1
|
Kim AT, Park Y. Trifuhalol A, a phlorotannin from the brown algae Agarum cribrosum, reduces adipogenesis of human primary adipocytes through Wnt/β-catenin and AMPK-dependent pathways. Curr Res Food Sci 2023; 7:100646. [PMID: 38115892 PMCID: PMC10728325 DOI: 10.1016/j.crfs.2023.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
Trifuhalol A, a fucol-type phlorotannin, was extracted and identified from the brown algae Agarum cribrosum. The total yield and purity of trifuhalol A from A. cribrosum were 0.98% and 86%, respectively. Trifuhalol A at 22 and 44 μM inhibited lipid accumulation in human primary adipocytes. Consistently trifuhalol A suppressed the expression of adipogenesis-related genes, such as proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein-alpha (C/EBP-α), fatty acid synthase (FAS), and sterol regulatory element-binding protein-1 (SREBP-1), in a dose-dependent manner. Trifuhalol A increased the level of proteins such as wingless/integrated (Wnt)10b, nuclear-β-catenin, total-β-catenin, phospho-AMP-activated protein kinase (pAMPK), and phospho-liver kinase B1 (pLKB1) as well as the expression of genes such as Wnt10b, Frizzled 1, and low-density lipoprotein receptor-related protein 6 (LRP6). Additionally, trifuhalol A decreased the expression of the glycogen synthase kinase-3beta (GSK3β) gene. These results suggest that trifuhalol A reduces fat accumulation in human adipocytes via the Wnt/β-catenin- and AMPK-dependent pathways.
Collapse
Affiliation(s)
- Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
2
|
Cho SH, Kim HS, Jung HY, Park JI, Jang YJ, Ahn J, Kim KN. Effect of Ishophloroglucin A Isolated from Ishige okamurae on In Vitro Osteoclastogenesis and Osteoblastogenesis. Mar Drugs 2023; 21:377. [PMID: 37504908 PMCID: PMC10381815 DOI: 10.3390/md21070377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is essential for the bone remodeling process. This study aimed to investigate the effect of Ishophloroglucin A (IPA) isolated from Ishige okamurae on the function of osteoclasts and osteoblasts in vitro. First, we demonstrated the effect of IPA on osteoclastogenesis in receptor activator of nuclear factor κB ligand (RANKL)-induced RAW 264.7 cells. IPA inhibited the tartrate-resistant acid phosphatase (TRAP) activity and osteoclast differentiation in RANKL-induced RAW 264.7 cells. Moreover, it inhibited the RANKL-induced osteoclast-related factors, such as TRAP, matrix metalloproteinase-9 (MMP-9), and calcitonin receptor (CTR), and transcription factors, such as nuclear factor of activated T cells 1 (NFATc1) and c-Fos. IPA significantly suppressed RANKL-activated extracellular signal-regulated kinase (ERK), and NF-κB in RAW 264.7 cells. Our data indicated that the ERK and NF-κB pathways were associated with the osteoclastogenesis inhibitory activity of IPA. Next, we demonstrated the effect of IPA on osteoblastogenesis in MG-63 cells. IPA significantly promoted alkaline phosphatase (ALP) activity in MG-63 cells, along with the osteoblast differentiation-related markers bone morphogenetic protein 2 (BMP2), type 1 collage (COL1), p-Smad1/5/8, and Runx2, by activating the MAPK signaling pathways. Taken together, the study indicated that IPA could be effective in treating bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Hye-Yeon Jung
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Jae-Il Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju 62399, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Jin Lim H, Cho CH, Lee SH, Seon Won Y, Gyeong Bak S, Kim M, Kim S, Yoon M, Joo Ha H, Tae Jang J, Jae Lee S. Estrogenic active Ecklonia cava extract improves bone loss and depressive behaviour in OVX mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
4
|
Zheng H, Zhao Y, Guo L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar Drugs 2022; 20:742. [PMID: 36547889 PMCID: PMC9785976 DOI: 10.3390/md20120742] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Phlorotannins are a type of natural active substance extracted from brown algae, which belong to a type of important plant polyphenol. Phloroglucinol is the basic unit in its structure. Phlorotannins have a wide range of biological activities, such as antioxidant, antibacterial, antiviral, anti-tumor, anti-hypertensive, hypoglycemic, whitening, anti-allergic and anti-inflammatory, etc. Phlorotannins are mainly used in the fields of medicine, food and cosmetics. This paper reviews the research progress of extraction, separation technology and biological activity of phlorotannins, which will help the scientific community investigate the greater biological significance of phlorotannins.
