyperlipidaemic with a long history. OBJECTIVE The objective of this study was to evaluate the influence of Gynostemma pentaphyllum (GP) and atorvastatin on amino acids from the plasma and liver tissue of hyperlipidaemic rats. Materials and methods The rats were fed a high-fat diet continuously for 11 weeks for the construction of hyperlipidaemic model. The hyperlipidaemic rats were treated with Gynostemma pentaphyllum (120 mg/kg) and atorvastatin (1.8 mg/kg) for 4 weeks, and the rats were intragastric administration one time every day. Chromatographic separation was performed on a Shim-pack XR-ODSIII C18 analytical column (75 mm × 2.0 mm i.d., 1.6 μm, Shmadazu Corp., Tokyo, Japan). The biomarkers of amino acids were identified by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Results After feeding with a high-fat diet, the TC and LDL-C values of the hyperlipidaemic mode rats increased dramatically (p < 0.01). The established method allowed a target analysis of 12 kinds of amino acids. PCA studies showed that the plasma amino acids had not returned to normal after GP treatment, but those had recovered slightly after atorvastatin treatment. GP has almost no impact on the metabolism of amino acids, while atorvastatin can modify the metabolism of amino acids via self-regulatory mechanisms. Discussion and conclusion UPLC/DAD combined with SCX-SPE can be successfully used for profiling analysis of amino acids. By the comparison of biomarkers following treatment with GP and atorvastatin, the influence of the two drugs on biomarkers is revealed.
Collapse
Affiliation(s)
- Yinan Wang
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Min Zhao
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Miao Wang
- b School of Life Science and Biopharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Chunjie Zhao
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
33
|
Li Y, Lin W, Huang J, Xie Y, Ma W. Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino ( Jiaogulan). Chin Med 2016; 11:43. [PMID: 27708693 PMCID: PMC5037898 DOI: 10.1186/s13020-016-0114-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (GpM) (Jiaogulan) has been widely used in Chinese medicine for the treatment of several diseases, including hepatitis, diabetes and cardiovascular disease. Furthermore, GpM has recently been shown to exhibit potent anti-cancer activities. In this review, we have summarized recent research progress on the anti-cancer activities and mechanisms of action of GpM, as well as determining the material basis for the anti-cancer effects of GpM by searching the PubMed, Web of Science and China National Knowledge Infrastructure databases. The content of this review is based on studies reported in the literature pertaining to the chemical components or anti-cancer effects of GpM up until the beginning of August, 2016. This search of the literature revealed that more than 230 compounds have been isolated from GpM, and that most of these compounds (189) were saponins, which are also known as gypenosides. All of the remaining compounds were classified as sterols, flavonoids or polysaccharides. Various extracts and fractions of GpM, as well as numerous pure compounds isolated from this herb exhibited inhibitory activity towards the proliferation of cancer cells in vitro and in vivo. Furthermore, the results of several clinical studies have shown that GpM formula could have potential curative effects on cancer. Multiple mechanisms of action have been proposed regarding the anti-cancer activities of GpM, including cell cycle arrest, apoptosis, inhibition of invasion and metastasis, inhibition of glycolysis and immunomodulating activities.
Collapse
Affiliation(s)
- Yantao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jiajun Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
34
|
Yu H, Shi L, Qi G, Zhao S, Gao Y, Li Y. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo. Front Pharmacol 2016; 7:148. [PMID: 27313532 PMCID: PMC4887463 DOI: 10.3389/fphar.2016.00148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/19/2016] [Indexed: 11/13/2022] Open
Abstract
Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia-reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation-reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Haijie Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Liye Shi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Guoxian Qi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Shijie Zhao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Yuan Gao
- Department of Cardiology, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Yuzhe Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University Shenyang, China
| |
Collapse
|
35
|
Ye Q, Zhu YI, Ye S, Liu H, She X, Niu Y, Ming Y. Gypenoside attenuates renal ischemia/reperfusion injury in mice by inhibition of ERK signaling. Exp Ther Med 2016; 11:1499-1505. [PMID: 27073472 DOI: 10.3892/etm.2016.3034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022] Open
Abstract