Collapse
Affiliation(s)
- Hongli Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
5
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
6
|
Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar Drugs 2022; 20:384. [PMID: 35736187 PMCID: PMC9227776 DOI: 10.3390/md20060384] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022] Open
Abstract
Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea;
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
7
|
Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seaweeds or marine macroalgae are known for producing potentially bioactive substances that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurodegenerative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic diseases. In this study, we conducted a review of published papers on seaweed consumption and chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method for this study. We identified and screened research articles published between 2000 and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and identifies gaps where further research in this field is needed. In this review, the therapeutic and nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis were discussed. We concluded that further study on the identification of bioactive compounds of seaweed, and further study at a clinical level, are needed.
Collapse
|
8
|
Therapeutic Potential of Seaweed-Derived Bioactive Compounds for Cardiovascular Disease Treatment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular diseases are closely related to hypertension, type 2 diabetes mellitus, obesity, and hyperlipidemia. Many studies have reported that an unhealthy diet and sedentary lifestyle are critical factors that enhance these diseases. Recently, many bioactive compounds isolated from marine seaweeds have been studied for their benefits in improving human health. In particular, several unique bioactive metabolites such as polyphenols, polysaccharides, peptides, carotene, and sterol are the most effective components responsible for these activities. This review summarizes the current in vitro, in vivo, and clinical studies related to the protective effects of bioactive compounds isolated from seaweeds against cardiovascular disorders, including anti-diabetic, anti-hypertensive, anti-hyperlipidemia, and anti-obesity effects. Therefore, this present review summarizes these concepts and provides a basis for further in-depth research.
Collapse
|
9
|
Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemists and pharmacognosists have relied on terrestrial sources for bioactive phytochemicals to manage and treat disease conditions. However, minimal interest is given to sea life, especially macroalgae and their inherent phytochemical reserves. Phlorotannins are a special class of phytochemicals mainly predominant in brown algae of marine and estuarine habitats. Phlorotannins are formed through the polymerization of phloroglucinol residues and derivatives via the polyketide (acetate–malonate) pathway. Studies over the past decades have implicated phlorotannins with several bioactivities, including anti-herbivory, antioxidants, anti-inflammatory, anti-microbial, anti-proliferative, anti-diabetic, radio-protective, adipogenic, anti-allergic, and anti-human immunodeficiency virus (anti-HIV) properties. All these activities are reflected in their applications as nutraceuticals and cosmeceutical agents. This article reviews the chemical composition of phlorotannins, their biological roles, and their applications. Moreover, very few studies on phlorotannin bioavailability, safety, and toxicity have been thoroughly reviewed. The paper concludes by suggesting exciting research questions for further studies.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of General Studies, University of Nigeria, Nsukka, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, P.R. China
- Organization of African Academic Doctor, Nairobi, Kenya
| | - Ekene John Nweze
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Timothy Prince Chidike Ezeorba
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021; 19:625. [PMID: 34822496 PMCID: PMC8622035 DOI: 10.3390/md19110625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiaoyang Liu
- National Engineering Research Center for Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
11
|
Chen L, Liu R, He X, Pei S, Li D. Effects of brown seaweed polyphenols, a class of phlorotannins, on metabolic disorders via regulation of fat function. Food Funct 2021; 12:2378-2388. [PMID: 33645609 DOI: 10.1039/d0fo02886j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that fat dysfunction is the main driver of development of metabolic disorders. Changes in diet and lifestyle are particularly important to reverse the current global rise in obesity-related metabolic disorders. Seaweed has been consumed for thousands of years, and it is rich in bioactive compounds, especially unique polyphenols. The aim of the present review is to summarize the effects of different seaweed polyphenols on fat function in metabolic disorders and the related mechanisms. Seaweed polyphenols activate white adipose tissue to "brown" or "beige" adipose tissue to enhance energy consumption. In addition, the amelioration of fat factor imbalance and inflammatory response is also considered as an important reason for the regulation of lipid function with seaweed polyphenols. The present review provides an important basis for using seaweed polyphenols as potential dietary supplements to prevent metabolic disorders.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | | | | | | | | |
Collapse
|
12
|
Ligustrum japonicum Thunb. Fruits Exert Antiosteoporotic Properties in Bone Marrow-Derived Mesenchymal Stromal Cells via Regulation of Adipocyte and Osteoblast Differentiation. Stem Cells Int 2021; 2021:8851884. [PMID: 33628272 PMCID: PMC7899768 DOI: 10.1155/2021/8851884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Ligustrum japonicum fruits have been used as a part of traditional medicinal practices and supplements in Korea and Japan. It has been reported to possess various bioactivities, but its antiosteoporotic potential and active substances have not been reported yet. The present study followed an ALP activity and lipid accumulation-guided screening of L. japonicum fruits for antiosteoporotic compounds and isolated salidroside as an active compound. Antiosteoporotic effects of L. japonicum fruits and salidroside were examined in mesenchymal stromal cells by their ability to enhance osteoblast formation by increased ALP activity and osteogenic marker gene expression while suppressing adipogenesis by inhibition of lipid accumulation and adipocyte marker gene expressions. Results showed that salidroside was able to enhance osteoblast differentiation via Wnt/BMP signaling pathway overactivation and suppress the PPARγ-mediated adipocyte differentiation, both through the MAPK pathway. In conclusion, L. japonicum fruits were suggested to possess antiosteoporotic activities and to be a source of antiosteoporotic substances such as salidroside.
Collapse
|
13
|
Del Mondo A, Smerilli A, Ambrosino L, Albini A, Noonan DM, Sansone C, Brunet C. Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics. Crit Rev Biotechnol 2021; 41:155-171. [PMID: 33530761 DOI: 10.1080/07388551.2021.1874284] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenolic compounds (PCs) are a family of secondary metabolites with recognized biological activities making them attractive for the biomedical "red" biotechnology. The development of the eco-sustainable production of natural bioactive metabolites requires using easy cultivable organisms, such as microalgae, which represents one of the most promising sources for biotechnological applications. Microalgae are photosynthetic organisms inhabiting aquatic systems, displaying high levels of biological and functional diversities, and are well-known producers of fatty acids and carotenoids. They are also rich in other families of bioactive molecules e.g. phenolic compounds. Microalgal PCs however are less investigated than other molecular components. This study aims to provide a state-of-art picture of the actual knowledge on microalgal phenolic compounds, reviewing information on the PC content variety and chemodiversity in microalgae, their environmental modulation, and we aim to report discuss data on PC biosynthetic pathways. We report the challenges of promoting microalgae as a relevant source of natural PCs, further enhancing the interests of microalgal "biofactories" for biotechnological applications (i.e. nutraceutical, pharmacological, or cosmeceutical products).
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| |
Collapse
|
14
|
Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Mar Drugs 2020; 18:E501. [PMID: 33007997 PMCID: PMC7601137 DOI: 10.3390/md18100501] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds from marine organisms are far less studied than those from terrestrial sources since their structural diversity and variability require powerful analytical tools. However, both their biological relevance and potential properties make them an attractive group deserving increasing scientific interest. The use of efficient extraction and, in some cases, purification techniques can provide novel bioactives useful for food, nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine phenolics is the consequence of their enzyme inhibitory effect and antimicrobial, antiviral, anticancer, antidiabetic, antioxidant, or anti-inflammatory activities. This review presents a survey of the major types of phenolic compounds found in marine sources, as well as their reputed effect in relation to the occurrence of dietary and lifestyle-related diseases, notably type 2 diabetes mellitus, obesity, metabolic syndrome, cancer and Alzheimer's disease. In addition, the influence of marine phenolics on gut microbiota and other pathologies is also addressed.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain;
| | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago 7810000, Chile;
| | - Herminia Domínguez
- CINBIO, Department of Chemical Engineering, Faculty of Sciences, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
15
|
Gabbia D, De Martin S. Brown Seaweeds for the Management of Metabolic Syndrome and Associated Diseases. Molecules 2020; 25:E4182. [PMID: 32932674 PMCID: PMC7570850 DOI: 10.3390/molecules25184182] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome is characterized by the coexistence of different metabolic disorders which increase the risk of developing type 2 diabetes mellitus and cardiovascular diseases. Therefore, metabolic syndrome leads to a reduction in patients' quality of life as well as to an increase in morbidity and mortality. In the last few decades, it has been demonstrated that seaweeds exert multiple beneficial effects by virtue of their micro- and macronutrient content, which could help in the management of cardiovascular and metabolic diseases. This review aims to provide an updated overview on the potential of brown seaweeds for the prevention and management of metabolic syndrome and its associated diseases, based on the most recent evidence obtained from in vitro and in vivo preclinical and clinical studies. Owing to their great potential for health benefits, brown seaweeds are successfully used in some nutraceuticals and functional foods for treating metabolic syndrome comorbidities. However, some issues still need to be tackled and deepened to improve the knowledge of their ADME/Tox profile in humans, in particular by finding validated indexes of their absorption and obtaining reliable information on their efficacy and long-term safety.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
16
|
Karadeniz F, Oh JH, Lee JI, Seo Y, Kong CS. 3,5-dicaffeoyl‑epi-quinic acid from Atriplex gmelinii enhances the osteoblast differentiation of bone marrow-derived human mesenchymal stromal cells via WnT/BMP signaling and suppresses adipocyte differentiation via AMPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153225. [PMID: 32464299 DOI: 10.1016/j.phymed.2020.153225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Impaired bone formation is one of the reasons behind osteoporosis. Alterations in the patterns of mesenchymal stromal cell differentiation towards adipocytes instead of osteoblasts contribute to osteoporosis progression. Natural anti-osteoporotic agents are effective and safe alternatives for osteoporosis treatment. PURPOSE In this context, 3,5-dicaffeoyl‑epi-quinic acid (DCEQA) which is a derivative of chlorogenic acid with reported bioactivities was studied for its osteogenic differentiation enhancing potential in vitro. METHODS Anti-osteoporotic effects of DCEQA were investigated in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) which were induced to differentiate into osteoblasts or adipocytes with or without DCEQA treatment. Changes in the osteogenic and adipogenic markers such as ALP activity and lipid accumulation, respectively, were observed along with differentiation-specific activation of mitogen activated protein kinase (MAPK) pathways. RESULTS At 10 μM concentration, DCEQA increased the proliferation of bone marrow-derived human mesenchymal stromal cells (hBM-MSCs) during osteoblast differentiation. The expression of osteogenic markers ALP, osteocalcin, Runx2, BMP2 and Wnt 10a was upregulated by DCEQA treatment. The ALP activity and extracellular mineralization were also increased. DCEQA elevated the phosphorylation levels of p38 and JNK MAPKs as well as the activation of β-catenin and Smad1/5. DCEQA suppressed the lipid accumulation and downregulated expression of adipogenic markers PPARγ, C/EBPα and SREBP1c in adipo-induced hBM-MSCs. DCEQA also decreased the phosphorylation of p38 and ERK MAPKs and stimulated the activation of AMPK in hBM-MSC adipocytes. CONCLUSION DCEQA was suggested to enhance osteoblast differentiation via stimulating Wnt/BMP signaling. The adipocyte differentiation inhibitory effect of DCEQA was suggested to arise from its ability to increase AMPK phosphorylation. Overall, DCEQA was shown to possess osteogenesis enhancing and adipogenesis inhibitory properties which might facilitate its use against osteoporotic conditions.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Baegyang-dero 700beon-gil 140, Sasang-gu, Busan 46958, Korea.
| |
Collapse
|
17
|
Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins. Int J Mol Sci 2020; 21:ijms21072315. [PMID: 32230810 PMCID: PMC7177887 DOI: 10.3390/ijms21072315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.