Gynostemma pentaphyllum is a traditional Chinese medicine reported to possess a wide range of health benefits. As the major component of G. pentaphyllum, gypenoside (GP) displays various anti-inflammatory and anti-oxidant properties. However, it is unclear whether GP can protect against ischemia/reperfusion (I/R)-induced renal injury, and the underlying molecular mechanisms associated with this process remain unknown. In the present study, a renal I/R injury model in C57BL/6 mice was established. It was observed that, following I/R, serum concentrations of creatinine (Cr) and blood urea nitrogen (BUN) were significantly increased (P<0.01), indicating renal injury. Pretreatment with GP (50 mg/kg) significantly inhibited I/R-induced upregulation of serum Cr and BUN (P<0.01). Furthermore, renal malondialdehyde levels were significantly reduced in the I/R+GP group, compared with the I/R group (P<0.01), whereas renal tissue superoxide dismutase activity was significantly higher in the I/R+GP group compared with the I/R group (P<0.01). Further investigation demonstrated that pretreatment with GP produced inhibitory effects on the I/R-induced production of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α and interferon-γ (P<0.01). In addition, heme oxygenase 1 (HO-1) expression levels were significantly increased in the I/R group compared with the control (P<0.01), indicating the presence of oxidative damage. However, the I/R-induced upregulation of HO-1 was significantly attenuated by pretreatment with GP (P<0.01), which also suppressed I/R-induced apoptosis by inhibiting pro-apoptotic Bax and upregulating anti-apoptotic Bcl-2 in renal cells (P<0.01). Finally, the activity of ERK signaling was significantly increased in the I/R+GP group compared with the I/R group (P<0.05), which may be associated with the protective effect of GP against I/R-induced renal cell apoptosis. To conclude, the present results suggest that GP produces a protective effect against I/R-induced renal injury as a result of its anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Qifa Ye
- Center of Transplant Medicine Engineering and Technology of Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Y I Zhu
- Center of Transplant Medicine Engineering and Technology of Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaojun Ye
- Center of Transplant Medicine Engineering and Technology of Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong Liu
- Center of Transplant Medicine Engineering and Technology of Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xingguo She
- Center of Transplant Medicine Engineering and Technology of Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ying Niu
- Center of Transplant Medicine Engineering and Technology of Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yingzi Ming
- Center of Transplant Medicine Engineering and Technology of Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
36
|
Van De Wier B, Koek GH, Bast A, Haenen GRMM. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr 2015; 57:834-855. [DOI: 10.1080/10408398.2014.952399] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Zhao J, Ming Y, Wan Q, Ye S, Xie S, Zhu Y, Wang Y, Zhong Z, Li L, Ye Q. Gypenoside attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative and anti-apoptotic bioactivities. Exp Ther Med 2014; 7:1388-1392. [PMID: 24940444 PMCID: PMC3991488 DOI: 10.3892/etm.2014.1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
Gynostemma pentaphyllum is a traditional Chinese medicine that has previously been used for the treatment of chronic inflammation, hyperlipidemia and liver disease. Gypenoside (GP), the predominant component of Gynostemma pentaphyllum, exhibits a therapeutic effect on chronic hepatic injury, fibrosis and fatty liver disease via its anti-inflammatory and anti-oxidant activity. However, the effect of GP on ischemia/reperfusion (I/R)-induced hepatic injury has, to the best of our knowledge, not previously been investigated. In the present study, a hepatic I/R-injury model was successfully established using C57BL/6 mice. In the treatment group, 50 mg/kg GP was administered orally 1 h prior to ischemia. Following hepatic I/R, the levels of hepatic lipid peroxidation and serum alanine aminotransferase increased, while the ratio of hepatic glutathione (GSH):oxidized GSH was reduced, which was effectively attenuated by pretreatment with GP. Furthermore, an increased protein expression of heme oxygenase-1 in the liver tissues of the I/R mice was attenuated by the administration of GP. In addition, the present study indicated that treatment with GP suppressed the I/R-induced increase in the pro-apoptotic protein levels of Bax and cytochrome c and the activity of caspase-3/8, as well as the I/R-induced decrease in the levels of anti-apoptotic protein Bcl-2. In conclusion, the present study indicated that GP effectively protected against I/R-induced hepatic injury via its anti-oxidative and anti-apoptotic bioactivity.