Collapse
|
18
|
Fernando IPS, Ryu B, Ahn G, Yeo IK, Jeon YJ. Therapeutic potential of algal natural products against metabolic syndrome: A review of recent developments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Oh JH, Ahn BN, Karadeniz F, Kim JA, Lee JI, Seo Y, Kong CS. Phlorofucofuroeckol A from Edible Brown Alga Ecklonia Cava Enhances Osteoblastogenesis in Bone Marrow-Derived Human Mesenchymal Stem Cells. Mar Drugs 2019; 17:E543. [PMID: 31546680 PMCID: PMC6836260 DOI: 10.3390/md17100543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
The deterioration of bone formation is a leading cause of age-related bone disorders. Lack of bone formation is induced by decreased osteoblastogenesis. In this study, osteoblastogenesis promoting effects of algal phlorotannin, phlorofucofuroeckol A (PFF-A), were evaluated. PFF-A was isolated from brown alga Ecklonia cava. The ability of PFF-A to enhance osteoblast differentiation was observed in murine pre-osteoblast cell line MC3T3-E1 and human bone marrow-derived mesenchymal stem cells (huBM-MSCs). Proliferation and alkaline phosphatase (ALP) activity of osteoblasts during differentiation was assayed following PFF-A treatment along extracellular mineralization. In addition, effect of PFF-A on osteoblast maturation pathways such as Runx2 and Smads was analyzed. Treatment of PFF-A was able to enhance the proliferation of differentiating osteoblasts. Also, ALP activity was observed to be increased. Osteoblasts showed increased extracellular mineralization, observed by Alizarin Red staining, following PFF-A treatment. In addition, expression levels of critical proteins in osteoblastogenesis such as ALP, bone morphogenetic protein-2 (BMP-2), osteocalcin and β-catenin were stimulated after the introduction of PFF-A. In conclusion, PFF-A was suggested to be a potential natural product with osteoblastogenesis enhancing effects which can be utilized against bone-remodeling imbalances and osteoporosis-related complications.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Byul-Nim Ahn
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Jung-Ae Kim
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea.
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.
| |
Collapse
|
20
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
21
|
Matos AA, Oliveira FA, Machado AC, Saldanha LL, Tokuhara CK, Souza LP, Vilegas W, Dionísio TJ, Santos C, Peres-Buzalaf C, Dokkedal AL, Oliveira R. An extract from Myracrodruon urundeuva inhibits matrix mineralization in human osteoblasts. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:192-201. [PMID: 30905790 DOI: 10.1016/j.jep.2019.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phytotherapy based on plant-derived compounds is an alternative medicinal strategy for the relief of symptoms and the curing of diseases. The leaves of Myracrodruon urundeuva a medicinal plant also known as "aroeira", has been used in traditional medicine as healing, antiulcer and anti-inflammatory to treat skeletal diseases in Brazil, but its role in bone cell toxicity, as well as in bone formation, remains to be established. AIM OF THE STUDY We sought to determine the in vitro osteogenic effects of a hydroalcoholic M. urundeuva leaves extract in primary human osteoblasts. MATERIALS AND METHODS Cell viability, reactive oxygen species (ROS) production, alkaline phosphatase (ALP) activity and matrix mineralization were evaluated by MTT assay, DCFH-DA probe, colorimetric-based enzymatic assay and Alizarin Red-staining, respectively. Besides, the matrix metalloproteinase (MMP)-2 and progressive ankylosis protein homolog (ANKH) gene expression were determined by real-time RT-qPCR and MMP-2 activity by zymography. RESULTS Exposure of osteoblasts to M. urundeuva extract significantly decreased viability and increased reactive oxygen species (ROS) production, regardless of the extract concentration. The M. urundeuva extract at 10 μg/mL also downregulated matrix metalloproteinase (MMP)-2, while upregulating progressive ankylosis protein homolog (ANKH) gene expression. By contrast, the MMP-2 activity was unchanged. The M. urundeuva extract at 10 μg/mL also reduced alkaline phosphatase (ALP) activity and mineralization. CONCLUSIONS Overall, our findings suggest that the inhibition of osteogenic differentiation and matrix mineralization promoted by M. urundeuva may be due more to an increase in oxidative stress than to the modulation of MMP-2 and ANKH expression.
Collapse
Affiliation(s)
- Adriana Arruda Matos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Flávia Amadeu Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Alessandra Cury Machado
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | - Cintia Kazuko Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Leonardo Perez Souza
- Chemistry Institute, Department of Organic Chemistry, UNESP, Araraquara, SP, Brazil.
| | - Wagner Vilegas
- Chemistry Institute, Department of Organic Chemistry, UNESP, Araraquara, SP, Brazil.
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Carlos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Camila Peres-Buzalaf
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil.
| | - Anne Lígia Dokkedal
- Department of Biological Sciences, School of Science, UNESP, Bauru, SP, Brazil.
| | - Rodrigo Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
22
|
Wang N, Li Y, Li Z, Liu C, Xue P. Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis through MEK-ERK pathway. J Cell Mol Med 2019; 23:3683-3695. [PMID: 30907511 PMCID: PMC6484321 DOI: 10.1111/jcmm.14272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Salvianolic acid B (Sal B), a major bioactive component of Chinese herb, was identified as a mediator for bone metabolism recently. The aim of this study is to investigate the underlying mechanisms by which Sal B regulates osteogenesis and adipogenesis. We used MC3T3-E1 and 3T3-L1 as the study model to explore the changes of cell differentiation induced by Sal B. The results indicated that Sal B at different concentrations had no obvious toxicity effects on cell proliferation during differentiation. Furthermore, Sal B facilitated osteogenesis but inhibited adipogenesis by increasing the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Accordingly, TAZ knock-down offset the effects of Sal B on cell differentiation into osteoblasts or adipocytes. Notably, the Sal B induced up-expression of TAZ was blocked by U0126 (the MEK-ERK inhibitor), rather than LY294002 (the PI3K-Akt inhibitor). Moreover, Sal B increased the p-ERK/ERK ratio to regulate the TAZ expression as well as the cell differentiation. In summary, this study suggests for the first time that Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis by activating MEK-ERK signalling pathway, which provides evidence for Sal B to be used as a potential therapeutic agent for the management of bone diseases.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Ziyi Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Chang Liu
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| |
Collapse
|
23
|
Abstract
Natural marine-derived compounds show excellent biological activities. Isolation, characterization and applications of marine derived compounds show a promising way to develop novel drugs to treat various diseases. Phlorotannins are one of the main compounds which are commonly isolated from the brown seaweeds. The structural unit of phlorotannins is made-up of polyphenolic units. Due to the unique structures, phlorotannins show a variety of biological activities such as antibacterial, antioxidant, anti-inflammatory, antiproliferative, antitumor, antidiabetics, radio protective, antiadipogenic, and anti-allergic effects. In the current chapter, we have discussed general information on phlorotannins, extraction procedure and their biological activities in detail. From the scientific literature, phlorotannins can be potentially useful in the development of pharmaceuticals, nutraceuticals and cosmeceuticals.
Collapse
|
24
|
Koshi R, Nakai K, Tanaka H, Kato K, Charleston-Coad T, Matsuike R, Nakasugi T, Shibuya K, Maeno M, Kawato T. An Extract of Eisenia Bicyclis Stimulates Mineralized Nodule Formation by Osteoblasts. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ryosuke Koshi
- Department of Oral Health Sciences, Nihon University School of Dentistry
| | - Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Kengo Kato
- Nihon University Graduate School of Dentistry
| | | | - Rieko Matsuike
- Department of Orthodontics, Nihon University School of Dentistry
| | - Toru Nakasugi
- Department of Applied Science, Inabata Koryo Co., Ltd
| | | | | | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
25
|
Kim DY, Kim EJ, Jang WG. Piperine induces osteoblast differentiation through AMPK-dependent Runx2 expression. Biochem Biophys Res Commun 2018; 495:1497-1502. [DOI: 10.1016/j.bbrc.2017.11.200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022]
|
26
|
Huebbe P, Nikolai S, Schloesser A, Herebian D, Campbell G, Glüer CC, Zeyner A, Demetrowitsch T, Schwarz K, Metges CC, Roeder T, Schultheiss G, Ipharraguerre IR, Rimbach G. An extract from the Atlantic brown algae Saccorhiza polyschides counteracts diet-induced obesity in mice via a gut related multi-factorial mechanisms. Oncotarget 2017; 8:73501-73515. [PMID: 29088722 PMCID: PMC5650277 DOI: 10.18632/oncotarget.18113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