Collapse
Affiliation(s)
- Jie Zhao
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yingzi Ming
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiquan Wan
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaojun Ye
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Song Xie
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhu
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanfeng Wang
- Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ling Li
- Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China ; Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
38
|
Yu Y, Lu Y, Bo R, Huang Y, Hu Y, Liu J, Wu Y, Tao Y, Wang D. The preparation of gypenosides liposomes and its effects on the peritoneal macrophages function in vitro. Int J Pharm 2014; 460:248-54. [DOI: 10.1016/j.ijpharm.2013.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/20/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
|
39
|
Shen H, Leung WI, Ruan JQ, Li SL, Lei JPC, Wang YT, Yan R. Biotransformation of ginsenoside Rb1 via the gypenoside pathway by human gut bacteria. Chin Med 2013; 8:22. [PMID: 24267405 PMCID: PMC4175505 DOI: 10.1186/1749-8546-8-22] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/21/2013] [Indexed: 11/30/2022] Open
Abstract
Background Bacterial conversion of ginsenosides is crucial for the health-promoting effects of ginsenosides. Previous studies on the biotransformation of ginsenoside Rb1 (Rb1) by gut bacteria have focused on the ginsenoside Rd (Rd) pathway (Rb1 → Rd → ginsenoside F2 (F2) → compound K (Cpd K)). This study aims to examine the gypenoside pathway in human gut bacteria in vitro. Methods The metabolic pathways of ginsenoside Rb1 and its metabolites ginsenoside Rd and gypenoside XVII in human gut bacteria were investigated by incubating the compounds anaerobically with pooled or individual gut bacteria samples from healthy volunteers. Ginsenoside Rb1, the metabolites generated by human gut bacteria, and degraded products in simulated gastric fluid (SGF) were qualitatively analyzed using an LC/MSD Trap system in the negative ion mode and quantitatively determined by HPLC-UV analysis. Results When incubated anaerobically with pooled gut bacteria, Rb1 generated five metabolites, namely Rd, F2, Cpd K, and the rare gypenosides XVII (G-XVII) and LXXV (G-LXXV). The gypenoside pathway (Rb1 → G-XVII → G-LXXV → Cpd K) was rapid, intermediate, and minor, and finally converted Rb1 to Cpd K via G-XVII → F2 (major)/G-LXXV (minor). Both the Rd and gypenoside pathways exhibited great inter-individual variations in age-and sex-independent manners (P > 0.05). Rb1 was highly acid-labile and degraded rapidly to form F2, ginsenoside Rg3, ginsenoside Rh2, and Cpd K, but did not generate the gypenosides in SGF. The formation of the gypenosides might be explained by the involvement of a gut bacteria-mediated enzymatic process. Conclusions Rb1 was metabolized to G-XVII, F2 (major) or G-LXXL (minor), and finally Cpd K by human gut bacteria in vitro.
Collapse
Affiliation(s)
- Hong Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Department of Pharmaceutical Analysis & Metabolomics, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Weng-Im Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Qing Ruan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis & Metabolomics, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | | | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
40
|
Bektur NE, Sahin E, Baycu C, Unver G. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice. Toxicol Ind Health 2013; 32:589-600. [DOI: 10.1177/0748233713502841] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study was designed to estimate protective effects of silymarin on acetaminophen ( N-acetyl- p-aminophenol, paracetamol; APAP)-induced hepatotoxicity and nephrotoxicity in mice. Treatment of mice with overdose of APAP resulted in the elevation of aspartate aminotransferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and serum creatinine (SCr) levels in serum, liver, and kidney nitric oxide (NO) levels and significant histological changes including decreased body weight, swelling of hepatocytes, cell infiltration, dilatation and congestion, necrosis and apoptosis in liver, and dilatation of Bowman’s capsular space and glomerular capillaries, pale-stained tubules epithelium, cell infiltration, and apoptosis in kidney. Posttreatment with silymarin 1 h after APAP injectionfor 7 days, however, significantly normalized the body weight, histological damage, serum ALT, AST, BUN, SCr, and tissue NO levels. Our observation suggested that silymarin ameliorated the toxic effects of APAP-induced hepatotoxicity and nephrotoxicity in mice. The protective role of silymarin against APAP-induced damages might result from its antioxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Nuriye Ezgi Bektur
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Erhan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cengiz Baycu
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gonul Unver
- Department of Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
41
|
Wang M, Wang F, Wang Y, Ma X, Zhao M, Zhao C. Metabonomics study of the therapeutic mechanism of Gynostemma pentaphyllum and atorvastatin for hyperlipidemia in rats. PLoS One 2013; 8:e78731. [PMID: 24223845 PMCID: PMC3815346 DOI: 10.1371/journal.pone.0078731] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/15/2013] [Indexed: 11/19/2022] Open
Abstract
Gynostemma pentaphyllum (GP) is widely used for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China, and atorvastatin is broadly used as an anti-hyperlipidemia drug. This research focuses on the plasma and liver metabolites in the following four groups of rats: control, a hyperlipidemia model, a hyperlipidemia model treated with GP and a hyperlipidemia model treated with atorvastatin. Using 1H-NMR-based metabonomics, we elucidated the therapeutic mechanisms of GP and atorvastatin. Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver correlated well with the results of biochemical assays. GP can effectively affect lipid metabolism, and it exerts its anti-hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide (TMAO). In contrast, atorvastatin affects hyperlipidemia mainly during lipid metabolism and protein metabolism in vivo.
Collapse
Affiliation(s)
- Miao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Fei Wang
- College of Information Sci. and Eng., Northeastern University, Shenyang, China
| | - Yinan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaonan Ma
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail:
| |
Collapse
|
42
|
Abstract
Farnesoid x receptor (FXR) is a ligand-dependent nuclear transcription factor, belonging to the nuclear receptor superfamily. It is activated by bile acids (BAs) and is expressed in the liver, intestine, kidney, and adrenal gland. Upon activation by endogenous ligand (BAs), FXR can regulate triglyceride (TG) metabolism by modulating the activity of related enzymes, lipoprotein and receptors, and maintaining the balance between the contents of TG in the liver and circulation. This review aims to elucidate the regulation of triglyceride metabolism by FXR.
Collapse
|