In this study we addressed the questions whether an Atlantic brown algae extract (BAE) affects diet induced obesity in mice and which would be the primary targets and underlying key mechanisms. Male C57 BL/6 mice were fed a hypercaloric diet, referred to as high fat diet (HFD), supplemented with a freeze-dried aqueous BAE from Saccorhiza polyschides (5 %) for 8 months. Compared to the control group, dietary BAE supplementation significantly attenuated increase in body weight and fat mass. We observed apparent metabolic improvement including normalization of blood glucose, reduced plasma leptin, reduced fecal bile salt hydrolase activity with lower microbial production of toxic bile acid metabolites in the gut and increased systemic bile acid circulation in BAE-fed mice counteracting adverse effects of long term HFD feeding. Survival of mice receiving dietary BAE supplementation appeared slightly enhanced; however, median and maximal life spans as well as hepatic mTOR activation were not significantly different between BAE and control mice. We suggest that the beneficial metabolic effects of our BAE are at least partly mediated by alterations in gut microbiota associated with fermentation of indigestible polysaccharides that are major components of brown algae such as alginates and fucoidans. We moreover propose a multi-factorial mechanism that involves profound alterations in bile acid homeostasis, changes in intestinal and systemic glucose metabolism likely including increased intestinal gluconeogenesis, increased activity of the intestinally derived hormone GLP-1 contributing to promote systemic insulin sensitivity, and inhibition of α-amylase activity, which expectably limits dietary carbohydrate digestion and glucose release.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- * These authors share the first authorship
| | - Sibylle Nikolai
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- * These authors share the first authorship
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Graeme Campbell
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University of Kiel, Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University of Kiel, Kiel, Germany
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Cornelia C. Metges
- Institute of Nutritional Physiology ‘Oskar Kellner’, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Thomas Roeder
- Institute of Zoology, University of Kiel, Kiel, Germany
| | | | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
27
|
Koirala P, Jung HA, Choi JS. Recent advances in pharmacological research on Ecklonia species: a review. Arch Pharm Res 2017; 40:981-1005. [PMID: 28840539 PMCID: PMC7090987 DOI: 10.1007/s12272-017-0948-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
Abstract
The genus Ecklonia (Lessoniaceae, Phaeophyceae), commonly called kelp (brown algae), is abundant on the coasts of Japan and Korea. During the past few decades, Ecklonia species have received tremendous attention for their wide range of therapeutic properties and multiple health benefits, such as great nutritional value and being rich in vitamins, minerals, dietary fiber, proteins, and polysaccharides. Several novel functional ingredients with diversified biological activities have been isolated and possess antimicrobial, antiviral, hepatoprotective, cardioprotective, anti-inflammatory, neuroprotective, anticarcinogenic, immunomodulatory, hypolipidemic, anti-diabetic, and antioxidant therapeutic properties. The present review discusses the phytochemical, pharmacological, therapeutic, nutritional, and health benefits of different species of genus Ecklonia, as well as their use in the prevention of disease and maintenance of good health.
Collapse
Affiliation(s)
- Prashamsa Koirala
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
28
|
Panzella L, Napolitano A. Natural Phenol Polymers: Recent Advances in Food and Health Applications. Antioxidants (Basel) 2017; 6:E30. [PMID: 28420078 PMCID: PMC5488010 DOI: 10.3390/antiox6020030] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Natural phenol polymers are widely represented in nature and include a variety of classes including tannins and lignins as the most prominent. Largely consumed foods are rich sources of phenol polymers, notably black foods traditionally used in East Asia, but other non-edible, easily accessible sources, e.g., seaweeds and wood, have been considered with increasing interest together with waste materials from agro-based industries, primarily grape pomace and other byproducts of fruit and coffee processing. Not in all cases were the main structural components of these materials identified because of their highly heterogeneous nature. The great beneficial effects of natural phenol-based polymers on human health and their potential in improving the quality of food were largely explored, and this review critically addresses the most interesting and innovative reports in the field of nutrition and biomedicine that have appeared in the last five years. Several in vivo human and animal trials supported the proposed use of these materials as food supplements and for amelioration of the health and production of livestock. Biocompatible and stable functional polymers prepared by peroxidase-catalyzed polymerization of natural phenols, as well as natural phenol polymers were exploited as conventional and green plastic additives in smart packaging and food-spoilage prevention applications. The potential of natural phenol polymers in regenerative biomedicine as additives of biomaterials to promote growth and differentiation of osteoblasts is also discussed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Naples I-80126, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Naples I-80126, Italy.
| |
Collapse
|